Intraocular lens injector

Information

  • Patent Grant
  • 10799339
  • Patent Number
    10,799,339
  • Date Filed
    Thursday, September 15, 2016
    7 years ago
  • Date Issued
    Tuesday, October 13, 2020
    3 years ago
Abstract
There is provided an intraocular lens injector configured to inject an intraocular lens 7 having an optical portion 8 and a pair of support portions 9a, 9b extending from the optical portion 8 into an eye, including: an injector main body 2 having a lens setting portion 6 on which the intraocular lens 7 is set; a holding portion 14 that holds a tip end part of a front support portion 9a of the pair of support portions 9a, 9b, which is disposed in front of the lens setting portion 6; and a guide mechanism (11c, 14a) that guides the optical portion 8 to pass under the holding portion 14 when the intraocular lens 7 is pushed out by the pushing member 5 so that the optical portion 8 is displaced downward relatively to the front support portion 9a held by the holding portion 14.
Description
TECHNICAL FIELD

The present invention relates to an intraocular lens injector used for injecting an intraocular lens into an eye.


DESCRIPTION OF RELATED ART

As one of a cataract surgery, it is widely practiced to extract a white cloudy lens by ultrasonic emulsification and suction and then inject the intraocular lens into the eye. Further, in recent years, in order to realize minimally invasive cataract surgery with less burden on an eye, a one-piece type intraocular lens made of a soft material such as silicone elastomer or soft acrylic is injected into the eye in a small folded state. The one-piece type intraocular lens has an optical portion that performs a lens function and a pair of support portions that extend from the optical portion, and an entire intraocular lens is made of a flexible material.


Further, as an intraocular lens injector for handling the one-piece type intraocular lens, there is an injector having a function of folding an intraocular lens so as to embrace a pair of support portions with an optical portion in order to improve operability for a surgeon to inject the intraocular lens as much as possible (for example, see patent document 1). In this type of intraocular lens injector, it is necessary to fold the optical portion roundly in a state that tip end parts of the respective support portions are set on a surface of the optical portion. Further, conventional intraocular lens injectors include the one having a pushing member which pushes out an intraocular lens and which folds the intraocular lens when the intraocular lens is pushed out by the pushing member.


PRIOR ART DOCUMENT
Patent Document



  • [Patent Document 1] Japanese Unexamined Patent Publication No. 2011-255029



SUMMARY OF THE INVENTION
Problem to be Solved by the Invention

However, the conventional intraocular lens injector involves a problem that when the intraocular lens is pushed out by the pushing member, the tip end part of the support portion is caught in an edge of the optical portion or the like, and the tip end part of the support portion is not set smoothly on the surface of the optical portion.


A main object of the present invention is to provide an intraocular lens injector capable of surely placing the tip end part of the support portion on the surface of the optical portion when the intraocular lens is folded so as to embrace the support portion with the optical portion.


Means for Solving the Problem

According to a first aspect, there is provided an intraocular lens injector configured to inject an intraocular lens having an optical portion and a pair of support portions extending from the optical portion into an eye, including:


an injector main body having a lens setting portion on which the intraocular lens is set;


a holding portion that holds a tip end part of a front support portion of the pair of support portions, which is disposed in front of the lens setting portion; and


a displacement mechanism for displacing the optical portion relatively downward with respect to the front support portion held by the holding portion.


According to a second aspect, there is provided the intraocular lens injector of the first aspect, including:


a pushing member that pushes out the intraocular lens from the lens setting portion by moving in a direction of a central axis of the injector main body, and


the displacement mechanism including a guide mechanism that guides the optical portion so as to pass under the holding portion when the pushing member pushes out the intraocular lens.


According to a third aspect, there is provided the intraocular lens injector of the second aspect, wherein the holding portion has a housing portion for detachably housing a tip end part of the front support portion, and is configured so that the tip end part of the front support portion is disengaged from the housing portion when the optical portion passes under the holding portion by being pushed by the pushing member.


According to a fourth aspect of the present invention, there is provided the intraocular lens injector of the second aspect, wherein the guide mechanism includes a first guide portion formed on a lower surface of the holding portion in a state of being inclined with respect to a horizontal surface, and a second guide portion formed in a state of being inclined in the same direction as the first guide portion at a position facing the first guide portion.


According to a fifth aspect of the present invention, there is provided the intraocular lens injector of the fourth aspect, wherein the pushing member has a rod portion that pushes out the intraocular lens while being displaced downward along the inclination of the second guide portion.


According to a sixth aspect of the present invention, there is provided the intraocular lens injector of any one of the first to fifth aspects, which is a pre-load type in which the intraocular lens is preset on the lens setting portion.


According to a seventh aspect of the present invention, there is provided the intraocular lens injector of any one of the first to sixth aspects, wherein the intraocular lens is set on the lens setting portion in a no-load state.


Advantage of the Invention

According to the present invention, when folding the intraocular lens so as to embrace the support portions with the optical portion, the tip end part of the support portions can be securely set on the surface of the optical portion.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view showing an overall structure of an intraocular lens injector according to an embodiment of the present invention.



FIG. 2 is a side sectional view showing the overall structure of the intraocular lens injector according to an embodiment of the present invention.



FIG. 3A is a plan sectional view showing a structure of an essential part of an intraocular lens injector according to an embodiment of the present invention, and FIG. 3B is a side sectional view showing this essential part structure.



FIG. 4A is a perspective view for describing a shape of a protruding guide formed in a moving direction of a rod portion, FIG. 4B is a view showing a cross-sectional shape at the top portion of the protruding guide, and FIG. 4C is a view showing a cross-sectional shape of the rod portion passing through the protruding guide.



FIGS. 5A to 5D are views showing time-sequentially a state of a movement of a pushing member in accordance with a rotation operation of the operation portion.



FIGS. 6A to 6D are views showing time-sequentially a state in which the tip end part of the rod portion is displaced in the vertical direction in conformity with the shape of the protruding guide.



FIG. 7A is a perspective view showing a cross-sectional shape at the top portion of the protruding guide, and FIG. 7B is a front view thereof.



FIG. 8A is a perspective view showing a cross-sectional shape of a top portion of a protruding guide, and FIG. 8B is a front view thereof.



FIGS. 9A to 9D are plan sectional views time-sequentially showing the movement of the intraocular lens pushed out by the pushing member.



FIGS. 10A to 10D are side sectional views time-sequentially showing a state in which the intraocular lens is pushed out by the pushing member.



FIGS. 11A to 11D are perspective views time-sequentially showing the movement of the intraocular lens pushed out by the pushing member.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention will be described hereafter in detail, with reference to the drawings. In the embodiment of the present invention, explanation will be given in the following order.

  • 1. Structure of an intraocular lens injector
  • 2. Method for assembling the intraocular lens injector
  • 3. Operation of the intraocular lens injector
  • 4. Effect of the embodiment
  • 5. Modified example, etc.


    1. Structure of an Intraocular Lens Injector



FIG. 1 is a perspective view showing an overall structure of an intraocular lens injector according to an embodiment of the present invention, and FIG. 2 is a side sectional view showing the overall structure of the intraocular lens injector according to an embodiment of the present invention. Further, FIG. 3A is a plan sectional view showing a structure of an essential part of an intraocular lens injector according to an embodiment of the present invention, and FIG. 3B is a side sectional view showing this essential part structure.


An intraocular lens injector 1 shown in the figure is provided as a disposable product, and is used when injecting the intraocular lens into the eye. The intraocular lens injector 1 roughly includes an injector main body 2, an operation portion 3, an injection tube 4, and a pushing member 5. Each part of the intraocular lens injector 1 is made of resin. The intraocular lens injector 1 is of a preload type in which an intraocular lens is preset. In the preload type intraocular lens injector 1, the intraocular lens is preset on the lens setting portion described later in the stage of shipping the intraocular lens injector 1 from a factory.


In this embodiment, in order to clarify a relative positional relationship and a direction of movement and the like of each part of the intraocular lens injector 1, X1 direction is set as a tip end side (front side), X2 direction is set as a rear end side (rear side), Y1 direction is set as a left side (left side), Y2 direction is set as a right side (right side), Z1 direction is set as an upper side (upper side), and Z2 direction is set as a lower side (lower side). Among them, the X1 direction and the X2 direction correspond to a direction of a central axis of the intraocular lens injector 1 (hereinafter also referred to simply as a “central axis direction”), and the Y1 direction and the Y2 direction correspond to a width direction (left-right direction) of the intraocular lens injector 1, and the Z1 direction and the Z2 direction correspond to a height direction (vertical direction) of the intraocular lens injector 1. Further, a plane parallel to the X1 direction, the X2 direction, the Y1 direction and the Y2 direction is set as a horizontal plane, and a plane perpendicular to the horizontal plane is set as a vertical plane. Reference symbol J in the figure indicates the central axis of the intraocular lens injector 1.


Injector Main Body


The injector main body 2 is formed in a tubular shape as a whole. A hollow portion that allows the movement of the pushing member 5 in the X1 direction and the X2 direction is formed inside of the injector main body 2. A lens setting portion 6 is provided at a tip end part of the injector main body 2. The lens setting portion 6 is formed so as to protrude forward from an outer circumferential wall on a lower side of the injector main body 2. The intraocular lens 7 is set on the lens setting portion 6. A central axis J of the intraocular lens injector 1 coincides with each central axis of the injector main body 2, the operation part 3, and the injection tube 4.


In this embodiment, as an example, one-piece type intraocular lens 7 made of a soft material such as silicone elastomer or soft acrylic is to be handled. The intraocular lens 7 has an optical portion 8 that performs an optical function and a pair (two) support portions 9a, 9b extending outwardly from the outer peripheral edge of the optical portion 8 in an arc shape. The optical portion 8 is formed in a circular shape in plan view. Each of the pair of support portions 9a, 9b is formed in an elongated arm shape. In FIG. 2, the notation of the intraocular lens 7 is omitted.


Here, a structure of the lens setting portion 6 will be described in detail with reference to FIGS. 3A to 4C.


A protruding guide 11 is formed on the lens setting portion 6. The protruding guide 11 is formed in a trapezoidal shape (mountain shape) in a side view in a state in which a part of the lens setting portion 6 is protruded upward. FIG. 4B is a sectional view of a place where the protruding guide 11 is formed when viewed from the central axis direction (front). As can be seen from this figure, a recessed groove 12 is formed on the place where the protruding guide 11 is formed. The protruding guide 11 includes an upward inclined portion 11a, a non-inclined top portion 11b, and a downward inclined portion 11c with a gentler slope than the inclined portion 11a. As shown in FIG. 4A, the protruding guide 11 is an upward inclined portion 11a in the beginning from the rear end side to the tip end side of the intraocular lens injector 1, and after passing through the top portion 11b, it becomes a gentle downward inclined portion 11c. A depth of the groove 12 becomes the deepest at the top portion 11b of the protruding guide 11, and the abovementioned FIG. 4B shows the cross-section of the top portion 11b.


Reference numeral 2a in FIGS. 4A and 4B shows a part of the injector main body 2 virtually cut out, and a part of the injector main body 2 is not shaped as shown in the figure. This point is the same for FIGS. 6A to 8B.


Further, a pair of right and left recessed grooves (not shown) are formed in the lens setting portion 6. The pair of recessed grooves are formed on the left and right side walls defining the lens setting portion 6 of the injector main body 2 so as to face each other. When the intraocular lens 7 is set on the lens setting portion 6, the pair of recessed grooves are engaged with a part of the outer peripheral edge of the optical portion 8, thereby restricting the vertical movement of the optical portion 8.


The holding portion 14 is formed in a state of partially protruding a left side wall portion of the left and right side wall portions partitioning the lens setting portion 6. A part of the lower surface of the holding portion 14 is an inclined surface 14a (see FIG. 3B). The inclined surface 14a of the holding portion 14 is formed on a lower surface of the holding portion 14 as an example of a “first guide portion”. In contrast, the abovementioned downward inclined portion 11c of the protruding guide 11 is formed on the lens setting portion 6 as an example of a “second guide portion”. The first guide portion and the second guide portion described here, constitutes a guide mechanism for guiding the optical portion 8 so as to pass under the holding portion 14 when the intraocular lens 7 set on the lens setting portion 6 is pushed out by the pushing member 5.


The inclined surface 14a is formed to be inclined with respect to the horizontal plane. Specifically, the inclined surface 14a is inclined so that a front side is lower than a rear side of the inclined surface 14a with respect to the horizontal surface. Further, the inclined surface 14a is disposed to face the inclined portion 11c of the protruding guide 11 in a vertical direction. The inclined surface 14a and the inclined portion 11c are inclined in the same direction.


Further, a housing portion 15 is formed in the holding portion 14. The housing portion 15 detachably houses the tip end part of the support portion 9a when the intraocular lens 7 is set on the lens setting portion 6. The housing portion 15 is formed in a recessed shape in a state of opening upward and rightward at a right end part of the upper surface of the holding portion 14.


Further, on the tip end side of the lens setting portion 6, an opposing distance between the left and right side wall portions defining the lens setting portion 6 is gradually narrowed, for delivering the optical portion 8 of the intraocular lens 7 to the injection tube 4 in a state of being slightly rounded by the left and right side wall portions.


The intraocular lens 7 is set on the lens setting portion 6 having the abovementioned structure, in a state in which one of the support portions 9a is disposed in front of the lens setting portion 6 and the other support portion 9b is disposed behind the lens setting portion 6. Therefore, one support portion 9a corresponds to a “front support portion” and the other support portion 9b corresponds to a “rear support portion”. Further, in the lens setting portion 6, the optical portion 8 of the intraocular lens 7 is set (placed) substantially horizontally on the top portion 11b of the protruding guide 11.


Further, as shown in FIG. 3A, in a state in which the intraocular lens 7 is set on the lens setting portion 6, a part of the holding portion 14 and a part of the optical portion 8 overlap in a planar manner. Specifically, a part of the outer peripheral part of the optical portion 8 overlaps on the inclined surface 14a of the holding portion 14. Further, in a state in which the intraocular lens 7 is set on the lens setting portion 6, the movement of the support portion 9a in the central axis direction and the movement of the support portion 9a toward the front and rear are respectively restricted by housing the tip end part of the support portion 9a in the housing portion 15 of the holding portion 14.


Operation Portion


The operation portion 3 is coaxially connected to the rear end part of the injector main body 2. In this connected state, the operation portion 3 is supported so as to be rotatable around the central axis of the injector main body 2. The operation portion 3 is formed into a tubular shape. A plurality of protrusions 3a are formed on the outer peripheral surface of the operation portion 3. Each protrusion 3a is formed in parallel to a longitudinal direction of the operation portion 3. The operation portion 3 is a portion rotated by a user such as an operator when the intraocular lens 7 is pushed out using the pushing member 5. At this time, by forming a plurality of protrusions 3a on the outer periphery of the operation portion 3, the fingers of the user are caught in the protrusions 3a, and therefore it is easy to rotate the operation portion 3.


As shown in FIG. 2, a first screw portion 3b is formed on the inner peripheral surface of the operation portion 3. The first screw portion 3b constitutes a female screw. The first screw portion 3b is formed substantially throughout the central axis direction of the operation portion 3. An abutting portion 3c is formed at a rear end part of the operation portion 3. The abutting portion 3c is formed by bending inward so as to narrow an opening diameter of the rear end part of the operation portion 3. The abutting portion 3c is a portion where the rear end part of a plunger portion 17 abuts so that the plunger portion 17 does not protrude rearward from the rear end part of the operation portion 3.


Injection Tube


An injection tube 4 functions to guide the intraocular lens 7 set on the lens setting portion 6 into an eye in a state that the intraocular lens 7 is folded into a small size when the intraocular lens 7 is injected into the eye. The injection tube 4 integrally has a hollow injection tube main body 4a and a narrow tubular nozzle portion 4b. The injection tube 4 is attached to a tip end part of the injector main body 2. In this attachment state, the lens setting portion 6 of the injector main body 2 is housed in the injection tube main body 4a of the injection tube 4.


An injection portion 4c is formed on an upper wall of the insertion tube main body 4a. The injection portion 4c is provided for injecting a viscoelastic substance (for example, sodium hyaluronate etc.). The viscoelastic substance injected from the injection portion 4c is discharged to the vicinity of the intraocular lens 7 set on the lens setting portion 6, thereby supplying the viscoelastic substance to the intraocular lens 7. The injection of the viscoelastic substance is performed before pushing out the intraocular lens 7 by the pushing member 5.


The diameter of the tip end side of the injection tube main body 4a is gradually decreased. The nozzle portion 4b is formed at the tip end part of the injection tube 4. The tip end part of the nozzle portion 4b opens with an oblique incision. Therefore, the opening of the nozzle portion 4b faces obliquely downward. The tip end part of the nozzle portion 4b is a portion to be inserted into an incisional wound of the eyeball when the intraocular lens 7 is injected into the eye using the intraocular lens injector 1.


Pushing Member


The pushing member 5 is provided movably in the central axis direction of the injector main body 2. The pushing member 5 functions to push out the intraocular lens 7 form the lens setting portion 6 by moving in the central axis direction of the injector main body 2. At this time, the pushing member 5 moves in the hollow portion formed by the injector main body 2, the operation portion 3, and the injection tube 4.


The pushing member 5 has the plunger portion 17 and a rod portion 18. The plunger portion 17 and the rod portion 18 may constitute the pushing member 5 in a unitary structure, or the plunger portion 17 and the rod portion 18 may have separate structures and they may be mutually assembled to constitute the pushing member 5. The plunger portion 17 is disposed relatively rearwardly, and the rod portion 18 is disposed relatively forward in the direction of the central axis of the intraocular lens injector 1.


The plunger portion 17 is formed into a rod shape. In the initial state before use, the plunger portion 17 is disposed in a state of being inserted into the operation portion 3 so as not to protrude from the rear end part of the operation portion 3. A second screw portion 17a is formed at the rear end part of the plunger portion 17. The second screw portion 17a constitutes a male screw. The second screw portion 17a is engaged with the first screw portion 3b inside of the operation portion 3. When the intraocular lens injector 1 is used, the operation portion 3 is operated so as to rotate around the central axis of the injector main body 2, thereby moving the entire pushing member 5 in a forward direction. A movement start position of the plunger portion 17 at that time is uniquely determined by abutting the rear end part of the plunger portion 17 against the abutting portion 3c of the operation portion 3.


The rod portion 18 is provided for folding the intraocular lens 7 into a predetermined shape by pushing out the intraocular lens 7 forward which is set on the lens setting portion 6, and in this state, releasing the intraocular lens 7 from the opening of the nozzle portion 4b of the injection tube 4. The rod portion 18 is formed in a rod shape thinner than the plunger portion 17. The rod portion 18 is configured to be elastically deformable so as to have moderate flexibility. A first contact portion 18a and a second contact portion 18b are formed at the tip end part of the rod portion 18. When the intraocular lens 7 is pushed out by the rod portion 18, the first contact portion 18a comes into contact with the support portion 9b and the second contact portion 18b comes into contact with the optical portion 8. The upper end portion of the second contact portion 18b protrudes like a canopy so as to grip the edge of the optical portion 8. On the lower surface of the rod portion 18, a protrusion 19 is formed as shown in FIG. 4C. The protrusion 19 is formed on a place closer to a rear end side of the rod portion 18 than the place where the first contact portion 18a and the second contact portion 18b are formed, so as to avoid this place, in a longitudinal direction of the rod portion 18.


2. Method for Assembling the Intraocular Lens Injector


Next, a method for assembling the intraocular lens injector 1 will be described.


First, after preparing the members (2, 3, 4, 5) constituting the intraocular lens injector 1, the pushing member 5 is attached to the operation portion 3. Specifically, the tip end opening part of the operation portion 3 is engaged with the rear end part of the plunger portion 17 of the pushing member 5 so as to cover this opening part, so that the operation portion 3 is rotated. Thereby, the first screw portion 3b formed on the inner peripheral surface of the operation portion 3 and the second screw portion 17a provided at the rear end part of the plunger portion 17 are engaged with each other. Therefore, when the operation portion 3 is rotated while restricting the rotation of the pushing member 5, the plunger portion 17 is inserted into the operation portion 3 in accordance with the rotation of the operation portion 3. At this time, the operation portion 3 is rotated until the rear end part of the plunger portion 17 abuts against the abutting portion 3c of the operation portion 3.


Next, the injector main body 2 is attached to the operation portion 3. At this time, the rod portion 18 of the pushing member 5 is inserted into the hollow portion of the injector main body 2. Thereby, the tip end parts (18a, 18b) of the rod portion 18 are disposed slightly in front of the lens setting portion 6.


Next, the separately prepared intraocular lens 7 is set on the lens setting portion 6 of the injector main body 2. At this time, the optical portion 8 of the intraocular lens 7 is placed substantially horizontally on the top portion 11b of the protruding guide 11. Further, one support portion 9a is disposed in front of the lens setting portion 6, where the tip end part of the supporting portion 9a is housed in the housing portion 15 of the holding portion 14.


In the state in which the intraocular lens 7 is set on the lens setting portion 6 as described above, the intraocular lens 7 is set in a no-load state. The no-load state refers to a state in which almost no load (pressure) is applied to the intraocular lens, that is, a state in which the intraocular lens maintains its original shape. The original shape of the intraocular lens refers to the shape in the stage of finishing manufacturing the intraocular lens.


Next, the injection tube 4 is attached to the tip end part of the injector main body 2. Thus, the assembly of the intraocular lens injector 1 incorporating the intraocular lens 7 is completed. For the structure for connecting the injector main body 2 and the operation portion 3 and the structure for connecting the injector main body 2 and the injection tube 4, for example, the structure described in the specification of Japanese Patent Application No. 2014-55761 and drawings (Japanese Patent Application Laid-open No. 2015-177845) may be adopted, or any other connecting structure may be adopted.


3. Operation of the Intraocular Lens Injector


Next, the operation of the intraocular lens injector 1 will be described.


Movement of the Pushing Member


First, the operation of the pushing member 5 will be described when the operation portion 3 is rotated.


When the operation portion 3 is rotated in one direction, the pushing member 5 moves forward by the engagement between the first screw portion 3b and the second screw portion 17a. At this time, the plunger portion 17 of the pushing member 5 moves straight in the central axis direction of the injector main body 2 while engaging with the hollow portion of the injector main body 2. Further, the pushing member 5 moves as shown in FIGS. 5A to 5D in accordance with the rotation operation of the operation portion 3.



FIG. 5A shows a stage in which the tip end part of the rod portion 18 of the pushing member 5 is advanced to the tip end part of the lens setting portion 6, and FIG. 5B shows a stage in which the tip end part of the rod portion 18 is advanced to the injection tube main body 4a of the injection tube 4. Further, FIG. 5C shows a stage in which the tip end part of the rod portion 18 is advanced to the nozzle portion 4b of the injection tube 4, and FIG. 5D shows a stage in which the tip end part of the rod portion 18 protrudes forward from the nozzle portion 4b of the injection tube 4.


Movement of the Tip of the Rod Portion


When the pushing member 5 is moved as described above, the tip end part of the rod portion 18 of the pushing member 5 is vertically displaced in conformity with the shape of the protruding guide 11, due to elastic deformation of the rod portion 18 itself. This state will be described with reference to FIGS. FIGS. 6A to 6D.


First, when the pushing member 5 starts to move forward in accordance with the rotation operation of the operating portion 3, as shown in FIG. 6A, the tip end parts (parts indicated by reference numerals 18a and 18b) of the rod portion 18 are displaced upward along the upward inclined portion 11a of the protruding guide 11. Next, the tip end part of the rod portion 18 reaches the top portion 11b of the protruding guide 11 as shown in FIG. 6B.


Next, as shown in FIG. 6C, the tip end part of the rod portion 18 is displaced downward in accordance with the downward inclined portion 11c of the protruding guide 11. At this time, the sectional shape at the top portion 11b of the protruding guide 11 is as shown in FIGS. 7A and 7B. Namely, after the tip end part of the rod portion 18 has passed through the top portion 11b of the protruding guide 11, a part of the protrusion 19 formed on the lower surface of the rod portion 18 enters the groove 12 of the protruding guide 11. Thereby, the tip end part of the rod portion 18 can be displaced downward according to the downward inclined portion 11c of the protruding guide 11.


Next, as shown in FIG. 6D, the tip end part of the rod portion 18 moves forward after moving downward along the inclined portion 11c of the protruding guide 11. At this time, the sectional shape at the top portion 11b of the protruding guide 11 is as shown in FIGS. 8A to 8D. Namely, after the tip end part of the rod portion 18 has passed through the inclined portion 11c of the protruding guide 11, all of the protrusions 19 formed on the lower surface of the rod portion 18 enter the groove 12 of the protruding guide 11. Thereby, the tip end part of the rod portion 18 can be advanced forward by avoiding the interference between the protruding guide 11 and the rod portion 18.


Movement of Intraocular Lens


Further, when the pushing member 5 is moved as described above, the intraocular lens 7 set on the lens setting portion 6 is pushed forward by the rod portion 18 of the pushing member 5. Such a state will be described, using plan views of FIGS. 9A to 9D, a side sectional view of FIGS. 10A to 10D, and a perspective view of FIGS. 11A to 11D.


First, when the pushing member 5 starts moving forward in accordance with the rotation operation of the operation portion 3, the tip end part of the rod portion 18 comes into contact with the support portion 9b and subsequently the optical portion 8 (see FIGS. 9A, 10A and 11A). Specifically, the first contact portion 18a of the rod portion 18 comes into contact with the support portion 9b first and then the second contact portion 18b of the rod portion 18 comes into contact with the optical portion 8.


At this time, the first contact portion 18a of the rod portion 18 pushes the support portion 9b forward while keeping in contact with the support portion 9b, thereby bending the entire support portion 9b toward the optical portion 8 in a substantially U-shape. Further, the tip end part of the support portion 9b rides on the first contact portion 18a and in this state the tip end part of the rod portion 18 is displaced upward along the upward inclined portion 11a of the protrusion guide 11. Then, when the tip end part of the rod portion 18 reaches the top portion 11b of the protruding guide 11, the second contact portion 18b comes into contact with the edge of the optical portion 8. Further, the tip end part of the support portion 9b rides on the surface of the optical portion 8.


Next, the tip end part of the rod portion 18 pushes the entire intraocular lens 7 forward while coming into contact with the support portion 9b and the optical portion 8 (see FIGS. 9B, 10B and 11B). At this time, the tip end part of the rod portion 18 advances along the top portion 11b of the protruding guide 11 while gripping the edge of the optical portion 8 using the second contact portion 18b. Thereby, the optical portion 8 of the intraocular lens 7 is pushed out from the top portion 11b of the protruding guide 11 to the inclined portion 11c. The optical portion 8 thus pushed out is tilted obliquely along the inclined portion 11c on the downward side of the protruding guide 11.


Meanwhile, the entire support portion 9a is bent by the movement of the optical portion 8 while the tip end part of the support portion 9a is housed in the housing portion 15 of the holding portion 14. The reason why the support portion 9a is bent in this way is as follows.


First, the tip end part of the support portion 9a is restricted from moving forward by being housed in the housing portion 15 of the holding portion 14. Therefore, even if the optical portion 8 is pushed by the rod portion 18 and moves forward, the tip end part of the support portion 9a is caught in the housing portion 15 and is fixed thereto. Accordingly, when the optical portion 8 is pushed forward at the tip end part of the rod portion 18, a force in a direction opposite to the pushing direction is applied to the support portion 9a. Therefore, the support portion 9a is gradually bent according to the movement of the optical portion 8.


Next, the tip end part of the rod portion 18 pushes the entire intraocular lens 7 further forward while coming contact with both the support portion 9b and the optical portion 8 (see FIGS. 9C, 10C and 11C). At this time, the tip end part of the rod portion 18 is displaced downward along the inclined portion 11c of the protruding guide 11 while gripping the edge of the optical portion 8 using the second contact portion 18b. Then, the optical portion 8 moves obliquely downward while being guided by the downward inclined portion 11c of the protruding guide 11 and the inclined surface 14a of the holding portion 14 opposed thereto. Meanwhile, the support portion 9a is bent to a greater extent by the movement of the optical portion 8 while its tip end part is caught in the housing portion 15 of the holding portion 14. Specifically, the entire support portion 9a is bent toward the optical portion 8 so as to form a substantially U-shape. At this time, due to the oblique downward movement of the optical portion 8 described above, the position of the optical portion 8 relative to the position of the support section 9a is relatively displaced downward.


Next, when the optical portion 8 passes under the holding portion 14 by the pushing operation of the rod portion 18, the tip end part of the support portion 9a is detached from the housing portion 15 of the holding portion 14 (see FIGS. 9D, 10D and 11D). At this time, the tip end part of the support portion 9a detached from the housing portion 15 rides on the surface of the optical portion 8 which is passing under the holding portion 14. Further, the optical portion 8 with the tip end part of the support portion 9a ridden thereon, is gradually deformed by being pushed by the left and right side wall portions of the lens setting portion 6, and a base end side portion of the support portion 9a also comes into contact with one side wall portion of the lens setting portion 6. Thereby, shape restoration of the support portion 9a is suppressed. Therefore, the support portion 9a is maintained in the state of being bent in a substantially U-shape without returning to an original shape, and the tip end part of the support portion 9a is kept on the surface of the optical portion 8.


Thereafter, the intraocular lens 7 is pushed out into the injection tube 4 by the movement of the rod portion 18. At that time, the optical portion 8 of the intraocular lens 7 is rounded from the left and right by the inner wall of the injection tube main body 4a having a tapered shape, and is finally folded so as to embrace the pair of support portions 9a, 9b. The intraocular lens 7 thus folded is pushed out from the nozzle portion 4b of the injection tube 4 by the rod portion 18. At this time, the intraocular lens 7 can be injected into the eye by pushing out the intraocular lens 7 from the opening of the nozzle portion 4b in a state in which the nozzle portion 4b of the injection tube 4 is inserted into the incisional wound of the eyeball.


4. Effect of the Embodiment


According to an embodiment of the present invention, one or more effects described below are obtained.


(1) In the embodiment of the present invention, the tip end part of the support portion 9a of the intraocular lens 7 set on the lens setting portion 6 of the injector main body 2 is held by the holding portion 14, and a displacement mechanism for relatively displacing the optical portion 8 downward with respect to the support portion 9a. Therefore, the tip end part of the support portion 9a can be securely placed on the surface of the optical portion 8.


(2) In the embodiment of the present invention, a guide mechanism (11c, 14a) is provided for guiding the optical portion 8 so as to pass under the holding portion 14 when the intraocular lens 7 is pushed out from the lens setting portion 6 by the pushing member 5. Therefore, the optical portion 8 can be relatively displaced downward using the pushing operation of the pushing member 5.


(3) In the embodiment of the present invention, the housing portion 15 for housing the tip end part of the support portion 9a is provided in the holding portion 14, and when the optical portion 8 passes under the holding portion 14 by being pushed by the pushing member 5, the tip end part of the support portion 9a is detached from the housing portion 15. Therefore, by using the pushing operation of the pushing member 5, the tip end part of the support portion 9a can be detached from the housing portion 15 and placed on the surface of the optical portion 8 while bending the support portion 9a toward the optical portion 8.


(4) In the embodiment of the present invention, the preload type intraocular lens injector 1 is adopted, in which the intraocular lens 7 is preset on the lens setting portion 6. Therefore, a user using the intraocular lens injector 1 is not required to perform a setting work of setting the intraocular lens 7 each time. Therefore, it is possible to reduce a burden on the user in cataract surgery.


(5) In the embodiment of the present invention, the intraocular lens 7 is set on the lens setting portion 6 of the injector main body 2 in a no-load state, and therefore, even if the preload type intraocular lens injector 1 incorporating the intraocular lens 7 therein, is stored for a long period of time, the shape of the intraocular lens 7 is not affected. Accordingly, there is no possibility that the restorability of the shape of the intraocular lens 7 to be inserted into the eye is impaired by using the intraocular lens injector 1.


5. Modified Example, Etc.


The technical scope of the present invention is not limited to the embodiments described above but includes various modifications and improvements within the scope of deriving specific effects obtained by the constituent features of the invention and combinations thereof.


For example, in the abovementioned each embodiment, the preload type intraocular lens injector 1 is given as an example. However, the present invention is not limited thereto, and the present invention may be applied to an intraocular lens injector of the type in which the user using the intraocular lens injector sets the intraocular lens each time.


Further, in the abovementioned each embodiment, the pushing member 5 is moved forward by the rotating operation of the operation portion 3. However, the present invention is not limited thereto, and it is also acceptable to adopt a structure in which the pushing member is pushed directly using a finger.


DESCRIPTION OF SIGNS AND NUMERALS




  • 1 Intraocular lens injector


  • 2 Injector main body


  • 3 Operation portion


  • 4 Injection tube


  • 5 Pushing member


  • 6 Lens setting portion


  • 7 Intraocular lens


  • 8 Optical portion


  • 9
    a Support portion (front support portion)


  • 9
    b Support portion (rear support portion)


  • 11 Protruding guide


  • 11
    a Inclined portion


  • 11
    b Top portion


  • 11
    c Inclined portion


  • 14 Holding portion


  • 15 Housing portion


  • 18 Rod portion


Claims
  • 1. An intraocular lens injector configured to inject an intraocular lens having an optical portion and a pair of support portions extending from the optical portion into an eye, comprising: an injector main body having a lens setting portion on which the intraocular lens is set;a holding portion that holds a tip end part of a front support portion of the pair of support portions, which is disposed in front of the lens setting portion; anda displacement mechanism for displacing the optical portion relatively downward with respect to the front support portion held by the holding portion;wherein the holding portion and the displacement mechanism are respectively configured and positioned relative to one another such that distal movement of the optical portion results in the optical portion moving under the holding portion while the tip end part of the front support portion is held above the optical portion by the holding portion.
  • 2. The intraocular lens injector according to claim 1, further comprising: a pushing member that pushes out the intraocular lens from the lens setting portion by moving in a direction of a central axis of the injector main body, andwherein the displacement mechanism comprises a guide mechanism that guides the optical portion under the holding portion.
  • 3. The intraocular lens injector according to claim 2, wherein the holding portion has a housing portion for detachably housing a tip end part of the front support portion, and is configured so that the tip end part of the front support portion is detached from the housing portion when the optical portion passes under the holding portion by being pushed by the pushing member.
  • 4. The intraocular lens injector according to claim 2, wherein the guide mechanism includes a first guide portion formed on a lower surface of the holding portion in a state of being inclined with respect to a horizontal surface, and a second guide portion formed in a state of being inclined in the same direction as the first guide portion at a position facing the first guide portion.
  • 5. The intraocular lens injector according to claim 4, wherein the pushing member has a rod portion that pushes out the intraocular lens while being displaced downward along the inclination of the second guide portion.
  • 6. The intraocular lens injector according to claim 1, which is a pre-load type in which the intraocular lens is preset on the lens setting portion.
  • 7. The intraocular lens injector according to claim 1, wherein the intraocular lens is set on the lens setting portion in a no-load state.
  • 8. An intraocular lens injector, comprising: an injector main body having a lens setting portion and a surface and defining a central axis direction and a height direction; a holding portion with a recess located forward of the lens setting portion; an intraocular lens, on the lens setting portion in a no-load state, having an optical portion, a rear support portion with a tip end, and a front support portion with a tip end that is located within the holding portion recess; and a displacement mechanism configured to simultaneously displace the optical portion along the surface in the central axis direction and in the height direction relative to the front support portion, while the tip end part of the front support portion is within the holding portion recess, such that the optical portion is located between the surface and the holding portion.
  • 9. The intraocular lens injector according to claim 8, further comprising: a pushing member that pushes the intraocular lens from the lens setting portion by moving in the central axis direction.
  • 10. The intraocular lens injector according to claim 9, wherein the displacement mechanism comprises a guide mechanism that guides the optical portion under the holding portion.
  • 11. The intraocular lens injector according to claim 10, wherein the holding portion is configured such that the tip end part of the front support portion exits the recess when the optical portion passes under the holding portion.
  • 12. The intraocular lens injector according to claim 10, wherein the guide mechanism includes a first inclined guide portion on a lower surface of the holding portion and a second inclined guide portion that faces the first inclined guide portion.
  • 13. The intraocular lens injector according to claim 12, wherein the pushing member includes a rod portion that pushes the intraocular lens while being displaced in the central axis direction and in the height direction along the second inclined guide portion.
Priority Claims (1)
Number Date Country Kind
2015-182569 Sep 2015 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2016/077328 9/15/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2017/047715 3/23/2017 WO A
US Referenced Citations (327)
Number Name Date Kind
2761446 Reed Sep 1956 A
3212685 Swan Oct 1965 A
4205747 Gilliam et al. Jun 1980 A
4269307 LaHaye May 1981 A
4423809 Mazzocco Jan 1984 A
4573998 Mazzocco Mar 1986 A
4608049 Kelman Aug 1986 A
4634423 Bailey Jan 1987 A
4681102 Bartell Jul 1987 A
4697697 Graham et al. Oct 1987 A
4699140 Holmes Oct 1987 A
4702244 Mazzocco Oct 1987 A
4715373 Mazzocco et al. Dec 1987 A
4747404 Jampel et al. May 1988 A
4750498 Graham Jun 1988 A
4759359 Willis et al. Jul 1988 A
4763650 Hauser Aug 1988 A
4765329 Cumming et al. Aug 1988 A
4769034 Poley Sep 1988 A
4781719 Kelman Nov 1988 A
4787904 Severin Nov 1988 A
4810249 Haber et al. Mar 1989 A
4819631 Poley Apr 1989 A
4834094 Patton May 1989 A
4836201 Patton Jun 1989 A
4862885 Cumming Sep 1989 A
4880000 Holmes et al. Nov 1989 A
4919130 Stoy et al. Apr 1990 A
4934363 Smith et al. Jun 1990 A
4955889 Van Gent Sep 1990 A
4976716 Cumming Dec 1990 A
4988352 Poley Jan 1991 A
4994028 Leonard et al. Feb 1991 A
5066297 Cumming Nov 1991 A
5098439 Hill et al. Mar 1992 A
5123905 Kelman Jun 1992 A
5139501 Klaas Aug 1992 A
5171241 Buboltz et al. Dec 1992 A
5176686 Poley Jan 1993 A
5190552 Kelman Mar 1993 A
5190553 Kanert et al. Mar 1993 A
5222972 Hill et al. Jun 1993 A
5242450 McDonald Sep 1993 A
5259395 Li Nov 1993 A
5275604 Rheinish et al. Jan 1994 A
5281227 Sussman Jan 1994 A
5304182 Rheinish et al. Apr 1994 A
5354333 Kammann et al. Oct 1994 A
5395378 McDonald Mar 1995 A
5425734 Blake Jun 1995 A
5454818 Hambleton et al. Oct 1995 A
5468246 Blake Nov 1995 A
5474562 Orchowski et al. Dec 1995 A
5494484 Feingold Feb 1996 A
5496328 Nakajima et al. Mar 1996 A
5499987 Feingold Mar 1996 A
5562676 Brady et al. Oct 1996 A
5571113 McDonald Nov 1996 A
5578042 Cumming Nov 1996 A
5582613 Brady Dec 1996 A
5582614 Feingold Dec 1996 A
5584304 Brady Dec 1996 A
5616148 Eagles et al. Apr 1997 A
5620450 Eagles et al. Apr 1997 A
5643275 Blake Jul 1997 A
5643276 Zaleski Jul 1997 A
5645534 Chanoch Jul 1997 A
5653715 Reich et al. Aug 1997 A
5653753 Brady et al. Aug 1997 A
5702402 Brady Dec 1997 A
5702441 Zhou Dec 1997 A
5716364 Makker et al. Feb 1998 A
5728075 Levander Mar 1998 A
5728102 Feingold et al. Mar 1998 A
5735858 Makker et al. Apr 1998 A
5766181 Chambers et al. Jun 1998 A
5772666 Feingold et al. Jun 1998 A
5772667 Blake Jun 1998 A
5776138 Vidal et al. Jul 1998 A
5800442 Wolf et al. Sep 1998 A
5803925 Yang et al. Sep 1998 A
5807400 Chambers et al. Sep 1998 A
5810833 Brady et al. Sep 1998 A
5810834 Heyman Sep 1998 A
5860984 Chambers et al. Jan 1999 A
5860986 Reich et al. Jan 1999 A
5868751 Feingold Feb 1999 A
5868752 Makker et al. Feb 1999 A
5873879 Figueroa et al. Feb 1999 A
5876406 Wolf et al. Mar 1999 A
5876407 Makker et al. Mar 1999 A
5876440 Feingold Mar 1999 A
5891152 Feingold Apr 1999 A
5902307 Feingold et al. May 1999 A
5919197 McDonald Jul 1999 A
5921989 Deacon et al. Jul 1999 A
5928245 Wolf et al. Jul 1999 A
5941886 Feingold Aug 1999 A
5942277 Makker et al. Aug 1999 A
5944725 Cicenas Aug 1999 A
5947974 Brady et al. Sep 1999 A
5947975 Kikuchi et al. Sep 1999 A
5957748 Ichiha Sep 1999 A
5957896 Bendek et al. Sep 1999 A
6001107 Feingold Dec 1999 A
6010510 Brown et al. Jan 2000 A
6022358 Wolf et al. Feb 2000 A
6048348 Chambers et al. Apr 2000 A
6050999 Paraschac et al. Apr 2000 A
6051000 Heyman Apr 2000 A
6056757 Feingold et al. May 2000 A
6056758 Vidal et al. May 2000 A
6059791 Chambers May 2000 A
6074397 Chambers et al. Jun 2000 A
6083230 Makker et al. Jul 2000 A
6093193 Makker et al. Jul 2000 A
6129733 Brady et al. Oct 2000 A
6142999 Brady et al. Nov 2000 A
6143000 Feingold Nov 2000 A
6162229 Feingold et al. Dec 2000 A
6174315 Chambers et al. Jan 2001 B1
6214015 Reich et al. Apr 2001 B1
6241737 Feingold Jun 2001 B1
6248111 Glick et al. Jun 2001 B1
6251114 Farmer et al. Jun 2001 B1
6254607 Makker et al. Jul 2001 B1
6267768 Deacon Jul 2001 B1
6283975 Glick et al. Sep 2001 B1
6283976 Portney Sep 2001 B1
6312433 Butts Nov 2001 B1
6334862 Vidal et al. Jan 2002 B1
6336932 Figueroa et al. Jan 2002 B1
6355046 Kikuchi et al. Mar 2002 B2
6371960 Heyman et al. Apr 2002 B2
6386357 Egawa May 2002 B1
6387101 Butts et al. May 2002 B1
6398788 Makker et al. Jun 2002 B1
6406481 Feingold et al. Jun 2002 B2
6428545 Portney Aug 2002 B2
6447519 Brady et al. Sep 2002 B1
6447520 Ott et al. Sep 2002 B1
6468282 Kikuchi et al. Oct 2002 B2
6471708 Green Oct 2002 B2
6491697 Clark et al. Dec 2002 B1
6497708 Cumming Dec 2002 B1
6500181 Portney Dec 2002 B1
6506195 Chambers et al. Jan 2003 B2
6537283 Van Noy Mar 2003 B2
6540754 Brady Apr 2003 B2
6554839 Brady Apr 2003 B2
6558395 Hjertman et al. May 2003 B2
6605093 Blake Aug 2003 B1
6607537 Binder Aug 2003 B1
6629979 Feingold Oct 2003 B1
6666871 Kikuchi et al. Dec 2003 B2
6679891 Makker et al. Jan 2004 B2
6685740 Figueroa et al. Feb 2004 B2
6712848 Wolf et al. Mar 2004 B1
6723104 Ott Apr 2004 B2
6733507 McNicholas et al. May 2004 B2
6793674 Zapata Sep 2004 B2
6858033 Kobayashi Feb 2005 B2
6921405 Feingold et al. Jul 2005 B2
6923815 Brady et al. Aug 2005 B2
6976989 Vincent Dec 2005 B1
7014641 Kobayashi et al. Mar 2006 B2
7025782 Kobayashi et al. Apr 2006 B2
7033366 Brady Apr 2006 B2
7037312 Kikuchi et al. May 2006 B2
7074227 Portney Jul 2006 B2
7097649 Meyer Aug 2006 B2
7131976 Kobayashi et al. Nov 2006 B2
7156854 Brown et al. Jan 2007 B2
7348038 Makker et al. Mar 2008 B2
7422604 Vaquero et al. Sep 2008 B2
7429263 Vaquero et al. Sep 2008 B2
7458976 Peterson et al. Dec 2008 B2
7476230 Ohno et al. Jan 2009 B2
7494505 Kappelhof et al. Feb 2009 B2
7645300 Tsai Jan 2010 B2
8273122 Anderson Sep 2012 B2
8382769 Inoue Feb 2013 B2
8460311 Ishii Jun 2013 B2
8470032 Inoue et al. Jun 2013 B2
8475526 Pynson Jul 2013 B2
8475528 Ichinohe et al. Jul 2013 B2
8523877 Ichinohe et al. Sep 2013 B2
8523941 Ichinohe et al. Sep 2013 B2
8535375 Ichinohe et al. Sep 2013 B2
8545512 Ichinohe et al. Oct 2013 B2
8574239 Ichinohe et al. Nov 2013 B2
8603103 Kudo et al. Dec 2013 B2
8647382 Kudo et al. Feb 2014 B2
8702795 Shoji et al. Apr 2014 B2
8747465 Someya et al. Jun 2014 B2
8968328 Ichinohe et al. Mar 2015 B2
9114006 Inoue Aug 2015 B2
9114007 Ichinohe et al. Aug 2015 B2
9186246 Inoue Nov 2015 B2
9220593 Ichinohe Dec 2015 B2
9289288 Someya et al. Mar 2016 B2
9314373 Kudo et al. Apr 2016 B2
9326847 Sanger May 2016 B2
9364320 Ichinohe et al. Jun 2016 B2
9554894 Inoue Jan 2017 B2
9572710 Kudo et al. Feb 2017 B1
9655718 Kudo May 2017 B2
9687340 Anderson Jun 2017 B2
9877826 Kudo et al. Jan 2018 B2
9901442 Kudo et al. Feb 2018 B2
9907647 Inoue Mar 2018 B2
9998081 Kudo et al. May 2018 B2
10039668 Kudo et al. Aug 2018 B2
10383723 Kudo Aug 2019 B2
10390940 Someya et al. Aug 2019 B2
10405971 Someya et al. Sep 2019 B2
10517717 Inoue Dec 2019 B2
20010007942 Kikuchi et al. Jul 2001 A1
20020103490 Brady Aug 2002 A1
20020151904 Feingold et al. Oct 2002 A1
20020165610 Waldock Nov 2002 A1
20020193805 Ott et al. Dec 2002 A1
20030036765 Van Noy Feb 2003 A1
20030040755 Meyer Feb 2003 A1
20030050647 Brady Mar 2003 A1
20030088253 Seil May 2003 A1
20030139749 Kikuchi et al. Jul 2003 A1
20030181921 Jeannin Sep 2003 A1
20030195522 McNicholas Oct 2003 A1
20030212406 Kobayashi et al. Nov 2003 A1
20030212407 Kikuchi Nov 2003 A1
20030212408 Kobayashi Nov 2003 A1
20030212409 Kobayashi et al. Nov 2003 A1
20040111094 Meyer Jun 2004 A1
20040117012 Vincent Jun 2004 A1
20040127911 Figueroa Jul 2004 A1
20040147938 Dusek et al. Jul 2004 A1
20040186428 Ray Sep 2004 A1
20040238392 Peterson et al. Dec 2004 A1
20040243141 Brown et al. Dec 2004 A1
20050033308 Callahan et al. Feb 2005 A1
20050049605 Vaquero et al. Mar 2005 A1
20050049606 Vaquero et al. Mar 2005 A1
20050055011 Enggaard Mar 2005 A1
20050125000 Tourrette et al. Jun 2005 A1
20050143750 Vaquero Jun 2005 A1
20050182419 Tsai Aug 2005 A1
20050222578 Vaquero Oct 2005 A1
20050261703 Feingold et al. Nov 2005 A1
20060085013 Dusek Apr 2006 A1
20060142781 Pynson et al. Jun 2006 A1
20060167466 Dusek Jul 2006 A1
20060200167 Peterson et al. Sep 2006 A1
20060229633 Shepherd Oct 2006 A1
20060235429 Lee et al. Oct 2006 A1
20060293694 Futamura Dec 2006 A1
20070005135 Makker et al. Jan 2007 A1
20070270945 Kobayashi Nov 2007 A1
20080033449 Cole et al. Feb 2008 A1
20080058830 Cole et al. Mar 2008 A1
20080086146 Ishii et al. Apr 2008 A1
20080097459 Kammerlander et al. Apr 2008 A1
20080221584 Downer Sep 2008 A1
20090036898 Ichinohe Feb 2009 A1
20090043313 Ichinohe Feb 2009 A1
20090112223 Downer et al. Apr 2009 A1
20090125034 Pynson May 2009 A1
20090138022 Tu et al. May 2009 A1
20090204122 Ichinohe et al. Aug 2009 A1
20090216244 Pynson Aug 2009 A1
20090248031 Ichinohe Oct 2009 A1
20090270876 Hoffmann et al. Oct 2009 A1
20090292293 Bogaert et al. Nov 2009 A1
20100094309 Hboukhny et al. Apr 2010 A1
20100106160 Tsai Apr 2010 A1
20100161049 Inoue Jun 2010 A1
20100185206 Ichinohe et al. Jul 2010 A1
20100217273 Someya et al. Aug 2010 A1
20100286704 Ichinohe et al. Nov 2010 A1
20100331808 Py et al. Dec 2010 A1
20110046633 Pankin et al. Feb 2011 A1
20110046635 Pankin et al. Feb 2011 A1
20110082463 Inoue Apr 2011 A1
20110098717 Inoue Apr 2011 A1
20110144654 Isaacs et al. Jun 2011 A1
20110172676 Chen Jul 2011 A1
20110264101 Inoue et al. Oct 2011 A1
20110270264 Shoji et al. Nov 2011 A1
20110288557 Kudo et al. Nov 2011 A1
20120022548 Zacharias Jan 2012 A1
20120022549 Someya et al. Jan 2012 A1
20120071887 Ichinohe et al. Mar 2012 A1
20120123438 Horvath et al. May 2012 A1
20130006259 Sanger Jan 2013 A1
20130018460 Anderson Jan 2013 A1
20130085507 Nagasaka Apr 2013 A1
20130226193 Kudo Aug 2013 A1
20130245635 Inoue Sep 2013 A1
20130345713 Cole et al. Dec 2013 A1
20140081284 Ichinohe et al. Mar 2014 A1
20140107660 Ichinohe et al. Apr 2014 A1
20140114323 Kudo et al. Apr 2014 A1
20140135784 Maroscheck May 2014 A1
20140180299 Ichinohe et al. Jun 2014 A1
20140180300 Ichinohe et al. Jun 2014 A1
20140194890 Kudo et al. Jul 2014 A1
20140276901 Auld Sep 2014 A1
20150327992 Wagner et al. Nov 2015 A1
20160000556 Perera Jan 2016 A1
20160113759 Inoue Apr 2016 A1
20160151150 Sato Jun 2016 A1
20160193038 Kudo et al. Jul 2016 A1
20160256316 Van Noy et al. Sep 2016 A1
20160270907 Attinger Sep 2016 A1
20160331587 Yamada et al. Nov 2016 A1
20160346077 Someya et al. Dec 2016 A1
20170079772 Kudo Mar 2017 A1
20170151056 Inoue Jun 2017 A1
20170202662 Someya et al. Jul 2017 A1
20170252149 Kudo et al. Sep 2017 A1
20170252150 Kudo et al. Sep 2017 A1
20170258582 Kudo et al. Sep 2017 A1
20170354493 Andersen et al. Dec 2017 A1
20180250125 Kudo Sep 2018 A1
20190151078 Watanabe et al. May 2019 A1
20190192284 Watanabe et al. Jun 2019 A1
20200113674 Someya et al. Apr 2020 A1
Foreign Referenced Citations (83)
Number Date Country
3610925 Oct 1987 DE
4110278 Oct 1992 DE
19544119 May 1997 DE
0363213 Apr 1990 EP
0727966 Sep 2003 EP
1360947 Nov 2003 EP
1832247 Sep 2007 EP
1338254 Dec 2008 EP
2074961 Jul 2009 EP
2255751 Dec 2010 EP
2286763 Feb 2011 EP
2286764 Feb 2011 EP
2574308 Apr 2013 EP
2853236 Apr 2015 EP
2749752 Dec 1997 FR
63-197453 Aug 1988 JP
4-212350 Aug 1992 JP
5-103808 Apr 1993 JP
5-103809 Apr 1993 JP
8-024282 Jan 1996 JP
8-505540 Jun 1996 JP
9-506285 Jun 1997 JP
11-113939 Apr 1999 JP
11-506357 Jun 1999 JP
2000-516487 Dec 2000 JP
2000-516488 Dec 2000 JP
2001-502563 Feb 2001 JP
2001-104347 Apr 2001 JP
2002-516709 Jun 2002 JP
2002-355268 Dec 2002 JP
2002-541912 Dec 2002 JP
2003-144480 May 2003 JP
3412106 Jun 2003 JP
2003-210498 Jul 2003 JP
2003-325569 Nov 2003 JP
2003-325570 Nov 2003 JP
2003-325572 Nov 2003 JP
2004-024854 Jan 2004 JP
2004-188194 Jul 2004 JP
2004-351196 Dec 2004 JP
2006-181269 Jul 2006 JP
2006-297146 Nov 2006 JP
2006-333924 Dec 2006 JP
2006-333981 Dec 2006 JP
2007-503872 Mar 2007 JP
2007-152010 Jun 2007 JP
2007-181604 Jul 2007 JP
2007-244570 Sep 2007 JP
2007-526091 Sep 2007 JP
2007-307168 Nov 2007 JP
2008-521535 Jun 2008 JP
2008-212689 Sep 2008 JP
2014-050484 Mar 2014 JP
2016-137122 Aug 2016 JP
WO9407436 Apr 1994 WO
WO9513022 May 1995 WO
WO9628122 Sep 1996 WO
WO9715253 May 1997 WO
WO9812969 Apr 1998 WO
WO9958086 Nov 1999 WO
WO9959668 Nov 1999 WO
WO0045746 Aug 2000 WO
WO0062712 Oct 2000 WO
WO2002071982 Sep 2002 WO
WO2002096322 Dec 2002 WO
WO2005023154 Mar 2005 WO
WO2005070341 Aug 2005 WO
WO2005084588 Sep 2005 WO
WO2006070628 Jul 2006 WO
WO2006080191 Aug 2006 WO
WO2006090531 Aug 2006 WO
WO2007037223 Apr 2007 WO
WO2007097221 Apr 2007 WO
WO2007080869 Jul 2007 WO
WO2008149794 Dec 2008 WO
WO2008149795 Dec 2008 WO
WO2009058929 Jul 2009 WO
WO2009148091 Dec 2009 WO
WO2011126144 Oct 2011 WO
WO2011155636 Dec 2011 WO
WO2012086797 Jun 2012 WO
WO2012155887 Nov 2012 WO
WO2015012312 Jan 2015 WO
Non-Patent Literature Citations (52)
Entry
U.S. Appl. No. 15/063,395, filed Mar. 7, 2016, US 20160346077A1.
U.S. Appl. No. 15/476,717, filed Mar. 31, 2017, US 20170202662A1.
U.S. Appl. No. 15/888,078, filed Feb. 4, 2018.
U.S. Appl. No. 15/382,377, filed Dec. 16, 2016, US 20170151056A1.
U.S. Appl. No. 15/071,880, filed Mar. 16, 2016, US 20160193038A1.
U.S. Appl. No. 15/870,979, filed Jan. 14, 2018.
U.S. Appl. No. 15/126,277, filed Sep. 14, 2016, US 20170079772A1.
U.S. Appl. No. 15/756,565, filed Feb. 28, 2018.
U.S. Appl. No. 15/756,569, filed Feb. 28, 2018.
PCT Search Report dated Dec. 13, 2016 for PCT App. Ser. No. PCT/JP2016/077328.
U.S. Appl. No. 16/550,144, filed Aug. 23, 2019.
EPO Extended European Search Report dated May 14, 2019 for EPO App. Ser. No. 16846586.2.
U.S. Appl. No. 16/313,180, filed Dec. 26, 2018.
U.S. Appl. No. 12/602,442, filed Dec. 15, 2009, U.S. Pat. No. 8,747,465.
U.S. Appl. No. 13/244,449, filed Sep. 24, 2011, U.S. Pat. No. 9,289,288.
U.S. Appl. No. 15/063,395, filed Mar. 7, 2016, U.S. Pat. No. 10,390,940.
U.S. Appl. No. 15/476,717, filed Mar. 31, 2017, U.S. Pat. No. 10,405,971.
U.S. Appl. No. 16/550,144, filed Aug. 23, 2019, US 20200113674A1.
U.S. Appl. No. 12/602,454, filed Dec. 15, 2009, U.S. Pat. No. 8,475,528.
U.S. Appl. No. 13/244,452, filed Sep. 24, 2011, U.S. Pat. No. 8,535,375.
U.S. Appl. No. 12/667,510, filed Dec. 31, 2009, U.S. Pat. No. 9,114,006.
U.S. Appl. No. 14/812,104, filed Jul. 29, 2015, U.S. Pat. No. 9,907,647.
U.S. Appl. No. 12/995,263, filed Dec. 15, 2010, U.S. Pat. No. 9,554,894.
U.S. Appl. No. 15/382,377, filed Dec. 16, 2016, U.S. Pat. No. 10,517,717.
U.S. Appl. No. 12/997,651, filed Dec. 13, 2010, U.S. Pat. No. 8,382,769.
U.S. Appl. No. 13/757,790, filed Feb. 2, 2012, U.S. Pat. No. 9,186,246.
U.S. Appl. No. 13/583,216, filed Apr. 6, 2011, U.S. Pat. No. 9,326,847.
U.S. Appl. No. 13/699,708, filed Jun. 8, 2011, U.S. Pat. No. 8,647,382.
U.S. Appl. No. 14/145,846, filed Dec. 31, 2013, U.S. Pat. No. 9,314,373.
U.S. Appl. No. 15/071,880, filed Mar. 16, 2016, U.S. Pat. No. 10,039,668.
U.S. Appl. No. 15/336,678, filed Oct. 27, 2016, U.S. Pat. No. 9,572,710.
U.S. Appl. No. 15/608,895, filed May 30, 2017, U.S. Pat. No. 9,980,811.
U.S. Appl. No. 13/059,401, filed Feb. 16, 2011, U.S. Pat. No. 8,702,795.
U.S. Appl. No. 13/061,143, filed Feb. 26, 2011, U.S. Pat. No. 8,470,032.
U.S. Appl. No. 13/143,322, filed Jul. 5, 2011, U.S. Pat. No. 8,603,103.
U.S. Appl. No. 14/099,989, filed Dec. 8, 2013, U.S. Pat. No. 9,655,718.
U.S. Appl. No. 15/600,679, filed May 19, 2017, U.S. Pat. No. 9,877,826.
U.S. Appl. No. 15/600,684, filed May 19, 2017, U.S. Pat. No. 9,901,442.
U.S. Appl. No. 11/814,508, filed Jul. 23, 2007, U.S. Pat. No. 8,545,512.
U.S. Appl. No. 14/033,888, filed Sep. 23, 2013, U.S. Pat. No. 9,220,593.
U.S. Appl. No. 11/816,676, filed Aug. 20, 2007, U.S. Pat. No. 8,523,877.
U.S. Appl. No. 13/966,209, filed Aug. 13, 2013, U.S. Pat. No. 9,364,320.
U.S. Appl. No. 12/095,172, filed May 28, 2008, U.S. Pat. No. 8,523,941.
U.S. Appl. No. 14/011,018, filed Aug. 27, 2013, U.S. Pat. No. 8,968,328.
U.S. Appl. No. 12/088,328, filed Mar. 27, 2008, U.S. Pat. No. 8,574,239.
U.S. Appl. No. 14/065,365, filed Oct. 28, 2013, U.S. Pat. No. 9,114,007.
U.S. Appl. No. 11/722,601, filed Apr. 10, 2008, U.S. Pat. No. 8,460,311.
U.S. Appl. No. 15/126,277, filed Sep. 14, 2016, U.S. Pat. No. 10,383,723.
U.S. Appl. No. 15/756,565, filed Feb. 28, 2018, US 20180250125A1.
U.S. Appl. No. 15/756,569, filed Feb. 28, 2018, US 20180353287A1.
U.S. Appl. No. 16/313,180, filed Dec. 26, 2018, US 20190192284A1.
U.S. Appl. No. 16/313,184, filed Dec. 26, 2018, US 20190151078A1.
Related Publications (1)
Number Date Country
20180353287 A1 Dec 2018 US