This application relates to an intraocular device configured to be placed in a capsular bag of a human eye following a capsulotomy to hold the capsular bag open and to provide a cavity in which an accommodating intraocular device can be placed, and to systems and methods for implanting the same.
Surgical procedures on the eye have been on the rise as technological advances permit for sophisticated interventions to address a wide variety of ophthalmic conditions. Patient acceptance has increased over the last twenty years as such procedures have proven to be generally safe and to produce results that significantly improve patient quality of life.
Cataract surgery remains one of the most common surgical procedures, with over 28 million cataract procedures being performed worldwide per year. It is expected that this number will continue to increase as average life expectancies continue to rise. Cataracts are typically treated by removing the crystalline lens from the eye and implanting an intraocular lens (“IOL”) in its place. As conventional IOL devices are designed to provide clear distance visions, they fail to correct for presbyopia. As a result, reading glasses are still required. Thus, although the vision of patients who undergo a standard IOL implantation will not be clouded by the cataract, they are unable change focus from far to near.
Furthermore, it is unfortunately common for the IOL to settle into a position other than what was expected or planned prior to or during the surgery. Even if intraoperative measurements are made to confirm the optics during the procedure, the position of the IOL can change following surgery due to a number of processes. For instance, traditional IOLs are low volume structures optimized for insertion through small incisions. As such traditional IOLs are thin in the anterior-posterior direction, allowing anterior and posterior aspects of the capsular bag to come together. When adjacent layers of the anterior and posterior aspects of capsular bag contact, a process called fibrosis occurs, which can change the IOL position or orientation and/or can lead to posterior capsular opacification.
Accordingly, there is a need for an intraocular device that can be placed in the capsular bag following capsulotomy and can provide enhanced outcomes for patient. Enhanced outcomes can be in a variety of forms. For instance accommodating IOL device can be assembled in the eye, which device can have the ability to change the power of the eye for focusing on near, far, and in-between. Another enhanced outcome made possible by the devices and methods disclosed herein is the ability to select a lens that corrects astigmatism and other higher order aberrations. The devices and method disclosed herein are uniquely configured to assure rotational position of the aberration correcting optic. A further enhanced outcome made possible by the devices and methods disclosed herein is providing assurances of proper lens positioning in surgery and thereafter. This is made possible by the configuration of a base member which is positioned in the eye during the surgery in a manner that reduce, minimizes, or eliminates posterior-anterior drift following placement so that the patient's vision is substantially unchanged following the surgery.
In various embodiments, a base member for an accommodating intraocular lens device is provided. The base member includes a base lens and a haptic. The haptic includes a first open end, a second end coupled with the base lens, and an outer periphery configured to engage an equatorial region of a capsular bag. The haptic further comprises an inner periphery and a height between a first edge and a second edge. The inner periphery is disposed about a cavity and having a lens retention portion configured to receive and retain a power changing lens.
In some embodiments, a portion of the haptic anterior to the lens retention portion of the cavity can comprise enhanced flexibility compared to the lens retention portion. In some other embodiments, a portion of the haptic disposed about the lens retention portion of the cavity can comprise enhanced stiffness compared to the lens retention portion. The haptic can comprise a plurality of compression members. Each compression member can comprise a circumferentially extending contact zone, a first radial force member coupled with a first circumferential end and a second radial force member coupled with a second circumferential end of each contact z one.
Various embodiments of the accommodating intraocular lens device can further comprise a compression member hinge disposed between each first radial force member and each second radial force member. The compression member hinge can comprise a groove disposed in the outer periphery of the haptic. The groove can comprise an anterior portion that extends entirely from the outer periphery to the inner surface of the haptic and a posterior portion that is enclosed by the contact zone. The anterior portion can extend about 35% of the height of the haptic from the first open end. The anterior portion of the compression member hinge can be more circumferentially deformable than the posterior portion.
Various embodiments of the accommodating intraocular lens device can comprise a plurality of contact zones, each contact zone disposed between adjacent internal hinges formed in the inner surface of the haptic. Various embodiments of the accommodating intraocular lens device can further comprise a plurality of external hinges disposed about the outer periphery of the haptic. The external hinges can be spaced circumferentially from the internal hinges. The external hinges can comprise a groove extending radially inwardly from the outer periphery. The internal hinges can comprise a groove extending radially outwardly from the inner surface. The radially inner-most edge of the grooves of the external hinges can be radially inward of the radially outer-most edge of the grooves of the internal hinges.
Various embodiments of the accommodating intraocular lens device can comprise a plurality of contact zones. Alternating contact zones can be spaced apart from and not coupled with the base lens radially inwardly thereof. Various embodiments of the accommodating intraocular lens device can further comprise a plurality of spaced apart radial hinges comprising a first portion coupled with the base lens and a second portion coupled with the haptic. In various embodiments of the accommodating intraocular lens device, the second end of the haptic can comprise a ring and a hinge having a first end coupled to the ring and a second end coupled to the inner surface of the haptic.
In various embodiments of the accommodating intraocular lens device, the base lens can comprise a haptic interface surface and the ring of the haptic can comprise a lens interface surface. The haptic interface surface of the base lens can be coupled to the lens interface surface of the ring of the haptic. The haptic can comprise a first material configured to transfer force between outer periphery and the inner surface and the base lens can comprise a second material different from the first material. The lens retention portion can comprise a retention member comprising an anterior surface having a ridge formed thereon on an anterior side thereof. The ridge can be visible during implantation to enable a visual confirmation of proper placement of a power changing lens posterior to the retention member.
Various embodiments of an accommodating IOL can comprise the accommodating intraocular lens device described herein and a power changing lens configured to fit within the cavity. The power lens can comprise a first side, a second side, a peripheral portion coupling the first and second sides, and a closed cavity configured to house a fluid. The first side of the power changing lens can be spaced from the first edge of the haptic. In various embodiments, at least a portion of the haptic can comprise a material with high contrast to the material of the peripheral portion of the power changing lens. In some embodiments, at least a portion of the haptic can comprise an at least partially opaque dye and the peripheral portion of the power changing lens is translucent. In some other embodiments, at least a portion of the haptic can comprise a first color surface and the peripheral portion of the power changing lens can comprise a second color surface visually distinct from the first color surface. In some embodiments, at least a portion of the haptic can comprise a first visual pattern and the peripheral portion of the power changing lens can comprise a second visual pattern visually distinct from the first visual pattern.
Various embodiments of the accommodating IOL can comprise a plurality of open channels extending from outside of the accommodating IOL to a space between the base lens and the second side of the power changing lens. In some embodiments of the accommodating IOL, the haptic can comprise a plurality of spaced apart radial hinges comprising a first portion coupled with the base lens and a second portion coupled with the haptic, a gap provided between the radial hinges and the second side of the power changing lens when the accommodating intraocular lens is in an accommodated state and when the accommodating intraocular lens is in a disaccommodated state.
In another embodiment, a method of assembling an intraocular lens in a capsular bag of an eye of a patient is provided. An injector barrel is advanced into the eye of the patient. The injector barrel contains a base member. The base member has a base lens and a ring-shaped member coupled to the base lens. In various embodiments, the ring-shaped member can be configured as a haptic. The ring-shaped member has a first edge located at an open end thereof. The first edge is disposed about an anterior end of a cavity. The base lens is coupled with a second edge of the ring-shaped member. The base member is folded about a transverse axis of the base lens or of a portion of the ring-shaped member or the haptic such that the cavity is on a concave side of the transverse axis and the base lens is on a convex side of the transverse axis. The injector barrel is oriented such that the concave side of the base member fold is oriented anteriorly relative to the patient's eye. The base member is advanced out of the injector barrel such that the base member unfolds with the base lens facing posteriorly toward the posterior surface of the capsular bag and the cavity facing anteriorly toward the cornea. A power changing lens is advanced into the cavity of the base member within the capsular bag of the eye of the patient. The power changing lens has an anterior surface, a posterior surface, and a circumferential portion disposed between the anterior surface and the posterior surface. The power changing lens is folded about a transverse axis of the power changing lens. The power changing lens is unfolded within the cavity of the base member such that the circumferential portion of the power changing lens engages a side of the ring-shaped member facing the cavity.
In one variation the posterior surface of the power changing lens is disposed on a concave side of a power changing lens fold (e.g., concave side of the transverse axis of power changing lens) and the anterior surface is disposed on a convex side of the power changing lens fold (e.g., concave side of the transverse axis of power changing lens). The power changing lens is oriented such that the concave side of the power changing lens fold faces posteriorly prior to unfolding.
In another variation, the power changing lens is folded such that the posterior surface is disposed on a convex side of a power changing lens fold and a deformable membrane on the anterior surface is disposed on a concave side of the power changing lens fold further comprising orienting the power changing lens such that the concave side of the folded power changing lens faces anteriorly.
In another embodiment, a method of assembling an intraocular lens in a capsular bag of an eye of a patient is provided. A bowl-shaped member is positioned in a capsular bag of an eye with a base lens of the bowl shaped member contacting a posterior inside surface of the capsular bag. A haptic contacts an equatorial region of the capsular bag. The haptic has a first edge disposed forward of an anterior surface of the base lens. The bowl-shaped member defines a cavity therein. A power changing lens is advanced into the cavity of the bowl shaped member in a folded state wherein opposing sides of a circumferential portion of the power changing lens are brought together. The power changing lens is unfolded within the cavity of the bowl-shaped base member such that the circumferential portion of the power changing lens is retained within the haptic.
In one variation, the power changing lens is unfolded while the concave side of the fold faces posteriorly. In another variation, a deformable membrane of the power changing lens faces a concave side of the fold, wherein the fold faces anteriorly.
An innovative aspect of the subject matter of this application is embodied in an ophthalmic lens system, comprising an injector comprising a plunger and a barrel having a lumen extending proximally from a distal end along a longitudinal axis; a base member comprising a base lens and a ring-shaped member coupled to the base lens, the ring-shaped member comprising a first edge defining an open end of the base member, the base lens being coupled with a second edge of the ring-shaped member, the base member being folded and disposed in the lumen of the barrel of the injector such that the base lens is adjacent to the lumen and the cavity is disposed between the base lens and the longitudinal axis of the lumen; and a power changing lens comprising an anterior surface, and a posterior surface coupled with the anterior surface, the power changing lens being folded such a circumferential portion disposed between the posterior surface and the anterior surface is brought together. The power changing lens is disposed in the lumen of the barrel proximal to the base member.
In various embodiments of the ophthalmic lens system, the base lens and the anterior surface can be disposed on opposite sides of the lumen of the barrel of the injector. The anterior surface of the power changing lens can comprise a flexible membrane and the posterior surface of the power changing lens can comprise a surface of powered lens. A fluid can be contained between the anterior surface of the power changing lens and posterior surface of the power changing lens. The power changing lens and the base member can be separated from and not connected to each other. The anterior surface can be disposed adjacent to the lumen and the posterior surface can be disposed between the anterior surface and the longitudinal axis of the lumen. The posterior surface can be disposed adjacent to the lumen and the anterior surface is disposed between the posterior surface and the longitudinal axis of the lumen.
In some embodiments an intraocular lens component is provided that includes an anterior side, a posterior side, a peripheral portion and a visible color structure. The anterior side has an anterior optical surface disposed across an optical axis of the lens component. The posterior side has a posterior optical surface disposed across the optical axis. The peripheral portion has an anterior portion coupled to the anterior side and a posterior portion coupled to the posterior side. The peripheral portion couples the anterior side to the posterior side of the intraocular lens component. The visible color structure is disposed in the peripheral portion between the anterior portion and the posterior portion thereof.
In another embodiment, an intraocular lens component is provided that includes an anterior side, a posterior side, a peripheral portion and a rotational position feature. The anterior side has an anterior optical surface disposed across an optical axis of the lens component. The posterior side has a posterior optical surface disposed across the optical axis. The peripheral portion has an anterior portion coupled to the anterior side and a posterior portion coupled to the posterior side. The peripheral portion couples the anterior side to the posterior side of the intraocular lens component. The rotational position feature is disposed on or in the peripheral portion and is configured to provide simultaneous confirmation of orientation about at least two axes.
In another embodiment a method of assembling a base member of an intraocular lens is provided. The base member haptic is provided. The base member haptic has a first open end, a second end opposite the first open end, and an outer periphery configured to engage an equatorial region of a capsular bag. The second end has a lens interface portion. A base lens a central optical portion and a peripheral haptic interface portion is provided. The haptic interface portion of the base lens is coupled with the lens interface portion of the base member haptic. The base lens and the base member haptic are secured together at the lens interface portion and the haptic interface portion.
These and other features, aspects and advantages are described below with reference to the drawings, which are intended for illustrative purposes and should in no way be interpreted as limiting the scope of the embodiments. Furthermore, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments. The following is a brief description of each of the drawings.
This application discloses a base member 102 for a multi-component IOL device 100. The components of the IOL device are maintained separate until being assembled within an eye 50 of the patient. Once assembled, the IOL device 100 can provide premium lens performance. In a first embodiment, discussed in SECTION I, the IOL device 100 is configured to provide accommodation when subject to ocular forces and thus will be referred to herein as an accommodating IOL device 100. Various embodiments of the IOL device 100 can be configured to correct for a higher order aberration, such as astigmatism, with or without additionally providing accommodation. Furthermore, various embodiments of the IOL device 100 can be configured to provide post-surgical emmetropia, with or without accommodation, using the base member as a volume restoring member.
Providing clear focus over distances from near to far is one of the chief aims of surgery in the front part of the eye. An accommodating IOL device 100 described herein in various embodiments is uniquely configured for this objective.
An equatorial region 74 of the capsular bag 62 is coupled by zonules 66 to a ciliary muscle 70. The zonules 66 are connective tissues that can stretch the capsular bag 62. When the ciliary muscle 70 is in a rest state the zonules 66 are stretched and apply a tension force to the capsular bag 62. When the eye 50 attempts to accommodate, the ciliary muscle 70 contracts, reducing the tension in the zonules 66. These accommodation processes result in a compression force on the base member 102 as discussed further below. Without being bound to a particular theory, it is believed that the capsular bag 62 contracts when the tension in the zonules 66 is reduced. That contraction applies a compression force the base member 102 to cause accommodation of a power changing lens 104 that can be placed in the base member 102. The ocular forces of the eye 50 are sufficient to change the shape of one or more optical surface of the power changing lens 104, resulting in accommodation.
The base member 102 can include a base lens 120 and a haptic 124. The base lens 120, if present, provides some of the focusing power of the accommodating IOL device 100. The haptic 124 extends into the equatorial region 74 of the capsular bag 62 and establishes a mounting position for the power changing lens 104. In one embodiment the base lens 120 and the haptic 124 cooperate to maintain the capsular bag 62 in an expanded state, similar to the shape and size of the crystalline lens 54 prior to the capsulotomy. As such, the base member 102 is large compared to traditional non-premium IOLs which are designed for delivery through a small incision.
The power changing lens 104 includes multiple optical components, e.g., a membrane at a first side 400 and a lens at a second side 404. An optical fluid can be disposed between the first side 400 and the second side 404 The power changing lens 104 includes a peripheral portion 408 that together with the optical components at the first side 400 and second side 404 contain the optical fluid. The optical fluid has a number of advantages, including transferring compressive forces from the peripheral portion 408 of the power changing lens 104 to the deformable optical surfaces in a controlled manner to provide optically acceptable surfaces across the range of accommodation. The structure of the power changing lens 104 is much more complex than a traditional non-premium IOL, to provide premium function.
Separating the base member 102 and the power changing lens 104 prior to insertion into the eye enables a smaller incision size than were all the optical components inserted simultaneously as unit. The base member 102 and the power changing lens 104 can be compressed to a greater extent when separate than when they are combined into an assembly. Additionally, forming the base member 102 separate from the power changing lens 104 enables the base member 102 to be used in other IOL devices that may not necessarily be accommodating.
The distance from the opening 136 to the first side 400 of the power changing lens 104 and the configuration of the first end 128 of the haptic 124 provide that the anterior portion of the capsular bag 62 remains spaced away from the power changing lens 104. If the anterior portion of the capsular bag 62 were in contact with the first side 400, the accommodating effect of the power changing lens 104 would be reduced. In various embodiments, the distance from the opening 136 to the first side 400 of the power changing lens 104 can be greater than or equal to about 0.6 mm and less than or equal to about 0.75 mm. In various embodiments, the distance from the opening 136 to the first side 400 of the power changing lens 104 can be about 0.01% of the axial height 148 of the haptic 124 to about 37% of the axial height 148 of the haptic 124. Positioning the power changing lens 104 at a distance of about 0.01% of the axial height 148 of the haptic 124 to about 37% of the axial height 148 of the haptic 124, from the opening 136 can advantageously reduce the risk of retinal detachment and PCO as a result of filling the capsular bag. The base member 102 alone and in combination with various second lenses disclosed herein can have a stable effective lens placement (ELP) and/or reduced post-implantation tilt or rotation issues as a result of filling or maintaining the volume of the natural capsular bag. Filling or maintaining the volume of the natural capsular bag can also result in stable refraction after implantation and/or reduced vitreo-retinal tension. Without ascribing to a particular theory, it is believed that by substantially maintaining the volume of the natural capsular bag the vitreous is prevented from shifting anteriorly. Positioning the power changing lens 104 at a distance of about 0.01% of the axial height 148 of the haptic 124 to about 37% of the axial height 148 of the haptic 124, from the opening 136 can advantageously reduce inflammation after surgery.
The accommodating IOL device 100 includes a lens retention portion 164 configured to maintain the power changing lens 104 in an inset position within the cavity 160. The lens retention portion 164 is spaced away from the opening 136 into the cavity 160 of the haptic 124. The lens retention portion 164 can include a plurality of members, as discussed in greater detail below in connection with several figures.
Having discussed the accommodating IOL device 100 overall, further details of specific features will be discussed in greater depth.
The general structure of the base member 102 is discussed above.
1. Base Lens and Haptic Interface
Stated differently, the base member 102 of an intraocular lens 100 can be assembled using the method described below, which includes coupling and securing the base member haptic 124 and the base lens 120. The base member haptic 124 can include the lens interface portion 332 at the second end 132 that is opposite the first open end 128. The lens interface portion 332 can include ring 292. The base lens 120 can have a central optical portion 323 and a haptic interface portion 320. The base lens 120 can have a periphery 325, which can be circular or can be a cylindrical surface of the central optical portion 323 that faces away from the optical axis thereof, and that is sized to be inserted into the ring 292 of lens interface portion 332. The haptic interface portion 320 can have an annular skirt 321.
The haptic interface portion 320 of the base lens 102 can be coupled with the lens interface portion 332 of the base member haptic 124. The cylindrical or circular periphery 325 of the base lens 120 can be inserted into the ring 292 of the lens interface portion 332 of the base member haptic 124 such that an anterior surface of the annular skirt 321 is coupled to a posterior surface 335 of the ring 292. In some aspects, the lens interface portion 332 can include an opaque structure (e.g., a blue colored structure) and the base lens 120 can include an optically transmissive structure such that coupling the haptic interface portion 320 with the lens interface portion 332 includes transitioning from optically transmissive to optically opaque at an interface or boundary between the base lens 120 and the base member haptic 124.
In some aspects, the haptic interface portion 320 includes an annular member, e.g., the skirt 321, disposed radially outward of the central optical portion 323 and the lens interface portion 332 includes an annular structure, e.g., the ring 292, disposed at the second end 132 of the base member haptic 124 such that coupling the haptic interface portion 320 to the lens interface portion 332 includes placing an anterior side of the annular member, e.g., the skirt 321, against a posterior side 335 of the annular structure, e.g., the ring 292. In some aspects, the haptic interface portion 320 includes a periphery 325 and the lens interface portion 332 includes an optical axis facing surface 333 facing an optical axis OA of the base lens 120 such that coupling the haptic interface portion 320 to the lens interface portion 332 includes advancing the periphery 325 of the central optical portion 323 along the optical facing surface 333 of the base member haptic 124.
In some aspects, the haptic interface portion 320 includes a first transverse surface, e.g., an anterior-facing surface of the skirt 321, disposed transverse to an optical axis OA of the base lens 120 and a first annular surface, e.g. the periphery 325, disposed about an optical axis OA. The lens interface portion 332 can include a second transverse surface 335 (e.g., the posterior face of the ring 292) and a second annular surface, e.g., the optical facing surface 333 (e.g., the portion facing toward the center of the space in which the base lens 120 is mounted). Coupling the haptic interface portion 320 of the base lens 120 with the lens interface portion 332 of the base member haptic 124 can include disposing the first annular surface 325 at least partially within the second annular surface 333, and disposing the first transverse surface 321 adjacent to the second transvers surface 335.
The base lens 102 can be secured to the base member haptic 124 at the lens interface portion 332 and the haptic interface portion 320. Securing the lens interface portion 332 and the haptic interface portion 320 can include applying an adhesive between an anterior surface of the annular skirt 321 and a posterior surface 335 of the ring 292. Securing the lens interface portion 332 and the haptic interface portion 320 can include applying an adhesive between an inward surface 333 of the ring 292 and an outward surface 325 of the base lens 120. The adhesive used to secure the lens interface portion 332 with the haptic interface portion 320 and the annular skirt 321 with the ring 292 can be the same material used to form the base lens 102, the haptic 124 and/or other components of the intraocular lens 100, which can include the materials described herein. The adhesive can be applied where the circular periphery 325 and the annular skirt 321 meet, which can result in the formation of a trough. The trough can include an area disposed around the location where the skirt 321 and the periphery 325 meet. The anterior surface of the skirt 321 can be inclined such that the free end thereof is at a higher elevation than the end joined to the periphery 325. This construction helps contain the adhesive during assembly, such that the adhesive is maintained away from the optical surfaces of the base lens 120. The base member haptic 124 can be made of a different material than the base lens 120, but nonetheless, the adhesive used to secure the base member haptic 124 and the base lens 102 can be capable of joining or adhering the two different materials.
By forming the base lens 120 separate from the haptic 124, the base member 102 can benefit from using materials that are adapted for the particular purpose. The base lens 120 can be formed from a material with: high optical quality, high compressibility, low coefficient of friction, beneficial tissue engagement properties for impeding posterior capsule opacification, or with any combination of these material properties. In one embodiment the base lens 120 is formed of silicone, but other materials that could be used include acrylic (e.g., hydrophobic and hydrophilic acrylics). Suitable silicone materials are biocompatible for the haptic 124, including medical grade silicones, where preferably the cured material contains a low, negligible, or medically insignificant volume of compounds extractable by water, saline, or ocular fluids at about 37° C. Certain suitable silicone materials have a Young's modulus when cured of less than 100 psi (about 7×105 Pa), or even less than 50 psi (about 3.5×105 Pa), including 5-50 psi (about 3.5×104-3.5×105 Pa), 10-40 psi (about 7×104-3×105 Pa), and 10-35 psi (about 7×104-205×105 Pa). Examples of suitable silicone materials include, but are not limited to, MED 4805, MED4810, MED4820, MED4830, MED5820, and MED5830 from NuSil®. For the optic examples of suitable silicone materials include, but not limited to, MED 6215, MED6210, MED6219, MED 6233 and MED6820. Suitable optic materials may also include a UV chromophore or UV absorbing group that may be blended with or bonded to a silicone component. In some such materials the UV chromophore or UV absorbing group is substantially non-extractible from the cured lens material by water, saline or ocular fluids at about 37° C. Embodiments of the base lens 120 comprising acrylic can be partially manufactured using molding methods and partially machined. The haptic 124 can be made of a material that is the same as or different from the material of the base lens 120. The haptic 124 can be made of a material that is selected to be selectively stiff or incompressible. As discussed further below, the haptic 124 includes compression arms that preferably transfer a high percentage of force from a radially outward position to a radially inward position to produce a large amount of accommodation in the power changing lens 104 for a unit of ocular force. The material for the haptic 124 can also take into consideration a preference for circumferential compression, low friction coefficient, maintaining bulk properties over a large number of cycles, and other properties. One material suitable for the haptic 124 is silicone, including, but not limited to, the silicone materials listed above for the base lens, but other materials could be used.
In some variations discussed further below the base lens 120 is omitted. The base member 102 can include the ring 292 which can directly contact an annular area of the capsular bag disposed about the optical axis OA. The ring 292 can be extended further posteriorly to provide the same distance to the equator contact segments 141 or the distance can be varied and taken into account when the overall optical design of the power changing lens 104 is selected.
2. Lens Positioning Surfaces
The haptic 124 is configured to set the position of a lens disposed in the cavity 160. The haptic 124 can be configured to set one more of the anterior-posterior location of one or both of the first side 400 and the second side 404 of the power changing lens 104. The haptic 124 can be configured to set the orientation of one or both of the first side 400 and the second side 404 of the power changing lens 104 relative to the optical axis OA of the accommodating IOL device 100.
The haptic 124 can have a surface or a plurality of surfaces that mate with the power changing lens 104 to set the position of the power changing lens 104 along the optical axis OA of the accommodating IOL device 100.
The circumferential extent of the support surfaces 170 can be the same at each of a plurality of spaced apart locations. The circumferential extent can extend over an arc of approximately 25 degrees, over an arc of approximately 20, over approximately an arc of 15 degrees, over an arc of approximately 10 degrees, or over an arc in a range of approximately 10-30 degrees, or over an arc in a range of approximately 15-20 degrees. The radial extent of the support surfaces 170 can be approximately 2-20% of the diameter of the second side 404 of the power changing lens 104. In other embodiments the radial extent of the support surfaces 170 can be approximately 4-15%, 6-10%, or about 8% of the diameter of the second side 404 of the power changing lens 104.
Preferably at least three of the support surfaces 170 are coplanar with each other. Preferably at least three of the support surfaces 170 are aligned in a common plane that is substantially transverse to, e.g., within about 2-5 degrees of perpendicular to, the optical axis OA of the accommodating IOL device 100. In one embodiment three or more, e.g., all, of the support surfaces 170 are aligned in a plane perpendicular to the optical axis OA. In some cases, the support surfaces 170 are configured to contact the second side 404 of the power changing lens 104 and when in such contact to cause the optical axis of the power changing lens 104 to be less than 25 degrees offset form the optical axis of the base lens 120. The support surfaces 170 can be configured to contact the second side 404 of the power changing lens 104 and when in such contact to cause the optical axis of the power changing lens 104 to be less than 15, less than 10, less than 5 or less than 3 degrees offset form the optical axis of the base lens 120. In various embodiments, the edges of the haptic 124 and/or the base lens 120 can be rounded to reduce or mitigate the occurrence of dysphotopsia. For example, one or more edges in the optical path can be configured as rounded edges instead of sharp edges to reduce or mitigate dysphotopsia. As another example, the edges of the lens retention portion 164, the edges of the equator contact segments 141, the edges of one or more support surfaces 170 can be at least partially configured as rounded edges instead of sharp edges to reduce or mitigate dysphotopsia. Without any loss of generality, a plurality of the edges in a circular region of diameter 7 mm around a geometric center of the IOL device 100 can be configured as rounded edges instead of sharp edges to reduce or mitigate dysphotopsia.
Although the base member 102 is illustrated to have six support surfaces 170, there could be fewer or more than six support surfaces 170. In various embodiments there are four, three or two support surfaces 170 against which the power changing lens 104 is placed to position the power changing lens 104 in the base member 102.
3. Haptic with Enhanced Circumferential Compressibility
The base member 102 and in particular the haptic 124 preferably has a high degree of compressibility to enhance insertion into the eye 50 and placement in the capsular bag 62. One or both of the outer periphery 140 and the inner periphery 144 can be configured to enhance the circumferential compressibility of the haptic 124. Although it is useful for the base member 102 to be rigid in a radially direction in select position, enabling the base member 102 to be circumferentially compressed allows the base member 102 to be inserted into the eye through a smaller incision. Also, circumferential flexibility allows small local shifting of zones of the haptic 124 during placement in the eye or during accommodation to enhance radial transmission of compression loads to the inner periphery 144 and the power changing lens 104 coupled therewith.
The inner periphery 144 also has an undulating configuration in one embodiment. A plurality of compression members 180 are spaced apart from each other about the inner periphery 144.
In some embodiments, one or more of the external groove 224 is configure as an external hinge 220. The external hinge 220 can be disposed in a portion of one or more of the compression arms 180. The external hinge 220 provides for flexing at the outer periphery 140 of the haptic 124. The flexing can cause adjacent portions of the compression arms 180 to move circumferentially toward or away from each other either in the process of compressing the base member 102 for implantation or when ocular forces are being applied to the base member 102. The amount of flexibility of the external hinge 220 can be enhanced by extending the external groove 224 farther toward the inner periphery 144. As a radially inward portion 226 of the groove is configured closer to the inner periphery 144 bending and folding of the outer periphery 140 can be enhanced at the same or lower loads.
The compressibility of the base member 102 can also be enhanced by enhancing the compressibility of an anterior portion 228 of the external hinge 220 in an anterior segment 162 of the haptic 124 while maintaining or even enhancing the stiffness of a posterior portion 232 of the external hinge 220 in a posterior segment 163 of the haptic 124.
The internal groove 256 can be configured as a portion of an internal hinge 252 in some embodiments. The internal groove 256 extends to a radially outward portion 258. When configured as part of the internal hinge 252, the internal groove 256 extends far enough to provide compressibility of the haptic 124 at the inner periphery 144 at a low force. In some embodiments to greatly increase flexibility of the haptic 124 for circumferential compression, the radially outward portion 258 of the internal groove 256 is radially outward of the radially inward portion 226 of the external groove 224. Less circumferential compressibility is provided if the radially outward portion 258 of the internal groove 256 is radially inward of the radially inward portion 226 of the external groove 224.
The hinges, grooves, and undulating configurations of various embodiments of the haptic 124 enhance circumferential compression without sacrificing transfer of compressive forces from the outer periphery 140 to the inner periphery 144 in the haptic 124 due to the configuration of a plurality of compression arms 180.
4. Array of Arm Providing Power Changing Lens Compression
The accommodating IOL device 100 has a plurality of compression arms 180 configured to convey ocular forces from the equatorial region 74 of the capsular bag 62 to the peripheral portion 408 of the power changing lens 104. The illustrated embodiment shows that the haptic 124 can have twelve compression arms 180 disposed in an array about the cavity 160. The compression arms 180 can all have the same configuration or, as illustrated, can have more than one, e.g., two or three distinct configurations. The base member 102 can include a plurality of sets of compression arms 180. The base member 102 can have a first configuration compression arm 180A that includes a floating contact zone 184A. The base member 102 can have a second configuration compression arm 180B that has a retention contact zone 184B. The base member 102 can have a third configuration compression arm 180C that has a hinged contact zone 184C. Each of these distinct configuration compression members 180 provides distinct function, compression performance, and advantages as discussed below including but not limited to stabilizing the refractive performance of the IOL device 100, minimizing rotation of the IOL device 100 after implantation, improve ease of implantation of the IOL device 100 and/or improve ease of removing the implanted power changing lens 104 to replace with a different power changing lens at a future time.
a. Floating Compression Arms
The circumferential extent of the floating contact zone 184A can depend on how many contact zones are provided about the inner periphery 144. In one embodiment there are six floating contact zone 184A and each contact zone extends over an arc of approximately 25 degrees, over an arc of approximately 20 an arc of degrees, over approximately an arc of 15 degrees, over an arc of approximately 10 degrees, or over an arc in a range of approximately 10-30 degrees, or over an arc in a range of approximately 15-20 degrees.
Because the floating contact zones 184A are in contact with the peripheral portion 408 only at the outwardly facing area of the outer circumference of the peripheral portion 408 there is no need to fit the first side 400 of the power changing lens 104 posterior to any aspect of the floating contact zone 184A or the compression arm 180A. This simplifies assembly while still enabling a compression force to be applied at the locations of the compression arm 180A. Also, because the floating contact zones 184A are in contact with only the outwardly facing area of the outer circumference there is no need to seat the second side 404 on an anteriorly facing portion of the compression arm 180A in the peripheral portion 408 of the power changing lens 104. This minimizes any rocking effect that can occur with variability in anterior-posterior position of a support surface configured to facilitate positioning of the power changing lens 104 along the optical axis OA of the accommodating IOL device 100.
In addition to the floating contact zone 184A, the compression arms 180A each include a first radial force member 188 and a second radial force member 196. Each of the force members 188, 196 is configured to transfer a compressive force from the outer periphery 140 of the haptic 124 to the inner periphery 144 of the haptic 124 during accommodation. The first radial force member 188 can be coupled at a first end with an end of a first equator contact segment 141 and at a second end with the first circumferential end 192 of the floating contact zone 184A disposed radially inwardly of the first end of the equator contact segments 141. The second radial force member 196 can be coupled with a first end to an equator contact segments 141 adjacent to the equator contact segments 141 to which the first radial force member 188 is connected. A second end of the second radial force member 196 can be coupled to the second circumferential end 200 of the floating contact zone 184A.
As discussed above, the external groove 224 is provided in the outer periphery 140 of the base member 102. The external groove 224 can be disposed between radially outer portions of the first radial force member 188 and the second radial force member 196. The external groove 224 can extend sufficiently radially inwardly to provide an external hinge in the compression arm 180A. By providing an external hinge in the compression arm 180A, the response of the haptic 124 to circumferential compression of the eye can be maintained while providing enhanced circumferential compression. For example, as ocular forces create compression at the outer periphery 140 of the haptic 124 the facing edges of the equator contact segments 141 at the ends of the first radial force member 188 and the second radial force member 196 may be deflected toward each other (closing the gap around the section plane 5A-5A in
b. Compression Arm with Retention Portion
An anterior side of the lens retention portion 164 is recessed from the first edge 152 by an amount that allows the power changing lens 104 to be at a low profile position. For example, the power changing lens 104 can be recessed from the first edge 152 by an amount greater than or equal to about 0.6 mm and less than or equal to about 0.75 mm. For example, the power changing lens 104 can be recessed from the first edge 152 by a distance between about 0.01% of the distance from the first edge 152 to the second edge 156 of the haptic 124 and about 37% of the distance from the first edge 152 to the second edge 156 of the haptic 124. The anterior side of the lens retention portion 164 is disposed adjacent to an opening 167 between the first radial force member 188 and the second radial force member 196. The opening 167 extends from the first edge 152 down to a top edge of the retention contact zone 184B. The opening 167 extends by more than 10% of the distance from the first edge 152 to the second edge 156 of the haptic 124. The opening 167 extends by more than 20% of the distance from the first edge 152 to the second edge 156 of the haptic 124. The opening 167 extends by more than 30% of the distance from the first edge 152 to the second edge 156 of the haptic 124. The opening 167 extends from 10% to 40% of the distance from the first edge 152 to the second edge 156 of the haptic 124. The opening 167 provides enhanced flexibility in the anterior segment 162 of the haptic 124.
The compression arm 180B advantageously provides three distinct functions. First the compression arm 180B provides for radial compression of the power changing lens 104 by transferring compression of outer periphery 140 to the inner periphery 144. The force can be transferred from the equator contact segments 141 to the first radial force member 188 and to the second radial force member 196. The force can be transferred through the first radial force member 188 and second radial force member 196 in substantially equal amounts to the retention contact zone 184B. Because the retention contact zone 184B joins the radially inward ends of the radial force member 188, 196 any lack of uniformity can be balanced across the retention contact zone 184B. A further function of the compression arm 180B is axial position control. The support surface 170 at the compression arm 180B provides axial position control to maintain the power changing lens 104 at a selected position. This function prevents the power changing lens 104 from being positioned farther posteriorly than planned and can help avoid poor distance vision in an unaccommodated state. The lens retention portion 164 provides a third function of the compression arm 180B. The lens retention portion 164 prevents the power changing lens 104 from shifting axially along the optical axis OA of the accommodating IOL device 100 after the accommodating IOL device 100 is assembled in the eye 50. Axial shifting could move the power changing lens 104 out of position in the cavity 160. In an extreme case the power changing lens 104 could come out of the base member 102, e.g., anterior of the capsular bag 62. However, even movement partly or completely into the anterior segment 162 of the haptic 124 would degrade both distance vision and accommodation. Distance vision would be degraded because the unaccommodated position could be configured for the position in the posterior segment 163 of the haptic 124. Accommodation would be degraded because the inner periphery of the haptic 124 in the anterior segment 162 has a larger inner diameter than the inner diameter defined by the retention contact zone 184B and the opposing contact zone, e.g., the hinged contact zone 184C. This larger inner diameter of the inner periphery 144 is larger than the outer diameter of the power changing lens 104, e.g., of the peripheral portion 408 of the power changing lens 104. Accordingly the inner periphery 144 may not even be in contact with the outer circumference of the power changing lens 104 when the accommodating IOL device 100 is in the unaccommodated state.
c. Compression Arm with Device Support Surface
The compression arm 180C includes a hinged contact zone 184C disposed at a radially inward end of the first radial force member 188 and the second radial force member 196. The radial force members convey ocular forces from adjacent equator contact segments 141 to the hinged contact zone 184C. The hinged contact zone 184C includes a curved surface that extends between the radial force members 188, 196. The anterior edge of the hinged contact zone 184C is open or exposed radially inwardly and anteriorly thereof. The posterior edge of the hinged contact zone 184C is coupled with the outer end 172 of the support surface 170. The compression arm 180C provides engagement with the power changing lens 104 on two surfaces. The second side 404 in the peripheral portion 408 of the power changing lens 104 faces and is supported by the support surface 170. The support surface 170 of the compression arm 180C provides axial positioning of the power changing lens 104 along the optical axis OA. A second surface of engagement is provided at the hinged contact zone 184C, which contacts the outer circumference of the peripheral portion 408 of the power changing lens 104.
An advantage of the compression arm 180C is that axial positioning can be provided to the power changing lens 104 and compression force can be applied to the outer circumference at the peripheral portion 408. The first radial force member 188 and the second radial force member 196 are able to move circumferentially relative to each other due to the external groove 224 which can be configured to provide an external hinge 220. A further advantage is that these functions can be provided with having to position the first side 400 posterior to a retention portion or tab when assembling the power changing lens 104 to the base member 102 in the eye 50.
5. Radial Hinge Coupling of Arms and Base Lens
As discussed further below, the base member 102 is configured to fill the capsular bag 62 in part to restore the capsular bag 62 to a volume similar to the volume of the crystalline lens 54 prior to the capsulotomy. There are several benefits to restoring the volume of the capsular bag 62, as discussed above, including reducing, minimizing or preventing fibrosis between anterior and posterior portions of the capsular bag 62, establishing a predictable and stable position for the power changing lens 104 or other secondary ocular device to be placed in the base member 102, and/or engaging the outer periphery 140 of the haptic 124 with the equatorial region 74 of the capsular bag 62. The base member 102 can be configured to consistently position the equator contact segments 141 at the equatorial region 74.
In one embodiment one or a plurality of radial hinges 280 are provided disposed between the ring 292 and the inner periphery 144 of the haptic 124. The radial hinges 280 extend along opposing segments of three diameters of the radial hinge 280, e.g., at the diameter aligned with section plane 3C-3C in
The radial hinges 280 can be positioned in an array at a plurality of positions about the base member 102. The radial hinges 280 connect the compression arms 180 to the base lens 120. The connection can be directly to the base lens 120 or can be indirectly, e.g., at the ring 292 as discussed above.
The radial hinge 280 provide at least two functions to the base member 102. First, the radial hinge 280 enable a ring shaped body of the haptic 124 that is disposed between the first edge 152 and the second edge 156 to be compressed to the assembly including the ring 292 and the base lens 120 (if present). The compression of these components together enables the base member 102 to be inserted into the eye 50 in a more compact configuration. The radial hinges 280 also provide freer movement of the inner periphery 144 toward the optical axis OA of the accommodating IOL device 100 upon compression of the capsular bag 62. The posterior surface 123 of the base lens 120 can be placed against the inside anterior-facing surface of the posterior segment of the capsular bag 62. The outer periphery 140 can be placed in the equatorial region 74 of the capsular bag 62. Posterior movement of the posterior surface 123 upon compression of the equatorial region 74 is reduced or prevented by the vitreous fluid posterior to the capsular bag 62. The radial hinge 280 then focus movement of the posterior segment 163 of the haptic 124 radially inward toward the optical axis OA upon compression of the equatorial region 74. The radial hinges 280 are configured such that the second portion 284 tilts radially inwardly toward the optical axis OA upon compression of the inner periphery 144 by ocular forces of the equatorial region 74.
Although six radial hinge 280 are shown, the base member 102 could be configured with fewer or more hinges. Also, although the configurations of the radial hinges 280 can have substantially the same configuration, the radial hinges 280 coupled with the compression arm 180B can have more flexibility in view of the enhanced stiffness imparted by the lens retention portion 164.
6. Lens Retention Portions
As discussed above a critical function of the accommodating IOL device 100 is to retain the power changing lens 104 within the cavity 160 of the base member 102. In the accommodating IOL device 100 the power changing lens 104 is delivered separately from the base member 102, e.g., in the same procedure and through the same incision. The base member 102 is configured to provide enhanced compression of the power changing lens 104 by disposing the power changing lens 104 in the posterior segment 163. This is further desired to retain the base member 102 in the posterior segment 163 of the cavity 160.
In the illustrated embodiment the lens retention portion 164 is provided within the cavity 160. The lens retention portion 164 is disposed at the boundary of the posterior segment 163 and the anterior segment 162. The lens retention portion 164 can include a plurality of, e.g., three, tabs that extend toward the center of the cavity 160. The tabs have a bottom surface configured to be in contact with the power changing lens when implanted and an upper surface facing the opening 136 of the haptic 124. The tabs can be disposed such that an axial distance from the anterior most portion of the haptic 124 to the upper surface of the tab is greater than or equal to about 0.6 mm. For example, the axial distance from the anterior most portion of the haptic 124 to the upper surface of the tab can be greater than or equal to about 0.6 mm and less than or equal to about 0.75 mm, greater than or equal to about 0.7 mm and less than or equal to about 0.9 mm, greater than or equal to about 0.8 mm and less than or equal to about 1.0 mm, greater than or equal to about 0.9 mm and less than or equal to about 1.1 mm, greater than or equal to about 1.0 mm and less than or equal to about 1.25 mm, or any value in any range/sub-range defined by any of these values. In various embodiments, the tabs can be positioned at a distance from the edge of the haptic 124, of about 0.01% of the height 148 of the haptic 124 to about 37% of the height 148 of the haptic 124. The tabs and the support surfaces 170 define spaces for surrounding and holding spaced apart arcs of the peripheral portion 408 of the base lens 120. More particularly, the lens retention portion 164 can be configured as a projection 344 having an outer portion 348, and inner portion 352 and an elongate portion 354 disposed therebetween. The inner portion 352 can be coupled with, an extension of or disposed adjacent to an anterior portion of the hinged contact zone 184C of the compression arm 180C. The elongate portion 354 can extend radially, or along a diameter of the base member 102. The elongate portion 354 can include a planar posterior surface that faces and contacts the first side 400 of the power changing lens 104.
As discussed further below, the peripheral portion 408 of the power changing lens 104 can include an annular segment that is outward of the optical surfaces thereof. The annular segment can extend between an outer circumference of the peripheral portion 408 and a closed cavity 412 of the power changing lens 104. The annular portion can be configured as a solid annulus between the closed cavity 412 and the outer circumference of the peripheral portion 408. The outer portion 348 of the projection 344 can be disposed across the annulus, e.g., at least one-half of the distance from the outer circumference of the peripheral portion 408 to the outer circumference of the membrane 402. The width of the elongate portion 354 between the projection outer portion 348 and the inner portion 352 can extend over an arc of approximately 30 degrees, over an arc of approximately 25 degrees, over approximately an arc of 20 degrees, over an arc of approximately 15 degrees, or over an arc in a range of approximately 15-40 degrees, or over an arc in a range of approximately 20-30 degrees.
The projection 344 preferably is flexible at the outer portion 348 such that the outer circumference of the peripheral portion 408 can be extended under the posterior side of the elongate portion 354. However, the projection 344 is rigid at the inner portion 352 such that compressive forces of the compression arms 180 do not significantly deflect the inner portion 352.
Any one of the guide structure 370 can be visible to the clinician when the base member 102 has been placed in the eye. If the base lens 120 is axisymmetric, e.g., aspheric or monofocal lacking any cylinder power, the surgeon can simply confirm that all three (or more) of the guide structures 370 on the three (or more) projection 344A are visible as depicted in
The structure of the power changing lens 104 is simplified by not requiring any traditional elongate thin haptic structures. Rather the peripheral portion 408 is formed as an annulus. The axisymmetric structure enables the power changing lens 104 to be positioned in any rotational position within the cavity 160 in embodiments without cylinder power on the optic 406. Any rotational position of the power changing lens 104 in the base member 102 will provide uniform compression and such compression will provide uniform power change primarily by changing the shape of the flexible membrane 402. For example, ocular forces exerted by the eye can be uniformly compress the power changing lens such that an average change in optical power along any of transverse axes M1, M2, M3 and M4 depicted in
The optic 406 is not a major or main driving force in the change in shape of the flexible membrane 402. Rather, the optic 406 follows the movement of the flexible membrane 402 in response to shifting of the fluid in the closed cavity 412. The optic 406 can be considered to be floating on the fluid in the closed cavity 412 and thus anterior movement of the fluid in response to ocular forces causing compression of the peripheral portion 408 as indicated by arrows A allows the optic 406 to shift anteriorly. Posterior movement of the fluid in response to relaxation of the peripheral portion 408 as indicated by removal of ocular forces in a direction opposite arrows A allows the optic 406 to shift posteriorly. The shifting of the fluid and the optic 406 minimizes distortion of the power changing lens 104 and thus minimizes any dysphotopsia and any other optical interference during power change. The arrows shown within the cross-section in
The configuration of the power changing lens 104 to enable the optic 406 to follow anterior shape change of the flexible membrane 402 enables the posterior surface of the optic 406 to be placed adjacent to the anterior surface 122 of the base lens 120. The distance between these structures can be 0.5 mm or less, can be 0.4 mm or less, can be 0.3 mm or less, can be about 0.2 mm, or can be 0.2 mm or less. The close positioning of these structures enables the deep inset position of the power changing lens 104 in the base member 102.
In some embodiment the performance of the power changing lens 104 is dependent on placing the power changing lens 104 in the eye such that the flexible membrane 402 is anterior of the optic 406. Also, the manner in which the power changing lens 104 is compressed for insertion into the eye can be critical to successful delivery into the eye. Certain variants aid quickly confirming the orientation of the power changing lens 104.
The visible color structure 409 can provide a visual verification that the power changing lens 104 is loaded correctly into a injector 480, as seen in
In some aspects, the visible color structure 409 can be used to visually verify that the power changing lens 104 is secured within the base member 102 by the lens retention portions 164. For example, the visible color structure 409 can be a continuous annular shape that is visually disrupted, when viewed from above, by the lens retention portions 164 (if the lens retention portions 164 are opaque or have a solid color, as described elsewhere herein) when the power changing lens 104 is secured within the base member 102 by the lens retention portions 164. Accordingly, the power changing lens 104 is secured by a given lens retention portion 164 when the visible color structure 409 is disrupted, when viewed from above, at the position of the given lens retention portion 164. Relatedly, the power changing lens 104 is not secured by a given lens retention portion 164 when the visible color structure 409 is not disrupted, when viewed from above, at the position of the given lens retention portion 164.
In some aspects, the visible color structure 409 can be combined with an adhesive that joins the anterior portion and posterior portion of the peripheral portion 408. The adhesive can be the same material as the power changing lens 104 or another suitable material. In some aspects, the visible color structure 409 is rotationally symmetrically disposed about the optical axis A. The visible color structure 409 can be an arcuate band surrounding the optical axis A. In some aspects, the visible color structure 409 reduces observable glare transmitted through the peripheral portion 408.
In some aspects, as illustrated in
The rotational position feature 413, e.g., an array of dots, can be formed on an anterior surface, a posterior surface, or an anterior surface and a posterior surface of a peripheral portion of the flexible membrane 402. The rotational position feature 413, e.g., an array of dots, can be formed on a membrane coupler of the power changing lens 104A. The rotational position feature 413, e.g., an array of dots, can be formed on an anterior surface of the peripheral portion 408 of the power changing lens 104A. The rotational position feature 413, e.g., an array of dots, can be formed on a posterior surface of the peripheral portion 408 of the power changing lens 104A. The rotational position feature 413, e.g., an array of dots, can be formed on an optic coupler 411 of the peripheral portion 408 of the power changing lens 104A. The rotational position feature 413, e.g., an array of dots, can be formed on an anterior surface, a posterior surface, or an anterior surface and a posterior surface of a peripheral portion of the optic 406 of the power changing lens 104A.
In some aspects, as illustrated in
Further details of the power changing lens 104 can be found in US20160030161A1, which is incorporated by reference herein in its entirety for all purposes.
As discussed above, the accommodating IOL device 100 is configured to be assembled in the eye. This configuration enables the accommodating IOL device 100 to be inserted through smaller incisions than would be possible if the accommodating IOL device 100 were fully pre-assembled.
1. Intra-Ocular Assembly Methods
If needed, the power changing lens 104 and/or the projection 344 can be repositioned such that the power changing lens 104 is configured to be properly seated in the posterior segment 163. Such repositioning can follow a visual inspection of the expanded power changing lens 104 and the expanded base member 102. As discussed in connection with
Other forms of visual cues or indicia can be provided. For example, the ring 292 and/or other portions of the haptic 124 can be formed with a high contrast color, such as a blue color. One or more portions of, e.g., all of, the haptic 124 including the ring 292 can be formed of the materials discussed herein, including silicone materials, and can include a contrast forming component, such as a blue pigment or dye. For example, some silicone haptic materials may be blended with a color masterbatch material prior to curing, such color masterbatch including, but not limited to, the MED-4800 series from NuSil®, including MED-4800-7 (dark blue). Preferred pigments are substantially non-extractible from the cured material by water, saline or ocular fluids at about 37° C. The position of the ring 292 can be confirmed prior to insertion of the power changing lens 104. The ring 292 can be confirmed to be centered on the visual axis of the eye, for example. The ring 292 can have a portion of a different color or with another visual cue that shows the orientation of a cylinder power. Different patterns can be provided on the membrane coupler 410 and on the anterior surface of the projection 344 of the lens retention portion 164. For example the membrane coupler 410 can have a smooth finish and the anterior surface of the projection 344 can have a dull or matt finish. If there is an unbroken arc of smooth finish of more than 120 degrees the projection 344 can be confirmed to be posterior to the peripheral portion 408 of the power changing lens 104. Instead of smooth and matt finishes, one of the peripheral portion 408 and the projection 344 can have hatching in one direction and the other can have hatching in another direction. Or, one of the peripheral portion 408 and the projection 344 can have a first color surface and the other can have a second color visually distinct from the first color.
2. Systems for Intra-Ocular Assembly
A inner barrel 504 can be located in the injector barrel 484. The inner barrel 504 can house the power changing lens 104 in one embodiment. The inner barrel 504 can be centered on the longitudinal axis 500 and can be moveable along the longitudinal axis 500 independently of or relative to the injector barrel 484. For example, the inner barrel tip 508 can be initially proximal of the barrel tip 488. The inner barrel tip 508 can be advanced out of the barrel tip 488 during part of a procedure.
The 580 can include a plunger 492 that, as discussed above can be used to advance one or both of the base member 102 an the power changing lens 104 out of the injector 480. The plunger 492 can include a plunger tip 496 that can be disposed proximal to one or both of the base member 102 and the power changing lens 104. The plunger tip 496 can push the base member 102 or the power changing lens 104 out of the injector 480 into the eye.
In one approach the injector barrel 484 and the inner barrel 504 are separate instruments that can be mounted to the same or to different handles. The injector barrel 484 can have a proximal end that is mounted to such a handle and can be inserted through the incision I1 or the incision I2 to place the base member 102. After the plunger 492 advances the base member 102 out of the injector 480 into the eye 50 the injector barrel 484 can be removed from the handle and the inner barrel 504 can be attached to the handle. When the injector barrel 484 and the inner barrel 504 are separate the inner barrel 504 is an inner barrel in that it delivers the inner device, e.g., the power changing lens 104. The plunger 492 can be configured to be used with both the injector barrel 484 and thereafter with the inner barrel 504. In other words, the plunger 492 can be part of the handle and can push both the base member 102 out of the injector 480 and can push the power changing lens 104 out of the inner barrel 504 after the injector barrel 484 has been removed and the inner barrel 504 mounted on the handle and the plunger 492 of the injector 480.
In another approach the inner barrel 504 is mounted within the injector barrel 484. The plunger 492 or the inner barrel 504 can be used to push the base member 102 out of the barrel tip 488. Thereafter the plunger 492 and the inner barrel 504 can be advanced toward and in some cases out of the barrel tip 488. The power changing lens 104 can then be urged by the plunger 492 out of the barrel tip 488.
In another embodiment the base member 102 and the power changing lens 104 are folded and loaded in the injector 480 such that the concave portions of the folded structure face in opposite directions. The open side of the folded structure of the base member 102 can be oriented in the injector 480 such that the open side faces anteriorly. The open side of the folded structure of the base member 102 can be oriented in the injector 480 such that the open side faces posteriorly (as in the dashed lines). This is advantageous for the method illustrated in
The lumens of one or both of the injector barrel 484 and the inner barrel 504 can be treated to provide advantageous performance as taught by U.S. Pat. No. 7,037,312 which is hereby incorporated by reference herein in its entirety. For example, the lumen just proximal to the barrel tip 488 can be configured to gradually expand the base member 102. In one approach the lumen just proximal to the barrel tip 488 is expandable to slowly expand the base member 102 prior to the base member 102 being fully expelled from the barrel tip 488. In another approach the coefficient of friction of the lumen just proximal to the barrel tip 488 can be higher such that the injector naturally slows the egress of the base member 102. In yet another approach the inner diameter of the injector barrel 484 can be reduced to elongate the base member 102 which in turn can reduce the speed at which the base member 102 is released. Similar approaches can be used for the inner barrel 504.
As discussed in greater detail herein the base member 102 is configured to be inserted into the eye 50 through a small incision. This is facilitated by a number of hinge connections discussed below and by a reduction in material of the base member 102 where not needed.
The accommodating IOL device 100 is modular which includes the idea that the base member 102 and the power changing lens 104 can be assembled separately. In one technique, separate assembly enables the base member 102 to be implanted first and the power changing lens 104 to be implanted subsequently, as discussed further below. Where the power changing lens 104 is assembled forward of the base member 102, the power changing lens 104 also can be removed and replaced during the same procedure or in a subsequent procedure. Same procedure replacement can facilitate adjustment of the unaccommodated (e.g., distance) power. Such adjustment can enable a surgeon to address a surgical complication where the actual placement of the lens is different form the planned location of the lens and the difference causes the unaccommodated power to be too strong or too weak. This issue can be assessed at the time of the procedure by intraoperative assessment, such as using aberrometry. If the power is measured as too low, the initial power changing lens 104 can be exchanged for a power changing lens 104 with a higher unaccommodated power. If the power is measured as too high, the initial power changing lens 104 can be exchanged for a power changing lens 104 with a lower unaccommodated power.
In some cases, a difference arises between planned placement and post-procedure locations, e.g., after a period of recovery. The process of recovery can cause the base member 102 to shift from a planned or intraoperative position. If the shift is large enough even a perfect intraoperatively measured unaccommodated power can become noticeably too high or too low. After the recovery period, the initially placed power changing lens 104 can be removed and replaced with a power changing lens 104 having a power selected based on the final, healed position of the base member 102. Without the ability to exchange the initially placed power changing lens 104 for a power changing lens 104 with more appropriate power, a larger number of patients would not achieve spectacle independence.
The separateness of the base member 102 and the power changing lens 104 provides additional benefits even when the base member 102 and power changing lens 104 are perfectly placed and matched. For instance, while the power changing lens 104 described below has been shown to provide excellent range of accommodation, improvements in design or changes in the patient's vision may make a lens upgrade advantageous. The power changing lens 104 can be removed and replaced with a higher performance lens or with a lens configured to address particular and in some cases changed vision needs of the patient.
Furthermore, the base member 102 provides a support for implanting second lenses that may not be fluid lenses. Some patients may prefer not to receive a biomimetic accommodating lens, such as with the power changing lenses described herein, but may prefer other types of lenses. The base member 102 can be implanted in such patients to enable such patients to receive a higher performance lens at a later date. For example,
The monofocal lens 104B has a circular haptic 401B. The circular haptic 401B is centered around the optical axis A. The circular haptic 401B is radially outward of an optical axis A. The circular haptic 401B surrounds the fixed optic 403B. The circular haptic 401B can be placed under the lens retention portions 164 of the base member 102 to secure the monofocal lens 104B to the base member 102, such as shown in
The monofocal lens 104B can have a rotational position feature 413, that is the same as or similar to the rotational position feature 413 described in reference to
The fixed multi-powered lens 104C has a circular haptic 401C. The circular haptic 401C can be the same or similar to the circular haptic 401B. The circular haptic 401C can be placed under the lens retention portions 164 of the base member 102 to secure the fixed multi-powered lens 104C to the base member 102, such as shown in
The circular haptics 401B, 401C enable the lenses 104B, 104C to be compatible with a base member 102 that is configured to apply rotationally symmetrical compression to a power changing lens with a circular haptic when the base member is subject to rotationally symmetric compression, e.g., in the eye or in a bench-top test. The base member 102 is thus compatible with fixed optics such as the lenses 104B, 104C and can be upgraded to an accommodating IOL such as the power changing lenses 104, 104A or another biomimetic IOL. By providing circular haptics the lenses 104, 104A, 104B, 104C can be implanted in any rotational position within the base member 102 if a specific rotational position is not indicated. A circular haptic can facilitate re-positioning in the eye where a specific rotational position is indicated. For example, the lens 104A can be situated in the base member 102 posterior of the tabs or other lens retention portion 164. If the rotational position is to be adjusted, the circular haptics allow for the lens 104A to be rotated in position, with the rotational position features 413 aligned with a specified axis.
As used herein, the relative terms “proximal” and “distal” shall be defined from the perspective of the medical professional. Thus, proximal refers to the direction of the physician and distal refers to the direction of the eye when the surgeon is operating.
For expository purposes, the term “transverse” as used herein is defined as a direction generally perpendicular to the longitudinal axis of the assembly, unless otherwise specified.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.
The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
The terms “approximately,” “about,” “generally,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately,” “about,” “generally,” and “substantially” may refer to an amount that is within less than 10% of the stated amount, as the context may dictate.
The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about four” includes “four”
Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “distally moving a locking element” include “instructing distal movement of the locking element.”
Although certain embodiments and examples have been described herein, it will be understood by those skilled in the art that many aspects of the humeral assemblies shown and described in the present disclosure may be differently combined and/or modified to form still further embodiments or acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. A wide variety of designs and approaches are possible. No feature, structure, or step disclosed herein is essential or indispensable.
Some embodiments have been described in connection with the accompanying drawings. However, it should be understood that the figures are not drawn to scale. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Moreover, while illustrative embodiments have been described herein, the scope of any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those in the art based on the present disclosure. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive. Further, the actions of the disclosed processes and methods may be modified in any manner, including by reordering actions and/or inserting additional actions and/or deleting actions. It is intended, therefore, that the specification and examples be considered as illustrative only, with a true scope and spirit being indicated by the claims and their full scope of equivalents.
Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR § 1.57. This is a divisional application of U.S. application Ser. No. 16/434,026, filed on Jun. 6, 2019, which claims the benefit of U.S. Provisional Application No. 62/682,037, filed on Jun. 7, 2018, each of which are hereby incorporated herein by reference in their entireties under 37 CFR 1.57. In addition, this application incorporates by reference the entirety of each of the following patent applications: U.S. application Ser. No. 15/144,544 filed on May 2, 2016, issued as U.S. Pat. No. 10,159,564; U.S. application Ser. No. 14/447,621 filed on Jul. 31, 2014, issued as U.S. Pat. No. 10,004,596; and International Application No. PCT/US2016/064491 filed on Dec. 1, 2016 and published as WO 2017/096087.
Number | Date | Country | |
---|---|---|---|
62682037 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16434026 | Jun 2019 | US |
Child | 18047156 | US |