The present invention relates to an intraocular lens inserting instrument that inserts an intraocular lens into an eye in place of a lens removed by a cataract operation, and more particularly to an intraocular lens inserting instrument capable of grasping a folded intraocular lens by tweezers and inserting said intraocular lens into an eye.
In cataract operations, the method of removing an opacified lens by phacoemulsification and implanting an artificial intraocular lens after the opacified lens has been removed is widely employed. There are two types of implanted intraocular lens; these being a hard intraocular lens with the optical area made of a hard material, such as polymethylmethacrylate (PMMA), and a soft intraocular lens made of a soft material such as silicone elastomer, soft acrylic, or hydrogel. When using a hard intraocular lens, the intraocular lens must be inserted through an incision in the cornea or sclera that is of the same or slightly wider width than the diameter of the optical area. On the other hand, when using a soft intraocular lens, folding of the optical area allows the intraocular lens to be inserted into the eye through an even smaller incision. Further, performing the operation with a smaller incision makes it possible to reduce the risk of post-surgery corneal astigmatism and infection. For such reasons, there has been a trend in recent years to favor the use of soft intraocular lens.
Methods for inserting a soft intraocular lens in an eye include the method of using tweezers to insert a folded intraocular lens directly into an eye and the method of using a special insertion instrument called an injector. Using a special injector makes it possible to fold the intraocular lens smaller than when it is folded by tweezers. This makes it possible to insert an intraocular lens (hereinafter referred to as simply a “lens”) into an eye through an incision of 3 mm or smaller.
In addition, preset injectors having the lens set in the injector in advance to eliminate the risk of contamination by microbes during lens handling and of possible operational mistakes during lens handling have recently been announced. Further, some preset injectors are provided with a lens holding mechanism that holds the lens inside the injector in an immovable state that does not stress the optical area and with a lens moving mechanism that moves the lens to a position where it can be pushed out by an discharge device so as to transfer the lens from the lens immovable state during shipment to the lens movable state during use (For example, see Japanese Patent Application (JP-A) Laid Open Nos. 2003-325570 and 2003-325572, which are incorporated by reference herein in their entireties).
However, a preset injector disclosed in the above patent documents must move the lens from the stationary position to a usable position during its use, and the risk of problems accompanying the movement operation cannot be eliminated. Further, because the injector has a mechanism that moves the lens to a usable position and begins pushing with the optical area being nearly undistorted, the discharge device is required to have a long movement distance. This increases the possibility of a problem occurring during operation and creates structural limitations, such as making the overall length of the injector longer. For this reason, by providing a mechanism to first fold the intraocular lens in a lens placing section so that the lens is deformed to a degree and then to start to move it into the eye, it is possible to shorten the movement distance inside the lens tube to decrease accidents occurring during the moving process and improve usability by shortening the overall length of the injector. In view of the above, an intraocular lens inserting instrument provided with a mechanism for transversely compressing a flexible intraocular lens to obtain a small cross-sectional area has been disclosed (For example, see Japanese Patent Application Laid-Open (JP-A) No. 2001-502563, which is incorporated by reference herein in its entirety).
However, a characteristic of the invention disclosed in JP-A 2001-502563 is that it is provided with retainers to maintain the side edges of the lens in a substantially planar orientation so as not to damage the inside of the eye when releasing the intraocular lens in the eye from a compressed state. In this state, if the intraocular lens is pressed against the fine areas of the lens placing section and narrow tube member, a very high load is placed on the lens, which could damage the lens. In addition, the lens is completely enclosed in the tube member, so it is not possible to remove, after deformation, a lens that has been deformed inside the inserting instrument.
However, there are cases during surgery when, for whatever reason, such as when the lens must be sewn in place or when the surgeon prefers to use tweezers to insert the lens, it is necessary to use tweezers to insert the intraocular lens into the eye. In such a case, there will be taken steps for removing a lens that has been set in an injector from inside the injector and then folding the lens in an appropriate manner, and inserting it into the eye using tweezers. Using such a multiple step operation, however, increases the risk of contaminating the eye with foreign matter or microbes and the possibility of dropping or damaging the lens through handling mistakes. In the case of a preset injector in particular, the injector is shipped with the lens set inside, and none of the currently commercially available preset injectors were designed with the intention of using tweezers to remove the lens and, therefore, are not provided with a mechanism for safely removing the intraocular lens without breaking the injector.
For this reason, it is desirable to realize an intraocular lens inserting instrument that allows for both usage methods depending on the surgical method employed. An object of the present invention is to provide a function for performing a simple operation to fold a lens set in the lens placing section of a preset injector in which an intraocular lens has been set in the injector in advance. A further object of the present invention, in the case where the injector is used for direct insertion into an eye, is to provide a lens inserting instrument where an intraocular lens is discharged using a plunger to be inserted into an eye after the intraocular lens has been folded in the lens placing section, and, in the case where tweezers are used to hold the lens and insert the lens into an eye, is to provide a lens inserting instrument where the lens placing section can be opened by an opening mechanism provided in the top wall or part of the lens placing section before or after the lens has been folded to thereby allow the folded lens to be removed in the folded state using tweezers. Therefore, the present invention most preferably applies to preset injectors that are shipped with a lens set in advance.
Further, the present invention also applies to injectors in which the lens and injector are supplied in separate packaging, and in this case, the injector can be used to insert the lens, but even after the lens has been set in the injector, switching to the lens insertion operation using tweezers is also possible to meet urgent surgical requirements.
The present invention according to a first aspect concerns an intraocular lens inserting instrument for inserting a folded intraocular lens into an eye, characterized in comprising a tubular body through which the intraocular lens is guided to the eye, a plunger that presses and discharges the intraocular lens into the eye, a folding member that folds the intraocular lens in a lens placing section provided in the body, wherein the intraocular lens is removable in the lens placing section.
The present invention according to a second aspect is characterized by a means for folding in two the intraocular lens in the intraocular lens inserting instrument of the first aspect.
The present invention according to a third aspect is characterized by providing an open/close lid in the lens placing section that is integrated with or separate from the body of an intraocular lens inserting instrument according to the first or second aspect.
The present invention according to a fourth aspect is characterized by the open/close lid being attached by a hinge to the body of an intraocular lens inserting instrument according to the third aspect.
The present invention according to a fifth aspect is characterized by the intraocular lens folded in the lens placing section being capable of being grasped by tweezers in an intraocular lens inserting instrument according to any one of the first to fourth aspects.
The present invention according to a sixth aspect is characterized by providing two folding members in the lens placing section wherein the folding members are joined by a plate spring and the folding members are provided with a protrusion that opposes the bias force of the plate spring, to maintain the position of the folding members of an intraocular lens inserting instrument according to any one of the first to fifth aspects.
The present invention according to a seventh aspect is characterized by providing a locking mechanism in the folding members wherein the intraocular lens cannot be folded unless the locking mechanism is unlocked in an intraocular lens inserting instrument according to any one of the first to fifth aspects.
The intraocular lens inserting instrument according to the first aspect enables an intraocular lens to be implanted in an eye using an injector with the intraocular lens set in advance, while also allowing the folded intraocular lens to be grasped by tweezers and implanted in an eye when necessary after the intraocular lens has been folded.
The intraocular lens inserting instrument according to the second aspect enables an intraocular lens to be folded in two, thus allowing the intraocular lens to be easily grasped by tweezers.
The intraocular lens inserting instrument according to the third aspect has an open/close lid through which tweezers can be used to grasp the folded intraocular lens.
The intraocular lens inserting instrument according to the fourth aspect has a hinge that fastens the open/close lid to the body so that the open/close lid does not fall from the body.
The intraocular lens inserting instrument according to the fifth aspect allows, when necessary, the intraocular lens to be grasped by tweezers and implanted into an eye after the intraocular lens has been folded in a lens placing section.
The intraocular lens inserting instrument according to the sixth aspect has two folding members joined by a plate spring, thus enabling an operating force of suitable magnitude to be obtained. Further, protrusions that can latch with the body are provided on the folding members, thus opposing the bias force of the spring plate to maintain the position of the folding members.
The intraocular lens inserting instrument according to the seventh aspect provides a locking mechanism in the folding members that prevents the intraocular lens from being folded unless the locking mechanism is unlocked, thus preventing unintentional deformation of the intraocular lens.
The following reference elements are described in further detail below in reference to the drawing figures:
The present invention is described with reference to the drawings.
The tubular body 3 is also called the hand piece, and a lens placing section 5 is provided in the midst of the tubular body 3. Further, the inside diameter of the end 6 of the tubular shape is narrowly constricted and this end 6 is such that it enables the intraocular lens 2 to be implanted by inserting the lens into eye through an incision. In addition, the surgeon side of the tubular body 3 is provided with a grasping section 7 and the inside of the tubular body 3 is mounted with a freely sliding plunger 4 that discharges the intraocular lens 2. Further, the folding members 8 that fold the intraocular lens 2 inside the lens placing section 5 are mounted in the transverse direction to the plunger shaft 4a such that the folding members 8 can move parallel above the lens placing section 5. When setting the lens 2, the folding members 8 are pulled out in the outer lateral direction to set the lens 2. When the folding members 8 are pulled all the way in the outer lateral direction, a space slightly larger than the outside diameter of the lens optical area 2a is obtained in the lens placing section 5 to allow the lens 2 to be set without applying excessive stress to the optical area 2a of the lens 2.
In addition, when the folding members 8 are pulled in the outer lateral direction, the plunger end 4b is constructed such that it butts against the sides of the folding members 8 to restrict the lens 2 from being discharged due to a plunger 4 operation mistake, etc. Note that the lens placing section 5 is provided with a position restriction protrusion 9 to restrict the movement of the lens 2.
Further, during surgery the tubular end 6 is inserted into the eye, so it must be kept sterile at all times. For this reason, a nozzle cap 11 is placed on the tip forming the nozzle 6 to protect the same. The nozzle cap 11 protects the nozzle 6 and also functions to restrict the pushing motion of the afore-mentioned folding members 8. More specifically, the construction is such that the folding members 8 cannot be pushed unless the nozzle cap 11 is removed. Therefore, this construction prevents the lens 2 from being folded at an unsuitable time due to an operational mistake, etc.
During the surgery, when using the injector 1 to insert the intraocular lens 2 in the eye, the nozzle cap 11 is removed before pushing in the folding members 8 to deform and fold the intraocular lens 2 stored in the lens placing section 5. Specifically, when pushing in the folding members 8 as shown in (b), the optical area 2a of the intraocular lens 2 is compressed by the inner wall of the body 3 and the folding members 8 to fold the optical area 2a into a U-shape. Then the tip that forms the nozzle 6 is inserted into the eye through the incision in the eyeball and then the intraocular lens 2 is discharged by the plunger 4 and implanted in the eye. Note that the plunger is constructed such that when the folding members 8 are pushed in and the intraocular lens 2 is in the folded position, the center of the plunger through hole 8d provided in the folding members 8 aligns with the shaft center of the plunger shaft 4a to allow the plunger 4 to be pressed to compress and move the intraocular lens 2.
On the other hand, there are cases where the surgeon determines that it would be better to use tweezers 15 to grasp the intraocular lens 2 and insert it into the eye than to use the injector 1 to directly implant the lens 2 into the eye. In such a case, as shown by (c), after the folding members 8 fold the intraocular lens 2, the open/close lid 12 is opened and the tweezers 15 are used to grasp the folded optical area 2a and insert it into the eye. Therefore, according to the present invention, it is both possible to use the injector 1 to implant the intraocular lens 2 in the eye, or, when necessary, to use the tweezers 15 to grasp the folded intraocular lens 2 and implant it in the eye.
The folding members 8 according to this embodiment are provided with a rotating boss 8a in the lens placing section 5, and the boss 8a is provided with an integrated compression member 8b positioned in the lens placing section 5 and an operation member 8c that extends outward from the body 3. Further, as shown in
In addition, the nozzle cap 11 according to this embodiment, as shown in
Further, as shown in
This embodiment comprises two folding members 8 such that both sides of the optical area 2a of the lens 2 are caught between the folding members 8 and folded. Further, the two folding members 8 are positioned in a location axially symmetric to the lens placing section 5 and are joined by a plate spring 17. In addition, the embodiment has a construction wherein the folding members 8 are provided with protrusions 8f in suitable locations where the protrusions 8f latch into depressions or the like provided in the body 3. This injector 1 having this construction is maintained in the state where the folding members 8 are pulled outward to prevent the plate spring 17 from compressing the lens 2 when it is set in the lens placing section 5. This state obtains space for storing the lens 2 between the two folding members 8 and 8.
After setting the lens 2, the protective cover 16 is mounted on the body 3 as shown in
The open/close lid 12 shown in
This embodiment provides two folding members 8 in the lens placing section 5 where the afore-mentioned two folding members 8 are joined by a plate spring 17 and protrusions 8f are provided in the afore-mentioned two folding members 8 that lock at appropriate locations in the body 3 to counter the bias force of the afore-mentioned plate spring 17 to maintain the position of the afore-mentioned folding members 8. However, the joining method using the plate spring 17 differs from that of the third embodiment. The two folding members 8 are positioned in a V-shape with one edge connected to the plate spring 17. Further, the two folding members 8 are made to only rotate at a specific angle about the center of the plate spring 17. In other words, when the two folding members 8 are opened outwards, the two folding members 8 are positioned in a V-shape in the lens placing section 5 to obtain space for placing the optical area 2a of the lens. Therefore, this state allows for the lens 2 to be positioned without excess stress being placed on the optical area 2a of the lens. After the lens is positioned, the open/close lid 12 is mounted on the body 3 to complete the setting of the lens 2. In addition, although not shown in the figure, the back of the open/close lid 12 is provided with a multiplicity of protrusions to fix the position of the lens 2 and a multiplicity of protrusions to fix the movement of the folding members 8 such that when the open/close lid 12 is mounted on the body 3, the movement of the lens 2 and the movement of the folding members 8 are restricted. Further, the open/close lid 12 is provided with an abutment that restricts the movement of the plunger shaft 4a to prevent the lens 2 from being discharged by mistaken operation of the plunger 4.
An explanation of the present invention based on several embodiments was given above, but this explanation in no way intended to restrict the scope of the invention over the scope as defined by plain meaning of the claims. For example, in the above embodiments the case where the method of joining two folding members 8 with a separate plate spring 17 was shown, but the two folding members and spring material could for example be alternatively formed as a single piece.
Number | Date | Country | Kind |
---|---|---|---|
2005-049700 | Feb 2005 | JP | national |
This application is continuation of U.S. application Ser. No. 11/816,676, filed Aug. 20, 2007, now U.S. Pat. No. 8,523,877, which was the United States national phase under 35 U.S.C. §371 of PCT International Application No. PCT/JP2006/300291, which has an International filing date of Jan. 12, 2006, designated in the United States and claims priority from Japanese Patent Application No. 2005-049700, filed Feb. 24, 2005. International Patent Application No. PCT/JP2006/300291 and Japanese Patent Application No. 2005-049700 are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2761446 | Reed | Sep 1956 | A |
4205747 | Gilliam et al. | Jun 1980 | A |
4269307 | LaHaye | May 1981 | A |
4423809 | Mazzocco | Jan 1984 | A |
4573998 | Mazzocco | Mar 1986 | A |
4608049 | Kelman | Aug 1986 | A |
4634423 | Bailey | Jan 1987 | A |
4681102 | Bartell | Jul 1987 | A |
4697697 | Graham et al. | Oct 1987 | A |
4699140 | Holmes | Oct 1987 | A |
4702244 | Mazzocco | Oct 1987 | A |
4715373 | Mazzocco et al. | Dec 1987 | A |
4747404 | Jampel et al. | May 1988 | A |
4750498 | Graham | Jun 1988 | A |
4759359 | Willis et al. | Jul 1988 | A |
4763650 | Hauser | Aug 1988 | A |
4765329 | Cumming et al. | Aug 1988 | A |
4769034 | Poley | Sep 1988 | A |
4781719 | Kelman | Nov 1988 | A |
4787904 | Severin | Nov 1988 | A |
4810249 | Haber et al. | Mar 1989 | A |
4819631 | Poley | Apr 1989 | A |
4834094 | Patton | May 1989 | A |
4836201 | Patton | Jun 1989 | A |
4862885 | Cumming | Sep 1989 | A |
4880000 | Holmes et al. | Nov 1989 | A |
4919130 | Stoy et al. | Apr 1990 | A |
4934363 | Smith et al. | Jun 1990 | A |
4955889 | Van Gent | Sep 1990 | A |
4976716 | Cumming | Dec 1990 | A |
4988352 | Poley | Jan 1991 | A |
4994028 | Leonard et al. | Feb 1991 | A |
5066297 | Cumming | Nov 1991 | A |
5098439 | Hill et al. | Mar 1992 | A |
5123905 | Kelman | Jun 1992 | A |
5139501 | Klaas | Aug 1992 | A |
5171241 | Buboltz et al. | Dec 1992 | A |
5176686 | Poley | Jan 1993 | A |
5190552 | Kelman | Mar 1993 | A |
5190553 | Kanert et al. | Mar 1993 | A |
5222972 | Hill et al. | Jun 1993 | A |
5242450 | McDonald | Sep 1993 | A |
5259395 | Li | Nov 1993 | A |
5275604 | Rheinish et al. | Jan 1994 | A |
5281227 | Sussman | Jan 1994 | A |
5304182 | Rheinish et al. | Apr 1994 | A |
5354333 | Kammann et al. | Oct 1994 | A |
5395378 | McDonald | Mar 1995 | A |
5425734 | Blake | Jun 1995 | A |
5454818 | Hambleton et al. | Oct 1995 | A |
5468246 | Blake | Nov 1995 | A |
5474562 | Orchowski et al. | Dec 1995 | A |
5494484 | Feingold | Feb 1996 | A |
5496328 | Nakajima et al. | Mar 1996 | A |
5499987 | Feingold | Mar 1996 | A |
5562676 | Brady et al. | Oct 1996 | A |
5571113 | McDonald | Nov 1996 | A |
5578042 | Cumming | Nov 1996 | A |
5582613 | Brady | Dec 1996 | A |
5582614 | Feingold | Dec 1996 | A |
5584304 | Brady | Dec 1996 | A |
5616148 | Eagles et al. | Apr 1997 | A |
5620450 | Eagles et al. | Apr 1997 | A |
5643275 | Blake | Jul 1997 | A |
5643276 | Zaleski | Jul 1997 | A |
5645534 | Chanoch | Jul 1997 | A |
5653715 | Reich et al. | Aug 1997 | A |
5653753 | Brady et al. | Aug 1997 | A |
5702402 | Brady | Dec 1997 | A |
5702441 | Zhou | Dec 1997 | A |
5716364 | Makker et al. | Feb 1998 | A |
5728075 | Levander | Mar 1998 | A |
5728102 | Feingold et al. | Mar 1998 | A |
5735858 | Makker et al. | Apr 1998 | A |
5766181 | Chambers et al. | Jun 1998 | A |
5772666 | Feingold et al. | Jun 1998 | A |
5772667 | Blake | Jun 1998 | A |
5776138 | Vidal et al. | Jul 1998 | A |
5800442 | Wolf et al. | Sep 1998 | A |
5803925 | Yang et al. | Sep 1998 | A |
5807400 | Chambers et al. | Sep 1998 | A |
5810833 | Brady et al. | Sep 1998 | A |
5810834 | Heyman | Sep 1998 | A |
5860984 | Chambers et al. | Jan 1999 | A |
5860986 | Reich et al. | Jan 1999 | A |
5868751 | Feingold | Feb 1999 | A |
5868752 | Makker et al. | Feb 1999 | A |
5873879 | Figueroa et al. | Feb 1999 | A |
5876406 | Wolf et al. | Mar 1999 | A |
5876407 | Makker et al. | Mar 1999 | A |
5876440 | Feingold | Mar 1999 | A |
5891152 | Feingold | Apr 1999 | A |
5902307 | Feingold et al. | May 1999 | A |
5919197 | McDonald | Jul 1999 | A |
5921989 | Deacon et al. | Jul 1999 | A |
5928245 | Wolf et al. | Jul 1999 | A |
5941886 | Feingold | Aug 1999 | A |
5942277 | Makker et al. | Aug 1999 | A |
5944725 | Cicenas | Aug 1999 | A |
5947974 | Brady et al. | Sep 1999 | A |
5947975 | Kikuchi et al. | Sep 1999 | A |
5957748 | Ichiha | Sep 1999 | A |
5957896 | Bendek et al. | Sep 1999 | A |
6001107 | Feingold | Dec 1999 | A |
6010510 | Brown et al. | Jan 2000 | A |
6022358 | Wolf et al. | Feb 2000 | A |
6048348 | Chambers et al. | Apr 2000 | A |
6051000 | Heyman | Apr 2000 | A |
6056757 | Feingold et al. | May 2000 | A |
6056758 | Vidal et al. | May 2000 | A |
6059791 | Chambers | May 2000 | A |
6074397 | Chambers et al. | Jun 2000 | A |
6083230 | Makker et al. | Jul 2000 | A |
6093193 | Makker et al. | Jul 2000 | A |
6129733 | Brady et al. | Oct 2000 | A |
6142999 | Brady et al. | Nov 2000 | A |
6143000 | Feingold | Nov 2000 | A |
6162229 | Feingold et al. | Dec 2000 | A |
6174315 | Chambers et al. | Jan 2001 | B1 |
6214015 | Reich et al. | Apr 2001 | B1 |
6241737 | Feingold | Jun 2001 | B1 |
6248111 | Glick et al. | Jun 2001 | B1 |
6251114 | Farmer et al. | Jun 2001 | B1 |
6254607 | Makker et al. | Jul 2001 | B1 |
6267768 | Deacon | Jul 2001 | B1 |
6283975 | Glick et al. | Sep 2001 | B1 |
6283976 | Portney | Sep 2001 | B1 |
6312433 | Butts | Nov 2001 | B1 |
6334862 | Vidal et al. | Jan 2002 | B1 |
6336932 | Figueroa et al. | Jan 2002 | B1 |
6355046 | Kikuchi et al. | Mar 2002 | B2 |
6371960 | Heyman et al. | Apr 2002 | B2 |
6386357 | Egawa | May 2002 | B1 |
6387101 | Butts et al. | May 2002 | B1 |
6398788 | Makker et al. | Jun 2002 | B1 |
6406481 | Feingold et al. | Jun 2002 | B2 |
6428545 | Portney | Aug 2002 | B2 |
6447519 | Brady et al. | Sep 2002 | B1 |
6447520 | Ott et al. | Sep 2002 | B1 |
6468282 | Kikuchi et al. | Oct 2002 | B2 |
6471708 | Green | Oct 2002 | B2 |
6491697 | Clark et al. | Dec 2002 | B1 |
6497708 | Cumming | Dec 2002 | B1 |
6500181 | Portney | Dec 2002 | B1 |
6506195 | Chambers et al. | Jan 2003 | B2 |
6537283 | Van Noy | Mar 2003 | B2 |
6540754 | Brady | Apr 2003 | B2 |
6554839 | Brady | Apr 2003 | B2 |
6558395 | Hjertman et al. | May 2003 | B2 |
6607537 | Binder | Aug 2003 | B1 |
6629979 | Feingold | Oct 2003 | B1 |
6666871 | Kikuchi et al. | Dec 2003 | B2 |
6679891 | Makker et al. | Jan 2004 | B2 |
6685740 | Figueroa et al. | Feb 2004 | B2 |
6712848 | Wolf et al. | Mar 2004 | B1 |
6723104 | Ott | Apr 2004 | B2 |
6733507 | McNicholas et al. | May 2004 | B2 |
6793674 | Zapata | Sep 2004 | B2 |
6858033 | Kobayashi | Feb 2005 | B2 |
6921405 | Feingold et al. | Jul 2005 | B2 |
6923815 | Brady et al. | Aug 2005 | B2 |
6976989 | Vincent | Dec 2005 | B1 |
7014641 | Kobayashi et al. | Mar 2006 | B2 |
7025782 | Kobayashi et al. | Apr 2006 | B2 |
7033366 | Brady | Apr 2006 | B2 |
7037312 | Kikuchi et al. | May 2006 | B2 |
7074227 | Portney | Jul 2006 | B2 |
7097649 | Meyer | Aug 2006 | B2 |
7131976 | Kobayashi et al. | Nov 2006 | B2 |
7156854 | Brown et al. | Jan 2007 | B2 |
7348038 | Makker et al. | Mar 2008 | B2 |
7422604 | Vaquero et al. | Sep 2008 | B2 |
7429263 | Vaquero et al. | Sep 2008 | B2 |
7458976 | Peterson et al. | Dec 2008 | B2 |
7476230 | Ohno et al. | Jan 2009 | B2 |
7494505 | Kappelhof et al. | Feb 2009 | B2 |
7645300 | Tsai | Jan 2010 | B2 |
8273122 | Anderson | Sep 2012 | B2 |
8382769 | Inoue | Feb 2013 | B2 |
8460311 | Ishii | Jun 2013 | B2 |
8470032 | Inoue et al. | Jun 2013 | B2 |
8475528 | Ichinohe et al. | Jul 2013 | B2 |
8523877 | Ichinohe et al. | Sep 2013 | B2 |
8523941 | Ichinohe et al. | Sep 2013 | B2 |
8535375 | Ichinohe et al. | Sep 2013 | B2 |
8545512 | Ichinohe et al. | Oct 2013 | B2 |
8574239 | Ichinohe et al. | Nov 2013 | B2 |
8603103 | Kudo et al. | Dec 2013 | B2 |
8647382 | Kudo et al. | Feb 2014 | B2 |
8702795 | Shoji et al. | Apr 2014 | B2 |
8747465 | Someya et al. | Jun 2014 | B2 |
8968328 | Ichinohe et al. | Mar 2015 | B2 |
9114006 | Inoue | Aug 2015 | B2 |
9114007 | Ichinohe et al. | Aug 2015 | B2 |
9186246 | Inoue | Nov 2015 | B2 |
9220593 | Ichinohe | Dec 2015 | B2 |
9289288 | Someya | Mar 2016 | B2 |
20010007942 | Kikuchi et al. | Jul 2001 | A1 |
20020103490 | Brady | Aug 2002 | A1 |
20020151904 | Feingold et al. | Oct 2002 | A1 |
20020165610 | Waldock | Nov 2002 | A1 |
20020193805 | Ott et al. | Dec 2002 | A1 |
20030036765 | Van Noy | Feb 2003 | A1 |
20030040755 | Meyer | Feb 2003 | A1 |
20030050647 | Brady | Mar 2003 | A1 |
20030088253 | Seil | May 2003 | A1 |
20030139749 | Kikuchi et al. | Jul 2003 | A1 |
20030181921 | Jeannin | Sep 2003 | A1 |
20030195522 | McNicholas | Oct 2003 | A1 |
20030212406 | Kobayashi et al. | Nov 2003 | A1 |
20030212407 | Kikuchi | Nov 2003 | A1 |
20030212409 | Kobayashi et al. | Nov 2003 | A1 |
20040111094 | Meyer | Jun 2004 | A1 |
20040117012 | Vincent | Jun 2004 | A1 |
20040127911 | Figueroa | Jul 2004 | A1 |
20040186428 | Ray | Sep 2004 | A1 |
20040238392 | Peterson et al. | Dec 2004 | A1 |
20040243141 | Brown et al. | Dec 2004 | A1 |
20050033308 | Callahan et al. | Feb 2005 | A1 |
20050049605 | Vaquero et al. | Mar 2005 | A1 |
20050049606 | Vaquero et al. | Mar 2005 | A1 |
20050055011 | Enggaard | Mar 2005 | A1 |
20050125000 | Tourrette et al. | Jun 2005 | A1 |
20050143750 | Vaquero | Jun 2005 | A1 |
20050182419 | Tsai | Aug 2005 | A1 |
20050222578 | Vaquero | Oct 2005 | A1 |
20050261703 | Feingold et al. | Nov 2005 | A1 |
20060085013 | Dusek | Apr 2006 | A1 |
20060142781 | Pynson et al. | Jun 2006 | A1 |
20060167466 | Dusek | Jul 2006 | A1 |
20060200167 | Peterson et al. | Sep 2006 | A1 |
20060229633 | Shepherd | Oct 2006 | A1 |
20060235429 | Lee et al. | Oct 2006 | A1 |
20060293694 | Futamura | Dec 2006 | A1 |
20070005135 | Makker et al. | Jan 2007 | A1 |
20080033449 | Cole et al. | Feb 2008 | A1 |
20080058830 | Cole et al. | Mar 2008 | A1 |
20080086146 | Ishii et al. | Apr 2008 | A1 |
20080097459 | Kammerlander et al. | Apr 2008 | A1 |
20080221584 | Downer | Sep 2008 | A1 |
20090036898 | Ichinohe | Feb 2009 | A1 |
20090043313 | Ichinohe | Feb 2009 | A1 |
20090112223 | Downer et al. | Apr 2009 | A1 |
20090125034 | Pynson | May 2009 | A1 |
20090138022 | Tu et al. | May 2009 | A1 |
20090204122 | Ichinohe et al. | Aug 2009 | A1 |
20090216244 | Pynson | Aug 2009 | A1 |
20090248031 | Ichinohe | Oct 2009 | A1 |
20100161049 | Inoue | Jun 2010 | A1 |
20100185206 | Ichinohe et al. | Jul 2010 | A1 |
20100217273 | Someya et al. | Aug 2010 | A1 |
20100286704 | Ichinohe et al. | Nov 2010 | A1 |
20100331808 | Py et al. | Dec 2010 | A1 |
20110082463 | Inoue | Apr 2011 | A1 |
20110098717 | Inoue | Apr 2011 | A1 |
20110264101 | Inoue et al. | Oct 2011 | A1 |
20110270264 | Shoji et al. | Nov 2011 | A1 |
20110288557 | Kudo et al. | Nov 2011 | A1 |
20120022549 | Someya et al. | Jan 2012 | A1 |
20120071887 | Ichinohe et al. | Mar 2012 | A1 |
20130006259 | Sanger | Jan 2013 | A1 |
20130018460 | Anderson | Jan 2013 | A1 |
20130226193 | Kudo et al. | Aug 2013 | A1 |
20130245635 | Inoue | Sep 2013 | A1 |
20140107660 | Ichinohe et al. | Apr 2014 | A1 |
20140114323 | Kudo et al. | Apr 2014 | A1 |
20140180299 | Ichinohe et al. | Jun 2014 | A1 |
20140180300 | Ichinohe et al. | Jun 2014 | A1 |
20140194890 | Kudo et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
3610925 | Oct 1987 | DE |
4110278 | Oct 1992 | DE |
0363213 | Apr 1990 | EP |
0727966 | Sep 2003 | EP |
1832247 | Sep 2007 | EP |
1338254 | Dec 2008 | EP |
2749752 | Dec 1997 | FR |
63-197453 | Aug 1988 | JP |
4-212350 | Aug 1992 | JP |
5-103808 | Apr 1993 | JP |
5-103809 | Apr 1993 | JP |
8-024282 | Jan 1996 | JP |
8-505540 | Jun 1996 | JP |
9-506285 | Jun 1997 | JP |
11-113939 | Apr 1999 | JP |
11-506357 | Jun 1999 | JP |
2000-516487 | Dec 2000 | JP |
2000-516488 | Dec 2000 | JP |
2001-502563 | Feb 2001 | JP |
2001-104347 | Apr 2001 | JP |
2002-516709 | Jun 2002 | JP |
2002-355268 | Dec 2002 | JP |
2002-541912 | Dec 2002 | JP |
2003-144480 | May 2003 | JP |
3412106 | Jun 2003 | JP |
2003-210498 | Jul 2003 | JP |
2003-325569 | Nov 2003 | JP |
2003-325570 | Nov 2003 | JP |
2003-325572 | Nov 2003 | JP |
2004-024854 | Jan 2004 | JP |
2004-188194 | Jul 2004 | JP |
2004-351196 | Dec 2004 | JP |
2006-181269 | Jul 2006 | JP |
2006-297146 | Nov 2006 | JP |
2006-333924 | Dec 2006 | JP |
2006-333981 | Dec 2006 | JP |
2007-503872 | Mar 2007 | JP |
2007-152010 | Jun 2007 | JP |
2007-181604 | Jul 2007 | JP |
2007-526091 | Sep 2007 | JP |
2008-521535 | Jun 2008 | JP |
2008-212689 | Sep 2008 | JP |
WO9407436 | Apr 1994 | WO |
WO9513022 | May 1995 | WO |
WO9628122 | Sep 1996 | WO |
WO9715253 | May 1997 | WO |
WO9812969 | Apr 1998 | WO |
WO9958086 | Nov 1999 | WO |
WO9959668 | Nov 1999 | WO |
WO0045746 | Aug 2000 | WO |
WO0062712 | Oct 2000 | WO |
WO02071982 | Sep 2002 | WO |
WO02096322 | Dec 2002 | WO |
WO2005023154 | Mar 2005 | WO |
WO2005070341 | Aug 2005 | WO |
WO2005084588 | Sep 2005 | WO |
WO2006070628 | Jul 2006 | WO |
WO2006080191 | Aug 2006 | WO |
WO2006090531 | Aug 2006 | WO |
WO2007037223 | Apr 2007 | WO |
WO2007097221 | Apr 2007 | WO |
WO2007080869 | Jul 2007 | WO |
WO2008149794 | Dec 2008 | WO |
WO2008149795 | Dec 2008 | WO |
WO2009058929 | Jul 2009 | WO |
WO2009148091 | Dec 2009 | WO |
WO2011126144 | Oct 2011 | WO |
WO2011155636 | Dec 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20140081284 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11816676 | US | |
Child | 13966209 | US |