The present invention relates to an intraocular lens insertion device that inserts an intraocular lens into an aphakic eye after a cataract operation, or, to an intraocular lens insertion device that inserts aphakic intraocular lens during a refractive surgery.
In cataract operations, the method of removing an opacified lens by phacoemulsification (PEA) and implanting an intraocular lens after the opacified lens has been removed is widely performed. The types of implanting intraocular lens include a hard intraocular lens with an optical area made of a hard material, such as (PMMA), and a soft intraocular lens made of a soft material such as silicone elastomer or soft acrylic resin. When using a hard intraocular lens, the intraocular lens must be inserted through an incision in the cornea or sclera that is of about the same width as the diameter of the optical area but, when using a soft intraocular lens, folding of the optical area allows the intraocular lens to be inserted into the eye through an incision that is smaller than the diameter of the optical area. Further, performing the operation with a smaller incision is desirable because it reduces the risk of post-surgery corneal astigmatism and infection, so there has been a trend in recent years to favor the use of soft intraocular lens. In addition, to insert the lens into the eye, there are cases where a special injector having a long tube through which the lens passes as it is guided into the eye is used. Using such a special intraocular lens injector makes it possible to insert the lens through an incision smaller than 3 mm.
In addition, preset injectors having the lens set in the injector in advance to eliminate the risk of contamination by microbes during lens handling and of possible operational mistakes during lens handling have recently been announced. Some preset injectors are provided with a lens holding mechanism that holds the lens inside the injector in a state that does not stress the optical area and with a lens movement mechanism that moves the lens to a position where it can be pushed out by an discharge device so as to transfer the lens from the lens immovable state during shipment to the lens movable state during use (For example, refer to Japanese Patent Application Laid-Open (JP-A) No. 2003-325570 (“JP '570”), and JP-A No. 2003-325572 (“JP '572”)).
However, a characteristic of the invention disclosed in the above-mentioned JP '570 and JP '572 is that during use the lens must be moved from the holding position to a position from where it can be discharged, and there is concern that problems will occur during the moving operation. In addition, the construction is such that after moving the lens to a position where it can be discharged, the lens is folded while being discharged from a state where the optical area is nearly undeformed, so the movement distance required by the discharge mechanism is long, which creates the problems of trouble occurring during discharge and of the insertion device needing to be large.
In view of the above, an object of the present invention is to provide an intraocular lens insertion device having a simple construction that safely performs the lens discharge operation and solves the afore-mentioned problems.
To achieve the afore-mentioned objective, the present invention according to a first aspect of the invention is an intraocular lens insertion device that is characterized by a body having a lens placement section that holds the lens and a tubular body that guides the lens, and a lens discharge mechanism set in the lens advancement axis, wherein the afore-mentioned lens placement section is provided with a deformation mechanism to having an upper holding member that holds the lens from above along the advancement axis from back to front and a lower holding member that holds both sides of the lens from below to hold the lens on the advancement axis.
In addition, the present invention according to a second aspect of the invention is characterized by the afore-mentioned upper holding member that holds the lens by the edge.
In addition, the present invention according to a third aspect of the invention is characterized by the afore-mentioned upper holding member having a contact surface with the lens comprising an arc with a radius of curvature smaller than the lens optical area.
In addition, the present invention according to a fourth aspect of the invention is characterized by the afore-mentioned upper holding member having formed therein a insertion pass-through groove thorough which the afore-mentioned lens discharge mechanism passes parallel to the advancement axis.
In addition, the present invention according to a fifth aspect of the invention is characterized by the afore-mentioned lower holding member provided with a partition placed between the lens and the afore-mentioned lens discharge mechanism and a locking section having an insertion pass-through hole through which the afore-mentioned lens discharge mechanism passes.
The intraocular lens insertion device according to the first aspect of the present invention can push up the lower holding member while holding the lens in the advancement axis to fold into two the lens to eliminate the need to move the lens and allow the device to be made smaller.
In addition, the intraocular lens insertion device according to the second aspect is provided with an upper holding member that holds the edge of the lens such that the lens can be held without deforming the curved lens.
In addition, the intraocular lens insertion device according to the third aspect can prevent the contact surface of the upper holding member from contacting the optical area of the lens and can hold the lens without deforming the curved optical area, due to the curved shape of the contact surface viewed from the side.
In addition, the intraocular lens insertion device according to the fourth aspect is provided with an upper holding member formed with an insertion pass-through groove having a width nearly the same or larger than the outside shape of the lens discharge mechanism such that the lens discharge mechanism does not contact the upper holding member so that there is no interference with the lens discharge operation and the lens can be smoothly discharged even if the lens discharge mechanism is offset in the upward direction.
In addition, the intraocular lens insertion device according to the fifth aspect is provided with a lower holding member that can fold in two the lens using an upward pushing motion and that can unlock the plunger to perform the operation in a simpler manner. Further, the plunger is locked by the locking section to prevent operational mistakes.
The following describes preferred embodiments of the present invention with reference to the drawings.
The intraocular lens insertion device 1 shown in
The lens 2 used here may be made of a soft material, such as silicone resin, acrylic resin, or hydrogel.
The afore-mentioned body 5 is constructed of a tubular material and comprises the afore-mentioned tube section 4 whose end is cut off at an angle, a cylindrical section 7 formed with an outside shape that is wider than that of the afore-mentioned tube 4, and a tapered section 8 that joins the afore-mentioned tube section 4 and afore-mentioned cylindrical section 7. The afore-mentioned cylindrical section 7 comprises the lens placement section 3 that is placed on the end provided with the tube section 4. The proximal end of the afore-mentioned body 5 is provided with a flange 9 that protrudes in the radial direction of the body 5. Note that since the tube section 4 is inserted into the incision made in the eye ball, it must be made of a material that does not have a negative impact on the human body, such as polypropylene or other thermoplastic resin, for example.
The afore-mentioned body 5 is provided with a support member not shown in the figure that holds the plunger 6 in the position where the lens 2 can be discharged thereby and that supports the same in a manner capable of moving in the anteroposterior direction inside the body 5.
The afore-mentioned lens placement section 3 is provided with a deforming mechanism 11, and this deforming mechanism 11 is formed so as to be integrated with the body cylindrical section 7 and comprises an upper holding member 12 composed of a top plate 7a and side plates 7b of the body 5, and a lower holding material 14 that is mounted so as to cover an opening 13 that is formed in the bottom of the upper holding material 12 as shown in
The afore-mentioned top plate 7a is provided with a rib 15 that protrudes downward in the direction of the afore-mentioned advancement axis A, and the afore-mentioned side plates 7b are provided with a concave engagement area 16 that engages with a hereafter-mentioned convex engagement area. The afore-mentioned rib 15 has a curved section 17 on a contact surface 15a that is curved upward as seen from the side, and this curved section 17 is formed by an arc having a radius of curvature that is smaller than that of the optical area of the lens 2 as shown in
As shown in
Between the afore-mentioned uprising sections 18 and engagement sections 19 is formed a groove section 24 into which is inserted the afore-mentioned side plate 7b. The afore-mentioned engagement sections 19 are provided with a protruding engagement section 25 that protrudes facing the body's side plate 7a, and the protruding engagement section 25 is provided on a movable member 27 cut with slits 26 (
Further, an uprising locking member 30 is formed as an up rise, constructed by a reverse U-shaped plate member on the base end side of the lower holding member 14. The locking member 30 comprises a partition 31 formed as an up rise on the rear end of the afore-mentioned pressing section 20 such that it intersects perpendicularly with the advancement axis A, and an insertion pass-through hole 32 that is formed in the approximate center of the bottom of the partition 31.
Next, the action of the afore-mentioned construction is explained. First, the lens 2 is placed in the lens placement section 3. More specifically, as shown in
In addition, as shown in
Next, the deforming of the lens 2 set in the lens placement section 3 is explained. As shown in
In addition, the upward movement of the engagement between the protruding engagement sections 25 and the concave engagement areas 16 moves the locking member 30 upwards as shown in
Then, the lens 2, which has been folded into two, is discharged by the plunger 6, the lock of which has been released, and is inserted into the eye from the tube section 4. Since the fingers can hang onto the flange 9, the plunger 6 discharge operation can be done smoothly.
Next, a modified example of the afore-mentioned embodiment is explained making reference to
As shown in
As described above, this embodiment according to the first aspect is the intraocular lens insertion device 1 that is provided with the body 5 having the lens placement section 3 that holds the lens 2 and the tube section 4 that guides the lens 2 and the plunger 6 that is installed in the advancement axis A, wherein the afore-mentioned lens placement section 3 is provided with the deformation mechanism 11 comprising the upper holding member 12 that holds the lens 2 from above along the advancement axis A from back to front and the lower holding member 14 that holds the lens 2 from both sides to allow it to be pushed up from below, and by holding the lens 2 in the advancement axis A, it is possible to maintain the lens 2 in the advancement axis A while pushing up the lower holding member 14 to fold the lens 2 into two, so it is not necessary to move the lens 2, which allows the intraocular lens insertion device 1 to be made smaller.
In addition, according to the second aspect, the afore-mentioned upper holding member 12 holds the lens 2 by the edges of the lens to allow the lens 2 to be held without deforming the optical area 2a of the curved lens 2.
In addition, according to the third aspect, the afore-mentioned upper holding member 12 having the contact surface 15a with the lens 2 having the curved section 17 formed by an arc having a radius of curvature that is smaller than that of the optical area of the lens 2 whereby the contact area 15a is prevented from contacting the optical area of the lens 2, which allows the lens 2 to be held without deforming the curved optical area.
In addition, according to the fourth aspect, the afore-mentioned upper holding member 12 is formed with the insertion pass-through groove 35 through which passes the afore-mentioned plunger 6 in parallel to the advancement axis A, and the upper holding member 12 is formed with the insertion pass-through groove 35 having a width approximately the same or larger than that of the outside diameter of the plunger 6, which makes it so that the plunger 6 does not contact the upper holding member 12 even if the plunger 6 is off set in the upward direction. This allows the lens 2 to be smoothly discharged.
In addition, according to the fifth aspect, the afore-mentioned lower holding member 14 is provided with the locking member 30 comprising the partition 31 placed between the lens 2 and the afore-mentioned plunger 6 and the insertion pass-through hole 32 through which passes the afore-mentioned plunger 6 to make possible the performance of a simple operation that folds into two the lens 2 by the operation of pushing upward the lower holding member 14 while also unlocking the lock of the plunger 6. Further, the plunger 6 is locked by the locking member 30 to prevent mistaken operation.
The present invention is not limited by the foregoing embodiments and a variety of deformation embodiments within the intended scope of the present invention are possible.
Number | Date | Country | Kind |
---|---|---|---|
2005-018850 | Jan 2005 | JP | national |
This application is a continuation of U.S. application Ser. No. 11/814,508, filed Jul. 23, 2007, now U.S. Pat. No. 8,545,512, which is a U.S. national phase application under 35 U.S.C. §371 of International Patent Application No. PCT/JP2006/300217 filed Jan. 11, 2006, which claims priority to Japanese patent application No. 2005-018850, filed Jan. 26, 2005. The International Application was published in Japanese on Aug. 3, 2006 as International Publication No. WO 2006/080191 A1 under PCT Article 21(2). The content of both applications is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2761446 | Reed | Sep 1956 | A |
4205747 | Gilliam et al. | Jun 1980 | A |
4269307 | LaHaye | May 1981 | A |
4423809 | Mazzocco | Jan 1984 | A |
4573998 | Mazzocco | Mar 1986 | A |
4608049 | Kelman | Aug 1986 | A |
4634423 | Bailey | Jan 1987 | A |
4681102 | Bartell | Jul 1987 | A |
4697697 | Graham et al. | Oct 1987 | A |
4699140 | Holmes | Oct 1987 | A |
4702244 | Mazzocco | Oct 1987 | A |
4715373 | Mazzocco et al. | Dec 1987 | A |
4747404 | Jampel et al. | May 1988 | A |
4750498 | Graham | Jun 1988 | A |
4759359 | Willis et al. | Jul 1988 | A |
4763650 | Hauser | Aug 1988 | A |
4765329 | Cumming et al. | Aug 1988 | A |
4769034 | Poley | Sep 1988 | A |
4781719 | Kelman | Nov 1988 | A |
4787904 | Severin | Nov 1988 | A |
4810249 | Haber et al. | Mar 1989 | A |
4819631 | Poley | Apr 1989 | A |
4834094 | Patton | May 1989 | A |
4836201 | Patton | Jun 1989 | A |
4862885 | Cumming | Sep 1989 | A |
4880000 | Holmes et al. | Nov 1989 | A |
4919130 | Stoy et al. | Apr 1990 | A |
4934363 | Smith et al. | Jun 1990 | A |
4955889 | Van Gent | Sep 1990 | A |
4976716 | Cumming | Dec 1990 | A |
4988352 | Poley | Jan 1991 | A |
4994028 | Leonard et al. | Feb 1991 | A |
5066297 | Cumming | Nov 1991 | A |
5098439 | Hill et al. | Mar 1992 | A |
5123905 | Kelman | Jun 1992 | A |
5139501 | Klaas | Aug 1992 | A |
5171241 | Buboltz et al. | Dec 1992 | A |
5176686 | Poley | Jan 1993 | A |
5190552 | Kelman | Mar 1993 | A |
5190553 | Kanert et al. | Mar 1993 | A |
5222972 | Hill et al. | Jun 1993 | A |
5242450 | McDonald | Sep 1993 | A |
5259395 | Li | Nov 1993 | A |
5275604 | Rheinish et al. | Jan 1994 | A |
5281227 | Sussman | Jan 1994 | A |
5304182 | Rheinish et al. | Apr 1994 | A |
5354333 | Kammann et al. | Oct 1994 | A |
5395378 | McDonald | Mar 1995 | A |
5425734 | Blake | Jun 1995 | A |
5454818 | Hambleton et al. | Oct 1995 | A |
5468246 | Blake | Nov 1995 | A |
5474562 | Orchowski et al. | Dec 1995 | A |
5494484 | Feingold | Feb 1996 | A |
5496328 | Nakajima et al. | Mar 1996 | A |
5499987 | Feingold | Mar 1996 | A |
5562676 | Brady et al. | Oct 1996 | A |
5571113 | McDonald | Nov 1996 | A |
5578042 | Cumming | Nov 1996 | A |
5582613 | Brady | Dec 1996 | A |
5582614 | Feingold | Dec 1996 | A |
5584304 | Brady | Dec 1996 | A |
5616148 | Eagles et al. | Apr 1997 | A |
5620450 | Eagles et al. | Apr 1997 | A |
5643275 | Blake | Jul 1997 | A |
5643276 | Zaleski | Jul 1997 | A |
5645534 | Chanoch | Jul 1997 | A |
5653715 | Reich et al. | Aug 1997 | A |
5653753 | Brady et al. | Aug 1997 | A |
5702402 | Brady | Dec 1997 | A |
5702441 | Zhou | Dec 1997 | A |
5716364 | Makker et al. | Feb 1998 | A |
5728075 | Levander | Mar 1998 | A |
5728102 | Feingold et al. | Mar 1998 | A |
5735858 | Makker et al. | Apr 1998 | A |
5766181 | Chambers et al. | Jun 1998 | A |
5772666 | Feingold et al. | Jun 1998 | A |
5772667 | Blake | Jun 1998 | A |
5776138 | Vidal et al. | Jul 1998 | A |
5800442 | Wolf et al. | Sep 1998 | A |
5803925 | Yang et al. | Sep 1998 | A |
5807400 | Chambers et al. | Sep 1998 | A |
5810833 | Brady et al. | Sep 1998 | A |
5810834 | Heyman | Sep 1998 | A |
5860984 | Chambers et al. | Jan 1999 | A |
5860986 | Reich et al. | Jan 1999 | A |
5868751 | Feingold | Feb 1999 | A |
5868752 | Makker et al. | Feb 1999 | A |
5873879 | Figueroa et al. | Feb 1999 | A |
5876406 | Wolf et al. | Mar 1999 | A |
5876407 | Makker et al. | Mar 1999 | A |
5876440 | Feingold | Mar 1999 | A |
5891152 | Feingold | Apr 1999 | A |
5902307 | Feingold et al. | May 1999 | A |
5919197 | McDonald | Jul 1999 | A |
5921989 | Deacon et al. | Jul 1999 | A |
5928245 | Wolf et al. | Jul 1999 | A |
5941886 | Feingold | Aug 1999 | A |
5942277 | Makker et al. | Aug 1999 | A |
5944725 | Cicenas | Aug 1999 | A |
5947974 | Brady et al. | Sep 1999 | A |
5947975 | Kikuchi et al. | Sep 1999 | A |
5957748 | Ichiha | Sep 1999 | A |
5957896 | Bendek et al. | Sep 1999 | A |
6001107 | Feingold | Dec 1999 | A |
6010510 | Brown et al. | Jan 2000 | A |
6022358 | Wolf et al. | Feb 2000 | A |
6048348 | Chambers et al. | Apr 2000 | A |
6051000 | Heyman | Apr 2000 | A |
6056757 | Feingold et al. | May 2000 | A |
6056758 | Vidal et al. | May 2000 | A |
6059791 | Chambers | May 2000 | A |
6074397 | Chambers et al. | Jun 2000 | A |
6083230 | Makker et al. | Jul 2000 | A |
6093193 | Makker et al. | Jul 2000 | A |
6129733 | Brady et al. | Oct 2000 | A |
6142999 | Brady et al. | Nov 2000 | A |
6143000 | Feingold | Nov 2000 | A |
6162229 | Feingold et al. | Dec 2000 | A |
6174315 | Chambers et al. | Jan 2001 | B1 |
6214015 | Reich et al. | Apr 2001 | B1 |
6241737 | Feingold | Jun 2001 | B1 |
6248111 | Glick et al. | Jun 2001 | B1 |
6251114 | Farmer et al. | Jun 2001 | B1 |
6254607 | Makker et al. | Jul 2001 | B1 |
6267768 | Deacon | Jul 2001 | B1 |
6283975 | Glick et al. | Sep 2001 | B1 |
6283976 | Portney | Sep 2001 | B1 |
6312433 | Butts | Nov 2001 | B1 |
6334862 | Vidal et al. | Jan 2002 | B1 |
6336932 | Figueroa et al. | Jan 2002 | B1 |
6355046 | Kikuchi et al. | Mar 2002 | B2 |
6371960 | Heyman et al. | Apr 2002 | B2 |
6386357 | Egawa | May 2002 | B1 |
6387101 | Butts et al. | May 2002 | B1 |
6398788 | Makker et al. | Jun 2002 | B1 |
6406481 | Feingold et al. | Jun 2002 | B2 |
6428545 | Portney | Aug 2002 | B2 |
6447519 | Brady et al. | Sep 2002 | B1 |
6447520 | Ott et al. | Sep 2002 | B1 |
6468282 | Kikuchi et al. | Oct 2002 | B2 |
6471708 | Green | Oct 2002 | B2 |
6491697 | Clark et al. | Dec 2002 | B1 |
6497708 | Cumming | Dec 2002 | B1 |
6500181 | Portney | Dec 2002 | B1 |
6506195 | Chambers et al. | Jan 2003 | B2 |
6537283 | Van Noy | Mar 2003 | B2 |
6540754 | Brady | Apr 2003 | B2 |
6554839 | Brady | Apr 2003 | B2 |
6558395 | Hjertman et al. | May 2003 | B2 |
6607537 | Binder | Aug 2003 | B1 |
6629979 | Feingold | Oct 2003 | B1 |
6666871 | Kikuchi et al. | Dec 2003 | B2 |
6679891 | Makker et al. | Jan 2004 | B2 |
6685740 | Figueroa et al. | Feb 2004 | B2 |
6712848 | Wolf et al. | Mar 2004 | B1 |
6723104 | Ott | Apr 2004 | B2 |
6733507 | McNicholas et al. | May 2004 | B2 |
6793674 | Zapata | Sep 2004 | B2 |
6858033 | Kobayashi | Feb 2005 | B2 |
6921405 | Feingold et al. | Jul 2005 | B2 |
6923815 | Brady et al. | Aug 2005 | B2 |
6976989 | Vincent | Dec 2005 | B1 |
7014641 | Kobayashi et al. | Mar 2006 | B2 |
7025782 | Kobayashi et al. | Apr 2006 | B2 |
7033366 | Brady | Apr 2006 | B2 |
7037312 | Kikuchi et al. | May 2006 | B2 |
7074227 | Portney | Jul 2006 | B2 |
7097649 | Meyer | Aug 2006 | B2 |
7131976 | Kobayashi et al. | Nov 2006 | B2 |
7156854 | Brown et al. | Jan 2007 | B2 |
7348038 | Makker et al. | Mar 2008 | B2 |
7422604 | Vaquero et al. | Sep 2008 | B2 |
7429263 | Vaquero et al. | Sep 2008 | B2 |
7458976 | Peterson et al. | Dec 2008 | B2 |
7476230 | Ohno et al. | Jan 2009 | B2 |
7494505 | Kappelhof et al. | Feb 2009 | B2 |
7645300 | Tsai | Jan 2010 | B2 |
8273122 | Anderson | Sep 2012 | B2 |
8382769 | Inoue | Feb 2013 | B2 |
8460311 | Ishii | Jun 2013 | B2 |
8470032 | Inoue et al. | Jun 2013 | B2 |
8475528 | Ichinohe et al. | Jul 2013 | B2 |
8523877 | Ichinohe et al. | Sep 2013 | B2 |
8523941 | Ichinohe et al. | Sep 2013 | B2 |
8535375 | Ichinohe et al. | Sep 2013 | B2 |
8545512 | Ichinohe et al. | Oct 2013 | B2 |
8574239 | Ichinohe et al. | Nov 2013 | B2 |
8603103 | Kudo et al. | Dec 2013 | B2 |
8647382 | Kudo et al. | Feb 2014 | B2 |
8702795 | Shoji et al. | Apr 2014 | B2 |
8747465 | Someya et al. | Jun 2014 | B2 |
8968328 | Ichinohe et al. | Mar 2015 | B2 |
20010007942 | Kikuchi et al. | Jul 2001 | A1 |
20020103490 | Brady | Aug 2002 | A1 |
20020151904 | Feingold et al. | Oct 2002 | A1 |
20020165610 | Wadlaock | Nov 2002 | A1 |
20020193805 | Ott et al. | Dec 2002 | A1 |
20030036765 | Van Noy | Feb 2003 | A1 |
20030040755 | Meyer | Feb 2003 | A1 |
20030050647 | Brady | Mar 2003 | A1 |
20030088253 | Seil | May 2003 | A1 |
20030139749 | Kikuchi et al. | Jul 2003 | A1 |
20030181921 | Jeannin | Sep 2003 | A1 |
20030195522 | McNicholas | Oct 2003 | A1 |
20030212406 | Kobayashi et al. | Nov 2003 | A1 |
20030212407 | Kikuchi | Nov 2003 | A1 |
20030212409 | Kobayashi et al. | Nov 2003 | A1 |
20040111094 | Meyer | Jun 2004 | A1 |
20040117012 | Vincent | Jun 2004 | A1 |
20040127911 | Figueroa | Jul 2004 | A1 |
20040186428 | Ray | Sep 2004 | A1 |
20040238392 | Peterson et al. | Dec 2004 | A1 |
20040243141 | Brown et al. | Dec 2004 | A1 |
20050033308 | Callahan et al. | Feb 2005 | A1 |
20050049605 | Vaquero et al. | Mar 2005 | A1 |
20050049606 | Vaquero et al. | Mar 2005 | A1 |
20050055011 | Enggaard | Mar 2005 | A1 |
20050125000 | Tourrette et al. | Jun 2005 | A1 |
20050143750 | Vaquero | Jun 2005 | A1 |
20050182419 | Tsai | Aug 2005 | A1 |
20050222578 | Vaquero | Oct 2005 | A1 |
20050261703 | Feingold et al. | Nov 2005 | A1 |
20060085013 | Dusek | Apr 2006 | A1 |
20060142781 | Pynson et al. | Jun 2006 | A1 |
20060167466 | Dusek | Jul 2006 | A1 |
20060229633 | Shepherd | Oct 2006 | A1 |
20060235429 | Lee et al. | Oct 2006 | A1 |
20060293694 | Futamura | Dec 2006 | A1 |
20070005135 | Makker et al. | Jan 2007 | A1 |
20080033449 | Cole et al. | Feb 2008 | A1 |
20080058830 | Cole et al. | Mar 2008 | A1 |
20080086146 | Ishii et al. | Apr 2008 | A1 |
20080097459 | Kammerlander et al. | Apr 2008 | A1 |
20080221584 | Downer | Sep 2008 | A1 |
20090036898 | Ichinohe | Feb 2009 | A1 |
20090043313 | Ichinohe | Feb 2009 | A1 |
20090112223 | Downer et al. | Apr 2009 | A1 |
20090125034 | Pynson | May 2009 | A1 |
20090138022 | Tu et al. | May 2009 | A1 |
20090204122 | Ichinohe et al. | Aug 2009 | A1 |
20090216244 | Pynson | Aug 2009 | A1 |
20090248031 | Ichinohe | Oct 2009 | A1 |
20100161049 | Inoue | Jun 2010 | A1 |
20100185206 | Ichinohe et al. | Jul 2010 | A1 |
20100217273 | Someya et al. | Aug 2010 | A1 |
20100286704 | Ichinohe et al. | Nov 2010 | A1 |
20100331808 | Py et al. | Dec 2010 | A1 |
20110082463 | Inoue | Apr 2011 | A1 |
20110098717 | Inoue | Apr 2011 | A1 |
20110264101 | Inoue et al. | Oct 2011 | A1 |
20110270264 | Shoji et al. | Nov 2011 | A1 |
20110288557 | Kudo et al. | Nov 2011 | A1 |
20120022549 | Someya et al. | Jan 2012 | A1 |
20120071887 | Ichinohe et al. | Mar 2012 | A1 |
20130006259 | Sanger | Jan 2013 | A1 |
20130018460 | Anderson | Jan 2013 | A1 |
20130226193 | Kudo et al. | Aug 2013 | A1 |
20130245635 | Inoue | Sep 2013 | A1 |
20140081284 | Ichinohe et al. | Mar 2014 | A1 |
20140107660 | Ichinohe et al. | Apr 2014 | A1 |
20140114323 | Kudo et al. | Apr 2014 | A1 |
20140180300 | Ichinohe et al. | Jun 2014 | A1 |
20140194890 | Kudo et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
3610925 | Oct 1987 | DE |
4110278 | Oct 1992 | DE |
0363213 | Apr 1990 | EP |
0727966 | Sep 2003 | EP |
1832247 | Sep 2007 | EP |
1338254 | Dec 2008 | EP |
2749752 | Dec 1997 | FR |
63-197453 | Aug 1988 | JP |
4-212350 | Aug 1992 | JP |
5-103808 | Apr 1993 | JP |
5-103809 | Apr 1993 | JP |
8-024282 | Jan 1996 | JP |
8-505540 | Jun 1996 | JP |
9-506285 | Jun 1997 | JP |
11-113939 | Apr 1999 | JP |
11-506357 | Jun 1999 | JP |
2000-516487 | Dec 2000 | JP |
2000-516488 | Dec 2000 | JP |
2001-502563 | Feb 2001 | JP |
2001-104347 | Apr 2001 | JP |
2002-516709 | Jun 2002 | JP |
2002-355268 | Dec 2002 | JP |
2002-541912 | Dec 2002 | JP |
2003-144480 | May 2003 | JP |
3412106 | Jun 2003 | JP |
2003-210498 | Jul 2003 | JP |
2003-325569 | Nov 2003 | JP |
2003-325570 | Nov 2003 | JP |
2003-325572 | Nov 2003 | JP |
2004-024854 | Jan 2004 | JP |
2004-188194 | Jul 2004 | JP |
2004-351196 | Dec 2004 | JP |
2006-181269 | Jul 2006 | JP |
2006-297146 | Nov 2006 | JP |
2006-333924 | Dec 2006 | JP |
2006-333981 | Dec 2006 | JP |
2007-503872 | Mar 2007 | JP |
2007-152010 | Jun 2007 | JP |
2007-181604 | Jul 2007 | JP |
2007-526091 | Sep 2007 | JP |
2008-521535 | Jun 2008 | JP |
2008-212689 | Sep 2008 | JP |
WO9407436 | Apr 1994 | WO |
WO9513022 | May 1995 | WO |
WO9628122 | Sep 1996 | WO |
WO9715253 | May 1997 | WO |
WO9812969 | Apr 1998 | WO |
WO9958086 | Nov 1999 | WO |
WO9959668 | Nov 1999 | WO |
WO0045746 | Aug 2000 | WO |
WO0062712 | Oct 2000 | WO |
WO02071982 | Sep 2002 | WO |
WO02096322 | Dec 2002 | WO |
WO2005023154 | Mar 2005 | WO |
WO2005070341 | Aug 2005 | WO |
WO2005084588 | Sep 2005 | WO |
WO2006070628 | Jul 2006 | WO |
WO2006080191 | Aug 2006 | WO |
WO2006090531 | Aug 2006 | WO |
WO2007037223 | Apr 2007 | WO |
WO2007097221 | Apr 2007 | WO |
WO2007080869 | Jul 2007 | WO |
WO2008149794 | Dec 2008 | WO |
WO2008149795 | Dec 2008 | WO |
WO2009058929 | Jul 2009 | WO |
WO2009148091 | Dec 2009 | WO |
WO2011126144 | Oct 2011 | WO |
WO2011155636 | Dec 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20140180299 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11814508 | US | |
Child | 14033888 | US |