Intraocular injector

Information

  • Patent Grant
  • 8545554
  • Patent Number
    8,545,554
  • Date Filed
    Friday, January 16, 2009
    15 years ago
  • Date Issued
    Tuesday, October 1, 2013
    11 years ago
Abstract
An intraocular injector includes a syringe body having open-ended cone disposed in one end thereof along with a piston disposed in the body. A transparent implant holder having a lumen therein is aligned with an open-ended cone, a needle include a proximal end and a distal end with a bevel disposed on the distal end of the needle. A plunger affixed to the piston and slidable within a holder lumen and needle lumen is provided for injecting solid intraocular implants into an eye. A cylindrical syringe body shape facilitates control over the needle bevel orientation during injection of the implant into the eye.
Description

The present invention relates to apparatus and methods for implanting ocular implants in eyes. More particularly, the invention relates to such apparatus and methods for implanting, for example, delivering, placing, positioning and the like, particulate ocular implants in an eye, for example, at one or more of various locations in an eye, for example, a mammalian eye.


The mammalian eye is a complex organ comprising an outer covering including the sclera (the tough white portion of the exterior of the eye) and the cornea (the clear outer portion covering the pupil and iris). In a medial cross section, from anterior to posterior, the eye comprises features including, without limitation: the cornea, the anterior chamber (a hollow feature filled with a watery, clear fluid called the aqueous humor and bounded by the cornea in the front and the lens in the posterior direction), the iris (a curtain-like feature that can open and close in response to ambient light), the lens, the posterior chamber (filled with a viscous fluid called the vitreous humor), the retina (the innermost coating of the back of the eye and comprising light-sensitive neurons), the choroid (an intermediate layer providing blood vessels to the cells of the eye), and the sclera. The posterior chamber comprises approximately ⅔ of the inner volume of the eye, while the anterior chamber and its associated features (lens, iris etc.) comprise about ⅓ of the eye's inner volume.


Ocular implants containing one or more therapeutic components combined with matrix components, such as polymeric components, have been proposed for use, for example, to treat conditions/diseases of the eye. Such implants have been suggested for use at various locations in the eye, for example, in the vitreous, subconjunctivally, anterior chamber and posterior chamber of the eye.


It is important that accurate placement of the implant is effected. This requires accurate manipulation of an implant needle including orientation of the needle during entry of the needle and injection of the implant.


Thus, there continues to be a need for apparatus and methods to effect dry implant microparticles in an eye.


SUMMARY OF THE INVENTION

An intraocular injector in accordance with the present invention includes a syringe body having an open-ended cone disposed on one end thereof. A piston is disposed within the body and a transparent implant holder having a lumen therein, which is aligned with the open-end of the cone, provides sufficient transparency to enable visual observation of the solid intraocular implants disposed within the lumen holder.


A needle is provided having a proximal end, a distal end, and a lumen extending therethrough. The proximal end of the needle is supported by a transparent needle hub which is attachable to the cone with a needle lumen aligned with the implant holder lumen.


A plunger, affixed to the piston and slidable within the holder lumen and needle lumen, is provided for injecting solid intraocular implants into an ocular site.


A bevel is disposed in a distal end of the needle and a cylindrical syringe body shape facilitates controls needle bevel orientation during the injection of the implant into the eye. This feature coupled with the transparency of the implant holder and needle hub enable accurate control and placement of the implant.


To further facilitate control of the needle bevel orientation circumferential ribs are provided on the syringe body. The circumferential ribs may have an hourglass profile in longitudinal cross section and this shape is particularly useful in controlling longitudinal (push-pull) movement of the syringe body and the needle placement at an ocular site.


Alternatively, the cylindrical body may include a longitudinal flat thereon which may, if desired, be aligned with the bevel to facilitate orientation thereof during implant procedures.


One embodiment of the present invention of the injector includes an implant holder which is totally enclosed by the needle hub. In another embodiment, the implant holder may be partially enclosed by the needle hub and partially enclosed by the syringe body cone. In yet another embodiment of the present invention, an implant holder may be totally enclosed by the syringe body cone. All of these elements being transparent in order to accurately determine by visual observation and placement of implants within the intraocular injector prior to injecting the implants into an ocular region or site.


Methods for implanting an ocular implant in an ocular site are also provided. More specifically, the methods include providing an intraocular injector comprising a cylindrical syringe body with a plunger and piston disposed therein and a needle attached to the syringe body. The needle includes a distal end with a bevel thereon.


The method further includes placing a needle distal end proximate the ocular site and orienting the bevel by way of turning the cylindrical body to the desired bevel orientation. The cylindrical nature of the body facilitates turning an operation of the plunger despite orientation of the needle.


The method further includes inserting a needle distal end into the ocular site in a desired depth and operating the plunger piston to force the implants through the needle lumen into the ocular site.


The method in accordance with the present invention further includes providing an intraocular injector with a flatted cylindrical syringe body with a plunger piston disposed therein and a needle attachable to the syringe body having a distal end with a bevel thereon.


The method further includes attaching a needle to the syringe using a needle hub with the needle bevel aligned with the cylindrical body flat and placing a needle piston end proximate in an ocular site and thereafter orienting the bevel by way of turning the cylindrical body as indicated by the flap.


The present apparatus and methods can be practiced to treat a condition of the posterior segment of a mammalian eye, such as a condition selected from the group consisting of macular edema, dry and wet macular degeneration, choroidal neovascularization, diabetic retinopathy, acute macular neuroretinopathy, central serous chorioretinopathy, cystoid macular edema, and diabetic macular edema, uveitis, retinitis, choroiditis, acute multifocal placoid pigment epitheliopathy, Behcet's disease, birdshot retinochoroidopathy, syphilis, lyme, tuberculosis, toxoplasmosis, intermediate uveitis (pars planitis), multifocal choroiditis, multiple evanescent white dot syndrome (mewds), ocular sarcoidosis, posterior scleritis, serpiginous choroiditis, subretinal fibrosis and uveitis syndrome, Vogt-Koyanagi-and Harada syndrome; retinal arterial occlusive disease, anterior uveitis, retinal vein occlusion, central retinal vein occlusion, disseminated intravascular coagulopathy, branch retinal vein occlusion, hypertensive fundus changes, ocular ischemic syndrome, retinal arterial microaneurysms, Coat's disease, parafoveal telangiectasis, hemiretinal vein occlusion, papillophlebitis, central retinal artery occlusion, branch retinal artery occlusion, carotid artery disease (CAD), frosted branch angiitis, sickle cell retinopathy, angioid streaks, familial exudative vitreoretinopathy, and Eales disease; traumatic/surgical conditions such as sympathetic ophthalmia, uveitic retinal disease, retinal detachment, trauma, photocoagulation, hypoperfusion during surgery, radiation retinopathy, and bone marrow transplant retinopathy; proliferative vitreal retinopathy and epiretinal membranes, and proliferative diabetic retinopathy; infectious disorders such as ocular histoplasmosis, ocular toxocariasis, presumed ocular histoplasmosis syndrome (POHS), endophthalmitis, toxoplasmosis, retinal diseases associated with HIV infection, choroidal disease associated with HIV infection, uveitic disease associated with HIV infection, viral retinitis, acute retinal necrosis, progressive outer retinal necrosis, fungal retinal diseases, ocular syphilis, ocular tuberculosis, diffuse unilateral subacute neuroretinitis, and myiasis; genetic disorders such as retinitis pigmentosa, systemic disorders with associated retinal dystrophies, congenital stationary night blindness, cone dystrophies, Stargardt's disease and fundus flavimaculatus, Best's disease, pattern dystrophy of the retinal pigmented epithelium, X-linked retinoschisis, Sorsby's fundus dystrophy, benign concentric maculopathy, Bietti's crystalline dystrophy, and pseudoxanthoma elasticum; retinal tears/holes such as retinal detachment, macular hole, and giant retinal tear; tumors such as retinal disease associated with tumors, congenital hypertrophy of the retinal pigmented epithelium, posterior uveal melanoma, choroidal hemangioma, choroidal osteoma, choroidal metastasis, combined hamartoma of the retina and retinal pigmented epithelium, retinoblastoma, vasoproliferative tumors of the ocular fundus, retinal astrocytoma, and intraocular lymphoid tumors; punctate inner choroidopathy, acute posterior multifocal placoid pigment epitheliopathy, myopic retinal degeneration, acute retinal pigment epithelitis, retinitis pigmentosa, proliferative vitreal retinopathy (PVR), age-related macular degeneration (ARMD), diabetic retinopathy, diabetic macular edema, retinal detachment, retinal tear, uveitis, cytomegalovirus retinitis and glaucoma comprises administering to the posterior segment of the eye a composition comprising an SIRT1-activating agent in an ophthalmically effective vehicle. Conditions treated with the present apparatus and methods may be intraocular conditions involving ocular degeneration, such as neurodegeneration of retinal ganglion cells.


Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention provided that the features included in such a combination are not mutually inconsistent. In addition, any feature or combination of features may be specifically excluded from any embodiment of the present invention.


Additional aspects and advantages of the present invention are set forth in the following description and claims, particularly when considered in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exploded perspective view of an intraocular injector in accordance with the present invention generally shown a cylindrical syringe body, a piston disposed within the body along with a transparent implant holder, a needle with a bevel thereon, and a plunger slidable affixed to the piston for injecting a solid intraocular implants (not shown) through a holder lumen a needle lumen;



FIG. 2 is a cross sectional view of the injector shown in FIG. 1 with the plunger piston shown in a first position (not an initial position) before injection of solid ophthalmic implant;



FIG. 3 is a cross sectional view similar to FIG. 2 showing the piston plunger moved to a second position thereby injecting solid intraocular implants into an eye (not shown) through the holder lumen and needle lumen;



FIG. 4 is a cross sectional view taken along the line 4-4 of FIG. 3 illustrating the cylindrical shape of the syringe body;



FIG. 5 is a perspective view of an injector in accordance with the present invention and illustrating the function of the cylindrical body in orienting the bevel needle and method for implanting an ocular implanting to an eye in accordance with the present invention;



FIG. 6 is an alternative embodiment of the present invention illustrating an injector having a cylindrical body with a flat thereon;



FIG. 7 is a cross sectional view taken along the line 6-6 of FIG. 5 illustrating the flatted syringe body;



FIG. 8 is a further perspective view of an injector in accordance with the present invention illustrating ribs on the cylindrical body which have an hourglass profile in longitudinal cross section;



FIG. 9 is an enlarged cross sectional view of the syringe body cone transparent implant holder, needle hub, and needle illustrating one embodiment in accordance with the present invention in which the implant holder is totally enclosed by the needle hub;



FIG. 10 is an enlarged cross sectional view of another embodiment in accordance with the present invention wherein the implant holder is partially enclosed by the needle hub and partially enclosed by the syringe body cone; and



FIG. 11 is a further embodiment of the present invention shown in cross section wherein the implant holder is totally enclosed by the syringe body cone.





DETAILED DESCRIPTION

As described herein, administration of a therapeutic agent through the use of one or more intraocular implants may improve treatment of undesirable ocular conditions. Definitions


For the purposes of this description, we use the following terms as defined in this section, unless the context of the word indicates a different meaning.


As used herein, an “intraocular implant” refers to a device or element that is structured, sized, or otherwise configured to be placed in an eye. Intraocular implants may be permanent or biocompatible with physiological conditions of an eye and do not cause adverse side effects. Intraocular implants may be placed in an eye without disrupting vision of the eye.


As used herein, a “therapeutic component” refers to a portion of an intraocular implant comprising one or more therapeutic agents or substances used to treat a medical condition of the eye. The therapeutic component may be a discrete region of an intraocular implant, or it may be homogenously distributed throughout the implant. The therapeutic agents of the therapeutic component are typically ophthalmically acceptable, and are provided in a form that does not cause adverse reactions when the implant is placed in an eye.


As used herein, an “ocular region” or “ocular site” refers generally to any area of the eyeball, including the anterior and posterior segment of the eye, and which generally includes, but is not limited to, any functional (e.g., for vision) or structural tissues found in the eyeball, or tissues or cellular layers that partly or completely line the interior or exterior of the eyeball. Specific examples of areas of the eyeball in an ocular region include the anterior chamber, the posterior chamber, the vitreous cavity, the choroid, the suprachoroidal space, the conjunctiva, the subconjunctival space, the episcleral space, the intracorneal space, the epicorneal space, the sclera, the pars plana, surgically-induced avascular regions, the macula, and the retina.


As used herein, an “ocular condition” is a disease, ailment or condition which affects or involves the eye or one of the parts or regions of the eye. Broadly speaking the eye includes the eyeball and the tissues and fluids which constitute the eyeball, the periocular muscles (such as the oblique and rectus muscles) and the portion of the optic nerve which is within or adjacent to the eyeball.


An anterior ocular condition is a disease, ailment or condition which affects or which involves an anterior (i.e. front of the eye) ocular region or site, such as a periocular muscle, an eye lid or an eye ball tissue or fluid which is located anterior to the posterior wall of the lens capsule or ciliary muscles. Thus, an anterior ocular condition primarily affects or involves the conjunctiva, the cornea, the anterior chamber, the iris, the posterior chamber (behind the retina but in front of the posterior wall of the lens capsule), the lens or the lens capsule and blood vessels and nerve which vascularize or innervate an anterior ocular region or site.


Thus, an anterior ocular condition can include a disease, ailment or condition, such as for example, aphakia; pseudophakia; astigmatism; blepharospasm; cataract; conjunctival diseases; conjunctivitis; corneal diseases;, corneal ulcer; dry eye syndromes; eyelid diseases; lacrimal apparatus diseases; lacrimal duct obstruction; myopia; presbyopia; pupil disorders; refractive disorders and strabismus. Glaucoma can also be considered to be an anterior ocular condition because a clinical goal of glaucoma treatment can be to reduce a hypertension of aqueous fluid in the anterior chamber of the eye (i.e. reduce intraocular pressure).


A posterior ocular condition is a disease, ailment or condition which primarily affects or involves a posterior ocular region or site such as choroid or sclera (in a position posterior to a plane through the posterior wall of the lens capsule), vitreous, vitreous chamber, retina, optic nerve (i.e. the optic disc), and blood vessels and nerves which vascularize or innervate a posterior ocular region or site.


Thus, a posterior ocular condition can include a disease, ailment or condition, such as for example, acute macular neuroretinopathy; Behcet's disease; choroidal neovascularization; diabetic uveitis; histoplasmosis; infections, such as fungal or viral-caused infections; macular degeneration, such as acute macular degeneration, non-exudative age related macular degeneration and exudative age related macular degeneration; edema, such as macular edema, cystoid macular edema and diabetic macular edema; multifocal choroiditis; ocular trauma which affects a posterior ocular site or location; ocular tumors; retinal disorders, such as central retinal vein occlusion, diabetic retinopathy (including proliferative diabetic retinopathy), proliferative vitreoretinopathy (PVR), retinal arterial occlusive disease, retinal detachment, uveitic retinal disease; sympathetic ophthalmia; Vogt Koyanagi-Harada (VKH) syndrome; uveal diffusion; a posterior ocular condition caused by or influenced by an ocular laser treatment; posterior ocular conditions caused by or influenced by a photodynamic therapy, photocoagulation, radiation retinopathy, epiretinal membrane disorders, branch retinal vein occlusion, anterior ischemic optic neuropathy, non-retinopathy diabetic retinal dysfunction, retinitis pigmentosa, and glaucoma. Glaucoma can be considered a posterior ocular condition because the therapeutic goal is to prevent the loss of or reduce the occurrence of loss of vision due to damage to or loss of retinal cells or optic nerve cells (i.e. neuroprotection).


The term “substantially transparent” as used herein refers to a transparency which allows an observer of the holder or needle hub held at arms length to determine that an implant is present in the holder before injection without use by the observer of magnification aid or other than normal ambient or indoor lighting.


The term “treat”, “treating”, or “treatment” as used herein, refers to reduction or resolution or prevention of an ocular condition, ocular injury or damage, or to promote healing of injured or damaged ocular tissue.


With reference to FIGS. 1-3, there is shown a disposable hand held intraocular injector 10 in accordance with the present invention which generally includes a syringe body 14 formed, from a transparent thermoplastic such as a polycarbonate, or acrylic, the holder 32 includes a lumen 36 aligned with an open-end 40 of the cone 18.


The Intraocular injector 10 is useful for administering a drug delivery system (“DDS”). The DDS can be a solid implant containing a therapeutic agent or agent such as Brimonidine Tartrate homogenously distributed throughout a biodegradable (i.e. PLGA) polymer matrix. The injector can be used to administer the implant into the vitreous (posterior chamber) or anterior humor (anterior chamber) or subconjunctival (i.e. into the sub-tenon space, that is within the cornea) of a human eye. The resulting sustained (multi-week) release of the brimonidine acts to treat glaucoma by lowering intraocular pressure and/or providing neuroprotection to the optic nerve at the retina. The invention is the injector for the DDS, not the DDS itself.


A body 14 includes an open-ended cone 18 on one end 20 of the body 14. A piston 24 is slidably disposed within the body 14 and carries a plunger 28 slidably affixed thereto. A transparent implant holder 32, formed from any suitable material, such as for example, a thermal plastic elastomer (TPE) thermoplastic rubber (TPR) or Silicone, which is a class of copolymers or a physical mix of polymers which consists of materials with both thermal plastic and elastomeric properties and are injected molded to provide ergometric handing thereof. The holder 32 includes a lumen 36 aligned with an open-end 40 of the cone 18. The holder 32, as well as other components of the injector in accordance with the present invention, all have sufficient transparency to enable visual observation of solid intraocular implants (not shown) disposed within the lumen holder 32 prior to injection into an ocular site (not shown).


Injection is made through a needle, or cannula, 44 which has a proximal end 46 and a distal end 48 with the distal end 48 including a bevel 50. The bevel 50 facilitates entry of the needle 44 into eye tissue and further facilitates placement of the intraocular implants into the ocular site. While a single bevel 50 is shown for illustrative purposes, a multifaceted bevel, not shown, may be utilized.


The needle 44 is suitable for delivering a 6 mm×0.37 mm solid implant to (within) a human eye; such as 22 gauge or smaller injector sharp needle 44 bore; siliconized, low cornea penetration force injector needle 44. The needle 44 may be about 5 mm to about 13 mm long. The injector 10 can be gamma radiation sterilized without loss of any functionality.


The plunger 28 includes a rod 54 which is slidable within the holder lumen 36 and a needle lumen 58, see FIG. 2, for injecting solid intraocular implants (not shown) into an ocular site (not shown). A syringe cap, or sheath, 62 is removably attachable to a transparent needle hub 66 for preventing accidental exposure of the needle 44. The hub 66 supports the needle proximal end 46 and is attachable to the cone 18 with the needle lumen 58 aligned with the implant holder lumen 36.


The plunger 28 may include a tab 70 which is depressible for engaging opening 72, for locking the plunger 28 within the body 14 before use. Upon release of the tab 70, by depression, the plunger 70 may be moved in a forward position until engagement with the opening 74 upon completion of a implant procedure, as illustrated in FIG. 3. An audible clicking sound signals the end of the injection and the locked plunger eliminates exposure of the distal end 48 upon removal of the needle 44 from the eye.



FIG. 4 is a cross section of the injector illustrating more clearly the cylindrical shape of the body which is important for facilitating control over the needle bevel 50 during injection of the implant into the ocular site as illustrated in FIG. 5.


As illustrated, turning of the syringe body 14 as indicated by the arrow 78, turns the needle bevel 50, as indicated by the arrow 80. At any rotational, position of the barrel enables easy manipulation of a piston thumb pad 84. Consistent gripping surface on the body 14 is provided by a cylindrical configuration. This must be contrasted with many prior art injectors (not shown) utilizing non-cylindrical syringe bodies.


To further facilitate the handling of the syringe during such orientation, circumferential ribs 88 may be provided on a syringe body 14.


Needle bevel 50 orientation may be further aided by another embodiment 92 shown in FIGS. 6-8 in which a syringe body 96 includes a flat 100 and which can be aligned with the needle bevel 50.


All of the components of the embodiment 92 which are identical or substantially similar to the injector 10 hereinabove described are identified by identical character references.


Yet further embodiment 104 shown in FIG. 8 includes a syringe body 102 having a flat 106 thereon, also aligned with the bevel 50 of the needle 44 yet including circumferential ribs 108 which have an hourglass profile, along a longitudinal cross section, to provide a more ergonomic grasping surface for a user.


Various implant hub, needle hub, and syringe body cone configurations are shown in FIGS. 9-11. FIG. 9 illustrates implant holder 112 disposed and totally enclosed by a needle hub 114 when the needle hub 114 is disposed onto a syringe cone 116. This enables all of the implants disposed within the implant holder 112 to be attachable to any corresponding syringe body 118.


In addition, the visibility of the implant is improved since only two layers of clear plastic, the implant holder 112 and needle hub 114 cover the implant. In addition, the cone 116 and syringe body may be made form any material, not just a clear material.


Alternatively, as shown in FIG. 10, an implant holder 122 may be partially enclosed by a needle hub 120 and partially enclosed by a syringe cone 124. This may further facilitate alignment of the components.


Illustrated in FIG. 11, an implant holder 128 may be totally enclosed by the cone 130. As shown, the needle hub 132 is secured to a distal end of the cone 130 such that the needle hub 132 covers a portion, or distal section 130′, of the cone 130, leaving a proximal portion 130″ of the cone uncovered by the needle hub 132. As illustrated, the needle hub 132 also covers a distal section 128′, of the implant holder 128, leaving a proximal section 128″ of the implant holder 128 uncovered by the needle hub 132. As illustrated, the needle hub 132 also covers a distal section 134′, of the implant holder lumen 134, leaving a proximal section 134″ of the implant holder lumen 134 uncovered by the needle hub 132. This configuration provides easier verification of implant presence in the implant holder lumen 134 if the implant 136 is positioned outside of the distal section of the cone 130′, covered by the needle hub 132.


EXAMPLE

A needle and a hub holder contain implants is attached to a syringe body as shown in FIG. 5. Thereafter, the needle bevel is oriented, by turning of the syringe body by gripping the circumferential ribs, to a desired position and thereafter injecting an implant from the needle by moving the piston and plunger by the pressing the thumb pad. Movement of the implant through the needle hub and implant holder is observed during the procedure resulting in definite placement of the implant in an ocular site.


Although there has been hereinabove described a specific syringe device for intraocular use in accordance with the present invention for the purpose of illustrating the manner in which the invention may be used to advantage, it should be appreciated that the invention is not limited thereto. That is, the present invention may suitably comprise, consist of, or consist essentially of the recited elements. Further, the invention illustratively disclosed herein suitably may be practiced in the absence of any element which is not specifically disclosed herein. Accordingly, any and all modifications, variations or equivalent arrangements which may occur to those skilled in the art, should be considered to be within the scope of the present invention as defined in the appended claims.

Claims
  • 1. An intraocular injector comprising: a syringe comprising a substantially cylindrical body, and an open ended cone disposed on a distal end of the body and being narrower than the body;a piston disposed within said body;a substantially transparent implant holder disposed entirely within the open ended cone, the substantially transparent implant holder having a lumen therein, and a solid intraocular implant disposed in the lumen;a needle having a proximal end, a distal end, and a lumen extending therethrough, wherein the needle is spaced apart from the substantially transparent implant holder;a substantially transparent needle hub supporting the needle proximal end and covering a distal portion of the open ended cone and a distal portion of the substantially transparent implant holder inside the open ended cone, leaving a proximal portion of the open ended cone and a proximal portion of the substantially transparent implant holder uncovered by the substantially transparent needle hub;the solid ocular implant being located in the lumen of the substantially transparent implant holder in the uncovered proximal portion of the substantially transparent implant holder at a position outside of the open ended cone portion covered by the substantially transparent needle hub;a plunger fixed to said piston and slidable within the substantially transparent implant holder lumen and needle lumen for injecting the solid intraocular implant into an eye; anda bevel disposed on the distal end of said needle.
  • 2. The injector according to claim 1, further comprising a gripping feature disposed on the body.
  • 3. The injector according to claim 2, wherein the gripping feature comprises circumferential ribs.
  • 4. The injector according to claim 1, wherein the body includes a longitudinal flat thereon.
  • 5. The intraocular injector according to claim 4, wherein the injector further comprises circumferential ribs disposed on the longitudinal flat.
  • 6. An intraocular injector comprising: a syringe comprising a substantially cylindrical body including a flattened portion and a shoulder, and an open ended cone disposed distally of the shoulder and being narrower than the body;a piston disposed within said body;an implant holder disposed entirely within the open ended cone, the implant holder having a lumen therein;a needle having a proximal end, a distal end, and a lumen extending therethrough, wherein the needle is spaced apart from the implant holder;a needle hub supporting the needle proximal end and covering a distal portion of the open ended cone and a distal portion of the implant holder inside the open ended cone, leaving a proximal portion of the open ended cone and a proximal portion of the implant holder uncovered by the needle hub;a plunger fixed to said piston and slidable within the implant holder lumen and needle lumen for injecting a solid intraocular implant into an eye; anda bevel disposed on the distal end of said needle and aligned with the flattened portion of the body.
US Referenced Citations (114)
Number Name Date Kind
2513014 Fields Jun 1950 A
2717599 Huber Sep 1955 A
3220413 Sunnen Nov 1965 A
3238941 Klein et al. Mar 1966 A
3698390 Ferris Oct 1972 A
3937370 Witty Feb 1976 A
3941128 Baldwin Mar 1976 A
4105030 Kercso Aug 1978 A
4144317 Higuchi et al. Mar 1979 A
4304765 Shell et al. Dec 1981 A
4383992 Lipari May 1983 A
4521210 Wong Jun 1985 A
4597753 Turley Jul 1986 A
4668506 Bawa May 1987 A
4727064 Pitha Feb 1988 A
4799478 Fedorov et al. Jan 1989 A
4803075 Wallace et al. Feb 1989 A
4834094 Patton et al. May 1989 A
4846809 Sims Jul 1989 A
4850970 Sutherland Jul 1989 A
4852566 Callahan et al. Aug 1989 A
4853224 Wong Aug 1989 A
4900304 Fujioka et al. Feb 1990 A
4907587 Fedorov et al. Mar 1990 A
4915686 Frederick Apr 1990 A
4920104 DeVore et al. Apr 1990 A
4941874 Sandow et al. Jul 1990 A
4959217 Sanders et al. Sep 1990 A
4997652 Wong Mar 1991 A
5014717 Lohrmann May 1991 A
5059172 Sutherland et al. Oct 1991 A
5098443 Parel et al. Mar 1992 A
5164188 Wong Nov 1992 A
5188607 Wu Feb 1993 A
5219339 Saito Jun 1993 A
5250026 Ehrlich et al. Oct 1993 A
5256408 Babcock et al. Oct 1993 A
5279554 Turley Jan 1994 A
5284479 DeJong Feb 1994 A
5324718 Loftsson Jun 1994 A
5332582 Babcock et al. Jul 1994 A
5336206 Shichman Aug 1994 A
5354333 Kammann et al. Oct 1994 A
5378475 Smith et al. Jan 1995 A
5443505 Wong et al. Aug 1995 A
5451213 Teicher et al. Sep 1995 A
5466233 Weiner et al. Nov 1995 A
5476511 Gwon et al. Dec 1995 A
5494901 Javitt et al. Feb 1996 A
5501856 Ohtori et al. Mar 1996 A
5516522 Peyman et al. May 1996 A
5576311 Guy Nov 1996 A
5582591 Cheikh Dec 1996 A
5616123 Cheikh Apr 1997 A
5620450 Eagles et al. Apr 1997 A
5651774 Taranto et al. Jul 1997 A
5656026 Joseph Aug 1997 A
5725521 Mueller Mar 1998 A
5746718 Steyn May 1998 A
5766242 Wong et al. Jun 1998 A
5770589 Billson et al. Jun 1998 A
5807400 Chambers et al. Sep 1998 A
5817075 Giungo Oct 1998 A
5824001 Erskine Oct 1998 A
5824072 Wong Oct 1998 A
5869079 Wong et al. Feb 1999 A
5876373 Giba et al. Mar 1999 A
5941250 Aramant et al. Aug 1999 A
5957892 Thorne Sep 1999 A
6074661 Olejnik et al. Jun 2000 A
6107347 Francese et al. Aug 2000 A
6117443 Cherif-Cheikh Sep 2000 A
6120786 Cherif Cheikh Sep 2000 A
6142972 Cheikh Nov 2000 A
6159218 Aramant et al. Dec 2000 A
6190350 Davis et al. Feb 2001 B1
6217895 Guo et al. Apr 2001 B1
6251418 Ahern et al. Jun 2001 B1
6271216 Mello et al. Aug 2001 B1
6331313 Wong et al. Dec 2001 B1
6395294 Peyman May 2002 B1
6407079 Muller et al. Jun 2002 B1
6450937 Mercereau et al. Sep 2002 B1
6548078 Guo et al. Apr 2003 B2
6554760 Lamoureux et al. Apr 2003 B2
6605093 Blake Aug 2003 B1
6639116 Lever et al. Oct 2003 B2
6648857 Pedigo Nov 2003 B1
6699493 Wong Mar 2004 B2
6713081 Robinson et al. Mar 2004 B2
6719750 Varner et al. Apr 2004 B2
6723353 Beck et al. Apr 2004 B2
6899717 Weber et al. May 2005 B2
7189245 Kaplan Mar 2007 B2
7651505 Lubock et al. Jan 2010 B2
20020026176 Varner et al. Feb 2002 A1
20020082609 Green Jun 2002 A1
20020198174 Lyons Dec 2002 A1
20030060763 Penfold et al. Mar 2003 A1
20030171320 Guyer Sep 2003 A1
20030208218 Kadziauskas et al. Nov 2003 A1
20040024412 Clements et al. Feb 2004 A1
20040054374 Weber et al. Mar 2004 A1
20040057979 Wong et al. Mar 2004 A1
20040077562 Chandavarkar et al. Apr 2004 A1
20040152664 Chang et al. Aug 2004 A1
20040170665 Donovan Sep 2004 A1
20050032747 Bartolini et al. Feb 2005 A1
20050049605 Vaquero et al. Mar 2005 A1
20050154399 Weber et al. Jul 2005 A1
20060108012 Barrow May 2006 A1
20060173060 Chang et al. Aug 2006 A1
20080097459 Kammerlander Apr 2008 A1
20080200921 Downer Aug 2008 A1
Foreign Referenced Citations (19)
Number Date Country
0197718 Oct 1986 EP
0270 247 Jun 1988 EP
0270257 Jun 1988 EP
0304700 Aug 1988 EP
0415504 Mar 1991 EP
0544948 Sep 1995 EP
1419748 Nov 2002 EP
1323450 Jul 2003 EP
1 323 450 Sep 2004 EP
WO 9112048 Aug 1991 WO
WO 9933512 Jul 1999 WO
WO 9953991 Oct 1999 WO
WO 0002564 Jan 2000 WO
WO 02089815 Nov 2002 WO
WO 2004026106 Apr 2004 WO
WO 2004069280 Aug 2004 WO
WO 2004087043 Oct 2004 WO
WO 2005055873 Jun 2005 WO
WO 2006071554 Jul 2006 WO
Non-Patent Literature Citations (13)
Entry
Aukunuru et al., “In Vitro Delivery of Nano- and Micro-Particles to Human Retinal Pigment Epthelial (ARPE-19) Cells”, Drug Delivery Technology, vol. 2, No. 2, Mar./Apr. 2002, pp. 50-57.
Beer et al., “Intraocular Concentration and Pharmacokinetics of Triamcinolone Acetonide After a Single Intravitreal Injection”, Ophthalmology, vol. 110, No. 4, Apr. 2003, pp. 681-686.
Cheng et al., “Intravitreal Sustained-Release Dexamethasone Device in the Treatment of Experimental Uveitis”, Investigatative Ophthalmology & Visual Science, Feb. 1995, vol. 36, No. 2, pp. 442-453.
Crabb et al., “Cloning of the cDNAs encoding the cellular retinaldehyde-binding protein from bovine and human retina and comparison of the protein structures”, J. Biol. Chem., 265(35), 1988, pp. 18688-18692.
Dunn et al., ARPE-19, a human retinal pigment epithelial cell line with differentiated properties, Exp. Eye Res 62 (1996), pp. 155-169.
Enyedi et al., “An Intravitreal Device Providing Sustained Release of Cyclosporine and Dexamethasone”, Current Eye Research (1995) pp. 549-557.
Klimanskaya et al., “Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics”, Cloning and Stem Cells 6(3), 2004, 99. 217-245.
Kochinke et al., “Biodegradable Drug Delivery System for Uveitis Treatment”, Investigative Ophthalmology & Visual Science, Feb. 15, 1996, vol. 37, No. 3, 186-B98.
Rao et al., “Preparation and Evaluation of Ocular Inserts Containing Norfloxacin”, Turk. J. Med. Sci. (2004) 34, pp. 239-246.
Rogojina et al., “Comparing the use of affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines”, Molecular Vision, 9, 2003, pp. 482-496.
Streilein et aI., “Ocular Immune Privilege: Therapeutic Opportunities from an Experiment of Nature”, Nature Review Immunology (2003), 3, pp. 879-889.
USP 23; NF 18 (1995) pp. 1790-1798.
Yeung et al., “Cytotoxicity of Triamcinolone on Cultured Human Retinal Pigment Epithelial Cells: Comparison with Dexamethasone and Hydrocortisone”, Jpn. J. Ophthal., 48 (2004), pp. 236-242.
Related Publications (1)
Number Date Country
20100185205 A1 Jul 2010 US