This application relates generally to the field of intraocular devices. More particularly, this application is directed to intraocular implants and lenses (IOLs) with an aperture to increase depth of focus (e.g. “masked” intraocular lenses), and methods of making the same.
The human eye functions to provide vision by transmitting and focusing light through a clear outer portion called the cornea, and further refining the focus of the image onto a retina by way of a crystalline lens. The quality of the focused image depends on many factors including the size and shape of the eye, and the transparency of the cornea and the lens.
The optical power of the eye is determined by the optical power of the cornea and the crystalline lens. In a normal, healthy eye, sharp images of distant objects are formed on the retina (emmetropia). In many eyes, images of distant objects are either formed in front of the retina because the eye is abnormally long or the cornea is abnormally steep (myopia), or formed in back of the retina because the eye is abnormally short or the cornea is abnormally flat (hyperopia). The cornea also may be asymmetric or toric, resulting in an uncompensated cylindrical refractive error referred to as corneal astigmatism.
Some people suffer from cataracts in which the crystalline lens undergoes a loss of transparency. In such cases, the crystalline lens can be removed and replaced with an intraocular lens (IOL). However, some intraocular lenses may still leave defects in a patient's non-distance eyesight.
Certain aspects of this disclosure are directed toward an intraocular lens including a mask embedded within, or secured to, a lens body including a lens material. The mask can include an aperture for improving depth of focus. Further, the mask can include a mask material having a modulus of elasticity that is within about 30 percent of a modulus of elasticity of the lens material.
Certain aspects of this disclosure are directed toward an intraocular lens including a mask embedded within, or secured to, a lens body including a lens material. The mask can include an aperture for improving depth of focus. Further, the mask can include a mask material having a coefficient of thermal expansion that is within about 30 percent of the coefficient of thermal expansion of the lens material. In some embodiments, the mask material has a coefficient of thermal expansion that is within about 20 percent, within about 10 percent, or within about 5 percent of the coefficient of thermal expansion of the lens material.
In any of the above mentioned aspects, the intraocular lens can be configured such that a pre-injection optical power of the intraocular lens can be within about 0.5 diopters, preferably within about 0.3 diopters, or within about 0.2 diopters, or within about 0.1 diopters, of a post-injection optical power of the intraocular lens.
In any of the above mentioned aspects, the modulus of elasticity of the mask material can be within about 20 percent of the modulus of elasticity of the lens material, or within about 10 percent of the modulus of elasticity of the lens material, or within about 5 percent greater than the modulus of elasticity of the lens material. In some embodiments, the modulus of elasticity of the mask material can be greater than or equal to the modulus of elasticity of the lens material. In some embodiments, the modulus of elasticity of the mask material can be less than the modulus of elasticity of the lens material.
In any of the above mentioned aspects, the mask material can include silicone or acrylic.
In any of the above mentioned aspects, the lens material and the mask material can include the same material.
In any of the above mentioned aspects, the mask can include a plurality of holes characterized in that at least one of a hole size, shape, orientation, and spacing of the plurality of holes is varied to reduce the tendency of the holes to produce visible diffraction patterns.
In any of the above mentioned aspects, the mask can include a thickness of less than or equal to about 200 microns, preferably less than or equal to about 100 microns. For example, the thickness can be at least about 4 microns and less than or equal to about 20 microns, or less than or equal to about 15 microns, or less than or equal to about 10 microns.
In any of the above mentioned aspects, the lens body can include an outer diameter between about 3 mm and about 6 mm. Further, the lens body can be capable of insertion through an incision having a chord length of less than or equal to about 3.0 mm or less than or equal to about 2.4 mm.
In any of the above mentioned aspects, the intraocular lens can be configured such that a room temperature optical power of the intraocular lens can be within about 0.15 diopters, such as within about 0.03 diopters of 0.1 diopters, for example, about 0.13 diopters, of a body temperature optical power of the intraocular lens.
In any of the above mentioned aspects, the intraocular lens can undergo a temperature differential of about 10° C. without substantially affecting optical power.
Certain aspects of this disclosure are directed toward a method of implanting an intraocular lens. The method can include creating an incision having a chord length of less than or equal to about 2.4 mm, and injecting an intraocular lens through the incision using an injector system.
The injected intraocular lens can include a mask embedded within, or secured to, a lens body including a lens material. The mask can include an aperture for improving depth of focus. In some embodiments, the modulus of elasticity of the mask material can be within about 30 percent of the modulus of elasticity of the lens material, or within about 20 percent of the modulus of elasticity of the lens material, or within about 10 percent of the modulus of elasticity of the lens material, or within about 5 percent of the modulus of elasticity of the lens material. In some embodiments, the modulus of elasticity of the mask material can be greater than or equal to the modulus of elasticity of the lens material. In some embodiments, the modulus of elasticity of the mask material can be less than the modulus of elasticity of the lens material. The intraocular lens can further include any of the aspects of the intraocular lenses described above.
Certain aspects of this disclosure are directed toward a method of implanting an intraocular lens. The method can include creating an incision, injecting an intraocular lens through the incision using an injector system, and introducing the intraocular lens to a temperature differential of at least about 10° C. without substantially affecting optical power.
The injected intraocular lens can include a mask embedded within, or secured to, a lens body including a lens material. The mask can include an aperture for improving depth of focus. Further, the mask can include a material having a coefficient of thermal expansion that is within about 30 percent of a coefficient of thermal expansion of the lens material, within about 20 percent of a coefficient of thermal expansion of the lens material, within about 10 percent of a coefficient of thermal expansion of the lens material, or within about 5 percent of a coefficient of thermal expansion of the lens material. The intraocular lens can further include any of the aspects of the intraocular lenses described above.
Certain aspects of this disclosure are directed toward a method of manufacturing an intraocular lens. The method can include forming a mask with an aperture for improving depth of focus from a mask material, inserting a lens material into a mold, and curing the lens material to form a lens body. The lens body can include the mask therein. The lens material can include a modulus of elasticity that is within about 30 percent of a modulus of elasticity of the mask material. The intraocular lens can further include any of the aspects of the intraocular lenses described above.
Certain aspects of this disclosure are directed toward a method of manufacturing an intraocular lens. The method can include forming a mask with an aperture for improving depth of focus from a mask material, inserting a lens material into a mold, and curing the lens material to form a lens body. The lens body can include the mask therein. Further, the lens material can include a coefficient of thermal expansion that is within about 30 percent of a coefficient of thermal expansion of the mask material. The intraocular lens can further include any of the aspects of the intraocular lenses described above.
In any of the above mentioned methods of manufacturing, the method can include forming the mask by spin-casting the mask material, stamping the mask material, printing the mask material, or extruding the mask material.
In any of the above mentioned methods of manufacturing, the method can include, after curing the lens material, chemically extracting residual lens material.
Any feature, structure, or step disclosed herein can be replaced with or combined with any other feature, structure, or step disclosed herein, or omitted. Further, for purposes of summarizing the disclosure, certain aspects, advantages and features of the inventions have been described herein. It is to be understood that not necessarily any or all such advantages are achieved in accordance with any particular embodiment of the inventions disclosed herein. No aspects of this disclosure are essential or indispensable.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the embodiments. Furthermore, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure.
As discussed herein, people who undergo intraocular lens (IOL) implantation surgery may still suffer from defects in their non-distance eyesight (e.g., presbyopia). One technique for treating such defects is by including a mask within the IOL that increases the patient's depth of focus. The intraocular implants of the embodiments described herein include a mask adapted to provide a small aperture for light to pass through to the retina to increase depth of focus. The light rays that pass through the mask within the IOL converge at substantially a single focal point on the retina, while the light rays that would not converge at the single point on the retina are blocked by the mask.
Several alternatives to fixed-focus IOLs have been developed for improving non-distance eyesight, including multifocal IOLs and accommodating IOLs. These devices attempt to provide the ability to see clearly at both near and far distances. However, accommodating IOLs can be complex and some multifocal IOLs do not perform well at intermediate distances and cause glare, halos, and night vision difficulties associated with the presence of unfocused light. This limitation can force designers of multifocal optics to choose how much of the light is directed to each focal point, and to deal with the effects of the unfocused light that is always present in any image. In order to maximize acuity at the important distances of infinity (e.g., >6M) and 40 cm (e.g., a normal reading distance), it is typical to provide little or no light focused at an intermediate distance, and as a result, visual acuity at these distances is poor. With a mask that includes an aperture to increase depth-of-focus, however, the intermediate vision of a patient can be improved significantly. For example, the defocus blur associated with the aperture can be less at intermediate distances than at near.
One method of implanting the IOL 1000 can include inserting the IOL through a small incision in the eye. The IOL 1000 can be inserted into the eye using an injector system. The injector system can include a cartridge tip for housing the IOL 1000. The size of the hole in the cartridge tip through which the IOL 1000 is injected is typically smaller than the size of the IOL. Thus, the IOL 1000 is deformed (e.g., stretched) when passing through the tip during the injection process. The IOL 1000 can be made of a resilient material such that it can revert back to its pre-injection shape after passing through the cartridge tip. When using this method, the size of the incision is generally dependent on the size of the cartridge tip. Typically, smaller surgical incisions are associated with better surgical outcomes.
However, the size of the cartridge tip and incision can be limited by the material properties of the lens body. This problem can be further complicated by the embedded mask 1008 within the IOL 1000. For example, as the IOL 1000 is pushed through the cartridge tip, the extrusion forces can not only stretch or otherwise deform the IOL but also the embedded mask 1008. In addition, the location of the embedded mask 1008 within the IOL 1000 can be displaced (e.g., the embedded mask can become transversely de-centered and/or longitudinally biased to either side of the desired longitudinal depth of the embedded mask within the IOL).
After releasing the IOL 1000 from the cartridge tip, it is desirable that the IOL 1000 and the embedded mask 1008 achieve a target post-injection optical performance specification (e.g., optical power, presbyopia correction, etc.). For example, it may be desirable for the post-injection optical performance to substantially match the pre-injection optical performance. Thus, in some embodiments, the IOL 1000 and the embedded mask 1008 have material properties (e.g., elasticity) that allow them to revert back to their pre-injection shapes, and, in the case of the embedded mask, its pre-injection location within the IOL.
Similar issues are pertinent to the method of manufacturing the IOL 1000 with the embedded mask 1008. IOL manufacturing processes can involve steps where the IOL swells, undergoes temperature differentials, etc. The mask can be deformed if it does not have sufficient elasticity or a compatible coefficient of thermal expansion when compared to the IOL material.
Some methods of manufacturing the IOL 1000 can include chemically extracting impurities from the IOL. For example, the chemical extraction process can be used to remove residual lens material monomer. The chemical extraction process can include immersing the IOL in a chemical (e.g., hexane, benzene, or alcohol) over a pre-determined period of time and a particular temperature profile. In some instances, during the chemical extraction process, the lens body can undergo a volumetric increase of at least about 10%. If the material properties of the mask material differ too much from the material properties of the lens material, then the mask 1008 can undergo deformation and/or displacement, thus degrading the optical performance of the IOL. This can occur if, for example, the modulus of elasticity of the mask material is much different than the modulus of elasticity of the lens material.
It can be particularly difficult to maintain the desired optical performance through deformations and temperature differentials when the mask 1008 and the lens body exhibit incompatible material properties (e.g. modulus of elasticity or coefficient of thermal expansion). If one or both of the mask material and lens body material do not exhibit appropriate material properties, the mask 1008 and/or lens body can be permanently deformed or, in the case of the embedded mask, biased to an undesired location within the IOL, during deformations (such as those that may occur during chemical extractions), and/or temperature shifts. This can affect optical performance (e.g., optical power or presbyopia correction). For example, if the lens body exhibits greater elasticity than the mask material, then, after injection, the mask 1008 can be deformed and degrade the optical performance of the IOL 1000. As another example, if the coefficients of expansion of the lens material and the mask material are too different, when the IOL transitions from room temperature (e.g., about 20° C.) to body temperature (e.g., about 35-37° C.), the resulting stress and strain can cause the mask to be deformed and degrade the optical performance of the IOL.
Provided below are examples of IOLs with embedded masks that are designed to overcome the issues described above. In some implementations, the IOLs (e.g., 1000) with embedded masks (e.g., 1008) that are described herein include substantially the same optical characteristics pre-injection and post-injection.
Masks
The mask 2034b can have dimensions adapted to function with the implant body to improve a patient's vision. For example, the thickness of the mask 2034b can vary depending on the location of the mask 2034b relative to the implant body. For example, if the mask 2034b is embedded within the implant body, the mask 2034b can have a thickness greater than zero and less than the thickness of the implant body. Alternatively, if the mask is coupled to a surface of the implant body, the mask 2034b may have a thickness no greater than necessary to have the desired opacity so that the mask does not add additional thickness to the intraocular lens.
In some implementations, the mask 2034b can have a substantially constant thickness. However, in other implementations, the thickness of the mask may vary between the inner periphery (near the aperture 2038b) and the outer periphery.
In general, the thickness of the mask 2034b can be less than or equal to about 200 microns, or less than or equal to about 100 microns, but preferably between about 1 micron and about 20 microns. For example, the thickness of the mask 2034b can be within the range from about 1 micron to about 40 microns, in the range from about 5 microns to about 20 microns, or otherwise. In some embodiments, the mask 2034b can include a thickness of at least about 5 microns and/or less than or equal to about 20 microns. In some embodiments, the mask 2034b can include a thickness of at least about 5 microns and/or less than or equal to about 15 microns. In certain embodiments, the thickness can be within two microns of about 15 microns, about 10 microns, about 8 microns, about 5 microns, or otherwise. In other embodiments, however, the mask may be a bulk mask and its width may extend across much of the thickness of the lens (e.g., the width of the mask may be at least about 80 percent of the thickness of the implant body or at least about 90 percent of the thickness of the implant body).
The mask 2034b can be symmetrical, e.g., symmetrical about a mask axis 2039b. In some embodiments, the outer periphery of the mask 2034b can be circular. The mask 2034b in general can have an outer diameter of at least about 3 mm and/or less than about 6 mm. In some embodiments, the mask 2034b can be circular and can include a diameter of at least about 3 mm and/or less than or equal to about 4 mm. In some embodiments, the mask 2034b can be circular and can include a diameter within a range of 0.2 mm of about 3.2 mm.
In some embodiments, the aperture 2038b can be substantially circular and can be substantially centered in the mask 2034b. The size of the aperture 2038b can be any size that is effective to increase the depth of focus of an eye of a patient with presbyopia. In particular, the size of the aperture 2038b can be dependent on the location of the mask within the eye (e.g., distance from the retina). In some embodiments, the aperture 2038b can have a diameter of at least about 0.85 mm and/or less than or equal to about 2.2 mm. In certain embodiments, the diameter of the aperture 2038b is less than or equal to about 2 mm. In some embodiments, the diameter of the aperture 2038b is at least about 1.1 mm and/or less than or equal to about 1.6 mm. In some embodiments, the diameter of the aperture 2038b is at least about 1.3 mm and/or less than or equal to about 1.4 mm.
The aperture 2038b can transmit substantially all incident light along the mask axis 2039b. The annular region 2036b can substantially prevent transmission of incident light thereon. The aperture 2038b can be a through-hole in the annular region 2036b or a substantially light transmissive (e.g., transparent) portion thereof. The aperture 2038b of the mask 2034b can be generally defined within the outer periphery of the mask 2034b.
The annular region 2036b can at least partially prevent transmission of visible light through the mask 2034b. For example, in some embodiments, the annular region 2036b can prevent transmission of substantially all or at least a portion of the spectrum of the incident visible light. In some embodiments, the annular region 2036b can prevent transmission of substantially all visible light, e.g., radiant energy in the electromagnetic spectrum that is visible to the human eye. The annular region 2036b can substantially prevent transmission of radiant energy outside the range visible to humans in some embodiments.
Preventing transmission of light through the annular region 2036b can decrease the amount of light that reaches the retina and the fovea that would not converge at the retina and fovea to form a sharp image. As discussed above, the size of the aperture 2038b is such that the light transmitted therethrough generally converges at the retina or fovea. Accordingly, a much sharper image can be presented to the retina than would otherwise be the case without the mask 2034b.
In some embodiments, the annular region 2036b can prevent transmission of at least about 90 percent of incident light. In some embodiments, the annular region 2036b can prevent transmission of at least about 92 percent, at least about 95 percent, or at least about 98 percent of all incident light. The annular region 2036b of the mask 2034b can be substantially opaque to prevent the transmission of light.
In some embodiments, the annular region 2036b can transmit no more than about 5% of incident visible light. In some embodiments, the annular region 2036b can transmit no more than about 3 percent of incident visible light. In some embodiments, the annular region 2036b can transmit no more than about 2 percent of incident visible light. In some embodiments, at least a portion of the annular region 2036b can be opaque to more than 99 percent of the light incident thereon.
As discussed above, the annular region 2036b can prevent at least partial transmission of light without absorbing the incident light. For example, the mask 2034b can be reflective or can interact with the light in a more complex manner, as discussed in U.S. Pat. No. 6,554,424, issued Apr. 29, 2003, which is hereby incorporated by reference in its entirety.
The annular region 2036b can be at least partially opaque or can be completely opaque. The degree of opacity of the annular region 2036b can prevent at least some or substantially all light from being transmitted through the mask 2034b. Opacity of the annular region 2036b can be achieved in any of several different ways. For example, the material used to make mask 2034b can be naturally opaque. As another example, the material used to make the mask 2034b can be substantially clear, but treated with a dye or other pigmentation agent to render region 2036b substantially or completely opaque. In certain embodiments, the mask can include carbon black. In yet another example, the surface of the mask 2034b can be treated physically or chemically (such as by etching) to alter the refractive and transmissive properties of the mask 2034b and make it less transmissive to light.
In some embodiments, a photochromic material can be used as the mask or in addition to mask. Under bright light conditions, the photochromic material can darken thereby creating a mask and enhancing near vision. Under dim light conditions, the photochromic material can lighten, which allows more light to pass through to the retina. In certain embodiments, under dim light conditions, the photochromic material lightens to expose an optic of the intraocular implant. Further photochromic material details are disclosed in U.S. Patent Publication No. 2013/0268071, filed Nov. 30, 2012, which is hereby incorporated by reference in its entirety.
The mask can transition between different degrees of opacity. For example, at least a portion of the mask can transition between at least a first degree of opacity and a second degree of opacity. Further details are disclosed in U.S. application Ser. No. 13/830,889, filed Mar. 14, 2013, which is hereby incorporated by reference in its entirety.
In some embodiments, the opacity of the mask can also vary in different regions of the mask. For example, the opacity of the outer edge and/or the inner edge of the mask can be less than the central region of the mask. The opacity in different regions can transition abruptly or have a gradient transition. Additional examples of opacity transitions can be found in U.S. Pat. Nos. 5,662,706, 5,905,561 and 5,965,330, all of which are hereby incorporated by reference in their entirety.
The mask 2100 can include a plurality of holes 2120. When the mask 2100 is embedded in the lens body, the lens body can extend at least partially through the holes, thereby creating a bond (e.g. material “bridge”) between the lens body on either side of the mask. Further disclosure regarding the material “bridge” can be found in U.S. Publication No. 2011/0040376, filed Aug. 13, 2010, which is incorporated by reference herein in its entirety.
The holes 2120 of the mask 2100 shown in
The holes in the mask serve at least two purposes: the holes provide some light transmission and, as just discussed with respect to
It can be desirable to decrease or minimize the total amount of light that passes through the mask in order to increase or maximize near image contrast. Delamination can be prevented with a relatively small total area of the mask having holes for “bridges”. For example, an area of about 3% of the mask can include holes which can balance increasing or maximizing mechanical strength and reducing or minimizing optical effects of the holes. In certain embodiments, the anterior surface of the mask has a mask surface area, and the light transmission structures (e.g., holes) in the mask have a total area on the anterior surface of the mask of about 1% to about 5% of the mask surface area. To limit the impact of diffraction of light passing through the holes of the mask, the holes can be made as small as possible. The Airy disc from each hole is larger the smaller the hole size, so the composite diffraction pattern produced by the pattern of holes becomes larger as well. The composite diffraction pattern spreads light over a larger portion of the retina, decreasing the local brightness of diffracted light and making diffraction artifacts less visible. Diffraction patterns produced by a pattern of holes also tends to have a chromatic component such that the diffraction halo tends to graduate in color radially. Varying the size of the holes produces this effect in multiple scales, which scrambles the color of the halo. This reduces color contrast in the halo, making it less noticeable.
The outer diameter of the outer periphery of the mask can be varied. In certain embodiments, the outer diameter is selected to selectively allow an amount of light to pass to the retina of the eye. The pupil of the eye changes size in different lighting condition. In low light situations, the pupil of the eye enlarges to let more light into the eye. The outer diameter can be selected so that light does not pass outside the outer periphery of the mask in relatively high light conditions, and so that at least some light can pass outside the outer periphery of the mask in relatively low light conditions. The pupil size of patients often can vary; therefore, the outer diameter of the mask can be selected for a specific patient pupil size. For example, for patients with relatively small pupils, dim light may present more of a vision issue than for patients with larger pupils. For smaller-pupil patients, a mask with more light transmission and/or a smaller outer diameter will increase light reaching the retina and improve vision in dim light situations. Conversely, for larger pupil patients, less light transmission and/or a larger outer diameter mask may improve low-contrast near vision and block more unfocused light. The masked IOLs of the present application give the surgeon flexibility to prescribe the appropriate combination of masked IOL features for particular patients.
In certain embodiments, the center of the aperture of the mask is off-center to the center of the lens body. By having an aperture off-center to the optical center of the lens body, the intraocular lens can be rotated during the implantation procedure so that the optical center of the patient's eye can be aligned with the center of the aperture. The vision of the patient can be improved by aligning the optical center of the patient's eye with the aperture center.
In some embodiments, the mask 2100 can include an annular region near the outer periphery 2124 of the mask having no holes. In certain embodiments, there are no holes within 0.1 mm of the outer periphery 2124 of the mask 2100.
In some embodiments, the mask can include an annular region around the inner periphery of the mask having no holes. In certain embodiments, there are no holes within 0.1 mm of the aperture 2128.
In some embodiments, the holes 2120 each have the same diameter. In certain embodiments, the holes 2120 can include one or more different diameters. In some embodiments, the diameter of any single hole 2120 is at least about 0.01 mm and/or less than or equal to about 0.02 mm. In some embodiments, the diameter of the holes 2120 can vary within 0.001 mm of one or more of the following hole diameters: 0.010 mm, 0.013 mm, 0.016 mm, and/or 0.019 mm. In some embodiments, holes of different diameters are interspersed throughout at least a portion of the mask 2100. In some embodiments, the holes are interspersed at irregular locations throughout at least a portion of the mask 2100.
In certain embodiments, the mask includes holes greater than about 7 microns in diameter (e.g., greater than a cross-sectional area of about 35 μm2), and preferably greater than about 10 microns in diameter (e.g., greater than a cross-sectional area of about 75 μm2). In certain embodiments, the mask includes holes greater than about 7 microns in diameter (e.g., greater than a cross-sectional area of about 35 μm2) and less than about 20 microns in diameter (e.g., less than a cross-sectional area of about 320 μm2). In further embodiments, the mask includes holes less than about 50 microns in diameter (e.g., less than a cross-sectional area of about 2000 μm2. Holes with diameters less than 7 microns may not be large enough for lens material such as silicone or acrylic to enter and migrate to form a bridge. However, the viscosity of the lens material will determine whether the material will be able to migrate into the hole to form the bridge and a minimum cross-sectional area of the hole may be dependent on the material of the implant body. If the material of the implant body does not migrate into a hole, that hole may create a bubble that could interfere with the visual performance of the implant.
In a certain embodiment, the mask includes randomly or pseudo-randomly placed holes across the mask. The mask can include holes with one of four hole diameters within the parameters provided above. There can be an equal number of holes with each hole diameter. An algorithm can be used to randomly or pseudo-randomly assign the variously sized holes to locations across the mask annulus. The rules for the randomization program can include (1) that there be no “collisions” of the holes (e.g., the holes have no contact with each other), (2) that no holes interfere with the inner and outer peripheral edges of the mask, and (3) that the holes are placed in such a way as to create substantial uniform density across the mask annulus. For example, the rules for the randomization program may include one or more of these rules.
In some embodiments there are at least about 1000 holes and/or less than or equal to about 2000 holes. In some embodiments, there are at least about 1000 holes and/or less than or equal to about 1100 holes. In some embodiments, the number of holes is within ten holes of about 1040 holes. In some embodiments, there are an equal number of holes of each diameter. In some embodiments, the number of holes having each diameter is different.
In some embodiments, the holes are interspersed at irregular locations throughout at least a portion of the mask 2100. In some embodiments, holes of different diameters are evenly interspersed throughout at least a portion of the mask 2100. For example, the mask 2100 can include a plurality of non-overlapping hole regions. The sum of the surface area of the plurality of non-overlapping hole regions can equal the total surface area of the entire hole region of the mask. In some implementations, each region of the plurality of regions can include a number of holes, each of the holes having a different diameter. In some implementations, the number of holes in each region can equal the number of different hole sizes in the entire hole region. In some implementations, an amount of open area within each hole region can be substantially the same. In some implementations, each hole region can include the same number of holes.
Any of the masks discussed herein can be formed of any suitable material, including, but not limited to, at least one of an open cell foam material, an expanded solid material, and/or a substantially opaque material. In some embodiments, the material used to form the mask can have relatively high water content. In some embodiments, the materials that can be used to form the body 2104 include polymers (e.g. PMMA, PVDF, polypropylene, polycarbonate, PEEK, polyethylene, polystyrene, PVC, polysulfone), hydrogels, metals, metal alloys, or carbon (e.g., graphene, pure carbon), but preferably acrylic copolymers or silicone.
In some embodiments, the durometer (type A) of the mask material can be less than or equal to about 100, for example, between about 25 and about 50, such as about 40. In some embodiments, the percent elongation to break for the mask material can be between about 150 percent and about 600 percent, for example, within about 50 percent of each of about 200 percent, 250 percent, 300 percent, 350 percent, 400 percent, 450 percent, 500 percent, or about 550 percent. In some instances, the elongation can be between about 150 percent and about 200 percent, such as about 175 percent. In some instances, the elongation can be between about 500 percent and about 600 percent, such as about 550 percent. In some embodiments, the tensile strength of the mask material can be less than or equal to 15 MPa, for example, within about 2 MPa of each of about 10 MPa, 8 MPa, 6 MPa, or 4 MPa. In some embodiments, the modulus of elasticity of the mask material can be between about 0.5 MPa and about 2 MPa, for example, within about 0.25 MPa of about 0.75 MPa, 1.0 MPa, 1.25 MPa, 1.5 MPa, or 1.75 MPa.
As described above, methods of manufacturing the IOL and methods of implanting the IOL can degrade optical performance of the IOL if the material properties of the IOL and the mask are not compatibly selected to withstand, for example, deformations (such as those resulting from swelling that may occur during chemical extractions or treatments), and temperature shifts. As such, it can be desirable to select a mask material and a lens material having appropriate material properties to allow the device to revert to, or otherwise achieve, a desired optical performance even after suffering some type of deformation or temperature differential.
In some implementations, the modulus of elasticity of the mask material can be within about 50 percent of the modulus of elasticity of the lens material. In some implementations, the modulus of elasticity of the mask material can be within about 45 percent of the modulus of elasticity of the lens material, or within about 30 percent of the modulus of elasticity of the lens material, or within about 20 percent of the modulus of elasticity of the lens material, or within about 10 percent of the modulus of elasticity of the lens material, or within about 5 percent of the modulus of elasticity of the lens material. In some implementations, the modulus of elasticity of the mask material can be greater than or equal to the modulus of elasticity of the lens material; while, in other implementations, the modulus of elasticity of the mask material can be less than the modulus of elasticity of the lens material. In some implementations, the modulus of elasticity of the mask material can be substantially the same as the modulus of elasticity of the lens material.
Since the lens material is more voluminous than the mask material, the properties of the lens material will generally dominate. Thus, it can be particularly advantageous if the elasticity of the mask material is at least as great as that of the lens material in order to allow the embedded mask to react to deformation of the lens without becoming damaged or displaced.
In some implementations, the mask material can be the same as the lens material. In some implementations, the mask material can include a hydrophilic or hydrophobic material. In some implementations, the mask material can include an acrylic copolymer or silicone.
In some embodiments, the lens material can include a hydrophilic or hydrophobic material. In some implementations, the lens material can include an acrylic copolymer or silicone. The modulus of elasticity of the lens material can be between about 0.50 MPa and about 1.5 MPa, for example, between about 0.75 MPa and about 1.25 MPa, such as within about 0.1 MPa of each of about 1.0 MPa, 1.1 MPa, 1.2 MPa, or 1.3 MPa. The percentage of elongation to break can be between about 150 percent and about 200 percent, for example, between about 160 percent and about 190 percent or between about 170 percent and about 180 percent, such as about 175 percent.
In some implementations, the coefficient of thermal expansion of the mask material is substantially similar to that of the lens material. In this way, the mask material and the lens material respond to temperature differentials in similar ways to avoid the development of stress or strain between the mask and the IOL. In some implementations, the coefficient of thermal expansion of the mask material can be within about 30 percent of the coefficient of thermal expansion of the lens material, or within about 20 percent of the coefficient of thermal expansion of the lens material, or within about 10 percent of the coefficient of thermal expansion of the lens material, or within about 5 percent of the coefficient of thermal expansion of the lens material. In some implementations, the coefficient of thermal expansion of the mask material can be substantially the same as the coefficient of thermal expansion of the lens material.
In some implementations, the mask material can be the same as the lens material. In some implementations, the mask material can include a hydrophilic or hydrophobic material. In some implementations, the mask material can include an acrylic copolymer or silicone.
In some implementations, the lens material can include a hydrophilic or hydrophobic material. In some implementations, the mask material can include an acrylic copolymer or silicone.
Methods of Use
Any of the IOLs described herein can be implanted using an injection system. The method can include injecting the IOL through a small cartridge tip having an inside diameter of less than or equal to about 2.0 mm, for example, within about 0.2 mm of about 1.5 mm, preferably less than or equal to about 1.5 mm, such as between about 1.5 mm and about 1.25 mm or between about 1.25 mm and about 1.0 mm. The injection system can deliver the IOL through an incision having a chord length of less than or equal to about 2.4 mm. The IOL can be configured to transition between a pre-injection configuration (e.g., rolled up for implantation) and a post-injection configuration (expanded, in-situ shape). The pre-injection configuration can be substantially smaller than the post-injection configuration.
In some implementations, it can be desirable for the IOL to transition between the pre-injection configuration and the post-configuration without substantially changing optical performance. For example, the optical power of the IOL prior to injection can be within about 0.5 diopters, preferably within about 0.3 diopters, or within about 0.2 diopters, or within about 0.1 diopters, of the optical power of the IOL after injection.
As mentioned above, the IOL can expand when it is introduced into the body because of the difference between room and body temperature in the eye, e.g., in an anterior chamber of the eye. In some implementations, the temperature differential can be between about 5° C. and about 20° C., for example, between about 5° C. and about 10° C., between about 10° C. and 15° C., or between about 15° C. and about 20° C. The room temperature can be between about 18° C. and about 26° C., and the temperature of the anterior chamber of the eye can be between about 18° C. (e.g., transiently during irrigation/aspiration) and about 37° C.
In some implementations, it can be desirable for the IOL to undergo the temperature differential without substantially changing optical performance. For example, the optical power of the IOL at room temperature can be within about 0.15 diopters, such as within about 0.03 diopters of about 0.1 diopters, for example, about 0.13 diopters, of the optical power of the IOL at body temperature.
Methods of Manufacturing
Various techniques can be used for forming the mask. In some embodiments, the mask can be formed using a mask material alone or in combination with an opacification agent. The mask material can include any of the mask materials described herein, for example, silicone or an acrylic copolymer. In some implementations, the mask material can be combined with an opacification agent, such as carbon black, or any class 3 medical device material.
In some embodiments, the resulting mixture can be used to form a mask film having a thickness equal to the desired mask thickness. Techniques for forming the mask film can include allowing mask material to spread to a desired thickness by gravity or by spinning. Each mask can then be formed from the mask film using a stamp, sieve, die, laser, or other machine. In an alternative technique, the mask material can be formed into a tube (e.g., using an extrusion process), and masks having the desired thickness can be cut from the tube. Further mask materials and methods of making a mask are disclosed in U.S. Pub. No. 2011/0040376, filed Aug. 13, 2010, which is incorporated by reference herein in its entirety.
After forming the mask, the mask can be embedded within or applied to a lens body. For example, the method can include pre-dosing a first lens forming mold portion with a first amount of lens material and positioning the mask on a positioning mold portion. Thereafter, the first lens forming mold portion and the positioning mold portion can be joined together, and the lens material can be at least partially cured. After partially curing the lens material, at least the first lens forming mold portion can be cooled to facilitate the separation of the mold portions without disrupting the position of the mask. Once the mold portions are separated, a second amount of lens material can be added to the first lens forming mold portion and/or a second lens forming mold portion, and the first lens forming mold portion and the second lens forming mold portion can be joined together. In this configuration, the first and the second amounts of lens material can be at least partially cured, for example, using a light cure. Finally, the final curing process can be carried out using thermal curing. In some implementations, depending on the mask and lens materials, the IOL can undergo chemical extraction to remove any impurities. Further details regarding this manufacturing method or alternatives can be found in U.S. patent application Ser. No. 13/830,889 and U.S. Publication No. 2014/0131905, both filed Mar. 14, 2013, which are incorporated by reference herein in their entireties.
Alternatively, the intraocular lens can be manufactured using stereolithography to image the mask within the lens. The method can include providing a first amount of photoreactive lens material. Next, the method can also include forming a first layer of the intraocular lens by curing the first amount of photoreactive lens material to form the desired shape. Thereafter, the method can include providing a second amount of photoreactive lens material over the cured first layer and forming a second layer of the intraocular lens by curing the second amount of photoreactive lens material to form the desired shape. This process can be repeated to additively form the lens. After one or more initial layers of the lens have been formed, a mask can be imaged within the initial layers by activating dyes such as those described in U.S. Publication No. 2013/0268071, filed Nov. 30, 2012, and U.S. Pat. No. 8,604,098, filed Jul. 6, 2011, which are incorporated by reference herein in their entireties, by laser ablation, or by other methods to create opacity, as described in U.S. Publication 2013/0289543, filed Mar. 12, 2013, which is also by incorporated by reference herein in its entirety. Once the mask is in place, the process of providing and curing layers of photoreactive lens material can be continued such that the mask is embedded within the completed lens. The lens can be formed such that the mask can be imaged within the lens in a manner that provides the mask with the same physical properties as the lens, thus allowing the mask to flex with the lens without damage.
As explained above, the manufacturing method can include an extraction process to remove impurities. For example, the method can include a chemical extraction process. During the chemical extraction process, the IOL can undergo a volumetric increase of at least about 5%, sometimes at least about 10%.
In some implementations, it can be desirable to subject the IOL to the chemical extraction process without substantially changing optical performance. For example, the optical power of the IOL before extraction can be within about 0.5 diopters, preferably within about 0.3 diopters, or within about 0.2 diopters, or within about 0.1 diopters, of the optical power of the IOL after extraction.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.
The terms “approximately,” “about,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.
Although certain embodiments and examples have been described herein, it will be understood by those skilled in the art that many aspects of the methods and IOLs shown and described in the present disclosure may be differently combined and/or modified to form still further embodiments or acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. A wide variety of designs and approaches are possible. No feature, structure, or step disclosed herein is essential or indispensable.
Some embodiments have been described in connection with the accompanying drawings. However, it should be understood that the figures are not drawn to scale. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Moreover, while illustrative embodiments have been described herein, the scope of any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those in the art based on the present disclosure. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive. Further, the actions of the disclosed processes and methods may be modified in any manner, including by reordering actions and/or inserting additional actions and/or deleting actions. It is intended, therefore, that the specification and examples be considered as illustrative only, with a true scope and spirit being indicated by the claims and their full scope of equivalents.
This application is a continuation of U.S. application Ser. No. 14/454,585, now U.S. Pat. No. 10,004,593, filed Aug. 7, 2014, which is a continuation-in-part of U.S. application Ser. No. 12/856,492, now U.S. Pat. No. 9,492,272, filed Aug. 13, 2010, titled “MASKED INTRAOCULAR IMPLANTS AND LENSES,” which claims priority benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/233,804, filed Aug. 13, 2009, titled “MASKED INTRAOCULAR IMPLANTS AND LENSES,” and U.S. Provisional Application No. 61/233,794, filed Aug. 13, 2009, titled “INTRAOCULAR IMPLANT WITH PRESBYOPIC CORRECTION,” each of which is hereby incorporated by reference in its entirety. This application also claims priority benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/863,833, filed Aug. 8, 2013, titled “INTRAOCULAR LENS WITH ELASTIC MASK,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2350421 | Schoder et al. | Jun 1944 | A |
2470927 | Hale, Jr. | May 1949 | A |
3034403 | Neefe | May 1962 | A |
3270099 | Camp | Aug 1966 | A |
3458870 | Stone | Aug 1969 | A |
3578850 | Grant | May 1971 | A |
3776230 | Neefe | Dec 1973 | A |
3794414 | Wesley | Feb 1974 | A |
3877502 | Hunckler | Apr 1975 | A |
3996627 | Deeg et al. | Dec 1976 | A |
4010496 | Neefe | Mar 1977 | A |
4104338 | Guerrieri | Aug 1978 | A |
4116439 | Chavarria et al. | Sep 1978 | A |
4210391 | Cohen | Jul 1980 | A |
4298996 | Barnet | Nov 1981 | A |
4340283 | Cohen | Jul 1982 | A |
4402579 | Poler | Sep 1983 | A |
4423728 | Lieberman | Jan 1984 | A |
4435050 | Poler | Mar 1984 | A |
4450593 | Poler | May 1984 | A |
4505855 | Bruns et al. | Mar 1985 | A |
4563565 | Kampfer et al. | Jan 1986 | A |
4575373 | Johnson | Mar 1986 | A |
4596578 | Kelman | Jun 1986 | A |
4607617 | Choyce | Aug 1986 | A |
4624669 | Grendahl | Nov 1986 | A |
4639105 | Neefe | Jan 1987 | A |
4646720 | Peyman et al. | Mar 1987 | A |
4655774 | Choyce | Apr 1987 | A |
4665913 | Esperance, Jr. | May 1987 | A |
4669466 | L'Esperance | Jun 1987 | A |
4669834 | Richter | Jun 1987 | A |
4676790 | Kern | Jun 1987 | A |
4676791 | LeMaster et al. | Jun 1987 | A |
4678422 | York | Jul 1987 | A |
4701038 | Neefe | Oct 1987 | A |
4715858 | Lindstrom | Dec 1987 | A |
4767647 | Bree | Aug 1988 | A |
4795462 | Grendahl | Jan 1989 | A |
4798608 | Grendahl | Jan 1989 | A |
4799784 | Safir | Jan 1989 | A |
4799931 | Lindstrom | Jan 1989 | A |
4807623 | Lieberman | Feb 1989 | A |
4813955 | Achatz et al. | Mar 1989 | A |
4815690 | Shepherd | Mar 1989 | A |
4817789 | Paul | Apr 1989 | A |
4830855 | Stewart | May 1989 | A |
4842599 | Bronstein | Jun 1989 | A |
4842782 | Portney | Jun 1989 | A |
4851003 | Lindstrom | Jul 1989 | A |
4863466 | Schlegel | Sep 1989 | A |
4881860 | Kanazawa | Nov 1989 | A |
4903695 | Warner et al. | Feb 1990 | A |
4907586 | Bille et al. | Mar 1990 | A |
4928815 | Paul | May 1990 | A |
4955904 | Atebara et al. | Sep 1990 | A |
4976732 | Vorosmarthy | Dec 1990 | A |
4994080 | Shepard | Feb 1991 | A |
5013319 | Davis | May 1991 | A |
5030230 | White | Jul 1991 | A |
5034166 | Rawlings et al. | Jul 1991 | A |
5041133 | Sayano et al. | Aug 1991 | A |
5055602 | Melpolder | Oct 1991 | A |
5087015 | Galley | Feb 1992 | A |
5090955 | Simon | Feb 1992 | A |
5094521 | Jolson et al. | Mar 1992 | A |
5098443 | Parel et al. | Mar 1992 | A |
5108427 | Majercik et al. | Apr 1992 | A |
5112328 | Taboada et al. | May 1992 | A |
5120120 | Cohen | Jun 1992 | A |
5120121 | Rawlings et al. | Jun 1992 | A |
5137441 | Fogarty | Aug 1992 | A |
5147395 | Willis | Sep 1992 | A |
5171318 | Gibson et al. | Dec 1992 | A |
5185107 | Blake | Feb 1993 | A |
5188494 | Hatin | Feb 1993 | A |
5192316 | Ting | Mar 1993 | A |
5196026 | Barrett et al. | Mar 1993 | A |
5213749 | Huss et al. | May 1993 | A |
5260727 | Oksman et al. | Nov 1993 | A |
5266241 | Parekh | Nov 1993 | A |
5269795 | Arnott | Dec 1993 | A |
5269812 | White | Dec 1993 | A |
5274404 | Michael | Dec 1993 | A |
5288436 | Liu et al. | Feb 1994 | A |
5290892 | Namdaran et al. | Mar 1994 | A |
5292514 | Capecchi et al. | Mar 1994 | A |
5300116 | Chirila et al. | Apr 1994 | A |
5312330 | Klopotek | May 1994 | A |
5314439 | Sugita | May 1994 | A |
5314961 | Anton et al. | May 1994 | A |
5332802 | Kelman et al. | Jul 1994 | A |
5336261 | Barrett et al. | Aug 1994 | A |
5354331 | Schachar et al. | Oct 1994 | A |
5358520 | Patel | Oct 1994 | A |
5372580 | Simon et al. | Dec 1994 | A |
5391201 | Barrett et al. | Feb 1995 | A |
5441511 | Hanna | Aug 1995 | A |
5474548 | Knopp et al. | Dec 1995 | A |
5507740 | O'Donnell, Jr. | Apr 1996 | A |
5547468 | Simon et al. | Apr 1996 | A |
D375245 | Irving | Nov 1996 | S |
5578080 | McDonald | Nov 1996 | A |
5603774 | LeBoeuf et al. | Feb 1997 | A |
5607437 | Simon et al. | Mar 1997 | A |
5624456 | Hellenkamp | Apr 1997 | A |
5627613 | Kaneko | May 1997 | A |
5628794 | Lindstrom | May 1997 | A |
5628795 | Langerman | May 1997 | A |
5647865 | Swinger | Jul 1997 | A |
5653752 | Silvestrini et al. | Aug 1997 | A |
5662706 | Legerton et al. | Sep 1997 | A |
5674284 | Chang et al. | Oct 1997 | A |
5693268 | Widman et al. | Dec 1997 | A |
5697923 | Poler | Dec 1997 | A |
5702440 | Portney | Dec 1997 | A |
5708049 | Katagiri et al. | Jan 1998 | A |
5713957 | Steele et al. | Feb 1998 | A |
5722971 | Peyman | Mar 1998 | A |
5725575 | O'Donnell, Jr. | Mar 1998 | A |
5746558 | Nygren et al. | May 1998 | A |
5752967 | Kritzinger et al. | May 1998 | A |
5757458 | Miller et al. | May 1998 | A |
5769889 | Kelman | Jun 1998 | A |
5774202 | Abraham et al. | Jun 1998 | A |
5786883 | Miller et al. | Jul 1998 | A |
5824086 | Silvestrini | Oct 1998 | A |
5837156 | Cumming | Nov 1998 | A |
5843105 | Mathis et al. | Dec 1998 | A |
5864128 | Plesko | Jan 1999 | A |
5870167 | Knopp et al. | Feb 1999 | A |
5895610 | Chang et al. | Apr 1999 | A |
5905561 | Lee et al. | May 1999 | A |
5910537 | Feingold et al. | Jun 1999 | A |
5913898 | Feingold et al. | Jun 1999 | A |
5919185 | Peyman | Jul 1999 | A |
5925294 | Shibuya | Jul 1999 | A |
5964748 | Peyman | Oct 1999 | A |
5964776 | Peyman | Oct 1999 | A |
5965330 | Evans et al. | Oct 1999 | A |
5980040 | Xu et al. | Nov 1999 | A |
6017121 | Chateau et al. | Jan 2000 | A |
6063073 | Peyman | May 2000 | A |
6090141 | Lindstrom | Jul 2000 | A |
6102946 | Nigam | Aug 2000 | A |
6106553 | Feingold et al. | Aug 2000 | A |
6110166 | Juhasz et al. | Aug 2000 | A |
6138307 | McDonald | Oct 2000 | A |
6152959 | Portney | Nov 2000 | A |
6164777 | Li et al. | Dec 2000 | A |
6171336 | Sawusch | Jan 2001 | B1 |
6178593 | Carlson | Jan 2001 | B1 |
6197019 | Peyman | Mar 2001 | B1 |
6201036 | Fedorov et al. | Mar 2001 | B1 |
6203538 | Peyman | Mar 2001 | B1 |
6210401 | Lai | Apr 2001 | B1 |
6217571 | Peyman | Apr 2001 | B1 |
6217596 | Farah | Apr 2001 | B1 |
6221067 | Peyman | Apr 2001 | B1 |
6228113 | Kaufman | May 2001 | B1 |
6228114 | Lee | May 2001 | B1 |
6228115 | Hoffmann et al. | May 2001 | B1 |
6264648 | Peyman | Jul 2001 | B1 |
6277146 | Peyman et al. | Aug 2001 | B1 |
6280470 | Peyman | Aug 2001 | B1 |
6280471 | Peyman et al. | Aug 2001 | B1 |
6302877 | Ruiz | Oct 2001 | B1 |
6304390 | Takanashi | Oct 2001 | B1 |
6308590 | Berto | Oct 2001 | B1 |
6335190 | Zhou et al. | Jan 2002 | B1 |
6361560 | Nigam | Mar 2002 | B1 |
6376153 | Uchikawa et al. | Apr 2002 | B2 |
6387379 | Goldberg et al. | May 2002 | B1 |
6391230 | Sarbadhikari | May 2002 | B1 |
6416179 | Lieberman et al. | Jul 2002 | B1 |
6423093 | Hicks et al. | Jul 2002 | B1 |
6432246 | Blake | Aug 2002 | B1 |
6436092 | Peyman | Aug 2002 | B1 |
6458141 | Peyman | Oct 2002 | B1 |
6461384 | Hoffmann et al. | Oct 2002 | B1 |
6469844 | Iwase et al. | Oct 2002 | B1 |
6480346 | Funakoshi | Nov 2002 | B2 |
6491637 | Foster et al. | Dec 2002 | B2 |
6497700 | LaHaye | Dec 2002 | B1 |
6515006 | Horn | Feb 2003 | B2 |
6551307 | Peyman | Apr 2003 | B2 |
6554424 | Miller et al. | Apr 2003 | B1 |
6554860 | Hoffmann et al. | Apr 2003 | B2 |
6555103 | Leukel et al. | Apr 2003 | B2 |
6575573 | Lai et al. | Jun 2003 | B2 |
6581993 | Nigam | Jun 2003 | B2 |
6588902 | Isogai | Jul 2003 | B2 |
6589280 | Koziol | Jul 2003 | B1 |
6607527 | Ruiz et al. | Aug 2003 | B1 |
6613088 | Babizhayev | Sep 2003 | B1 |
6638304 | Azar | Oct 2003 | B2 |
6649722 | Rosenzweig et al. | Nov 2003 | B2 |
6655804 | Streibig | Dec 2003 | B2 |
6692126 | Xie et al. | Feb 2004 | B1 |
6702807 | Peyman | Mar 2004 | B2 |
6726322 | Andino et al. | Apr 2004 | B2 |
6740116 | Morcher | May 2004 | B2 |
6755858 | White | Jun 2004 | B1 |
6786926 | Peyman | Sep 2004 | B2 |
6811256 | Becherer et al. | Nov 2004 | B1 |
6855163 | Peyman | Feb 2005 | B2 |
6874886 | Miller et al. | Apr 2005 | B2 |
6899424 | Miller et al. | May 2005 | B2 |
6949093 | Peyman | Sep 2005 | B1 |
6951556 | Epstein | Oct 2005 | B2 |
6966648 | Miller et al. | Nov 2005 | B2 |
6989008 | Peyman | Jan 2006 | B2 |
6997428 | Andino et al. | Feb 2006 | B1 |
7001374 | Peyman | Feb 2006 | B2 |
7008447 | Koziol | Mar 2006 | B2 |
7025455 | Roffman | Apr 2006 | B2 |
7061693 | Zalevsky | Jun 2006 | B2 |
7099057 | Parker et al. | Aug 2006 | B2 |
7276080 | Murakami et al. | Oct 2007 | B2 |
7287852 | Fiala | Oct 2007 | B2 |
7364674 | Hoover | Apr 2008 | B1 |
7399811 | Mentak et al. | Jul 2008 | B2 |
7404637 | Miller et al. | Jul 2008 | B2 |
7404638 | Miller et al. | Jul 2008 | B2 |
7446157 | Mentak et al. | Nov 2008 | B2 |
7455404 | Bandhauer et al. | Nov 2008 | B2 |
7455691 | Feingold et al. | Nov 2008 | B2 |
7462193 | Nagamoto | Dec 2008 | B2 |
7477452 | Tsuruma | Jan 2009 | B2 |
7491350 | Silvestrini | Jan 2009 | B2 |
7497866 | Perez | Mar 2009 | B2 |
7628810 | Christie et al. | Dec 2009 | B2 |
7641337 | Altmann | Jan 2010 | B2 |
7645299 | Koziol | Jan 2010 | B2 |
7745555 | Mentak et al. | Jun 2010 | B2 |
7842367 | Mentak | Nov 2010 | B2 |
7976577 | Silvestrini | Jul 2011 | B2 |
D645337 | Hsu et al. | Sep 2011 | S |
8043371 | Paul et al. | Oct 2011 | B2 |
8048972 | Mentak et al. | Nov 2011 | B2 |
8079706 | Silvestrini et al. | Dec 2011 | B2 |
D656526 | Christie et al. | Mar 2012 | S |
8157374 | Bandhauer et al. | Apr 2012 | B2 |
8241354 | Hong et al. | Aug 2012 | B2 |
8287592 | Silvestrini | Oct 2012 | B2 |
8343215 | Miller et al. | Jan 2013 | B2 |
D681086 | Christie et al. | Apr 2013 | S |
8420753 | Mentak et al. | Apr 2013 | B2 |
8460374 | Christie et al. | Jun 2013 | B2 |
8604098 | Boydston et al. | Dec 2013 | B2 |
8740978 | Weeber et al. | Jun 2014 | B2 |
8752958 | Miller et al. | Jun 2014 | B2 |
8633292 | Hu et al. | Jul 2014 | B2 |
8858624 | Christie et al. | Oct 2014 | B2 |
8864824 | Silvestrini et al. | Oct 2014 | B2 |
8955968 | Zalevsky et al. | Feb 2015 | B2 |
9005281 | Christie et al. | Apr 2015 | B2 |
9138142 | Christie et al. | Sep 2015 | B2 |
9204962 | Silvestrini | Dec 2015 | B2 |
9427311 | Christie et al. | Aug 2016 | B2 |
9427922 | Reboul et al. | Aug 2016 | B2 |
9492272 | Christie et al. | Nov 2016 | B2 |
9545303 | Vilupuru et al. | Jan 2017 | B2 |
9573328 | Reboul et al. | Feb 2017 | B2 |
9603704 | Silvestrini | Mar 2017 | B2 |
9757227 | Kushlin et al. | Sep 2017 | B2 |
9844919 | Reboul et al. | Dec 2017 | B2 |
9848979 | Vilupuru et al. | Dec 2017 | B2 |
9943403 | Webb et al. | Apr 2018 | B2 |
9987127 | Bogaert et al. | Jun 2018 | B2 |
10004593 | Webb | Jun 2018 | B2 |
10183453 | Reboul et al. | Jan 2019 | B2 |
20010027314 | Peyman | Oct 2001 | A1 |
20010034516 | Peyman | Oct 2001 | A1 |
20010050750 | Breger | Dec 2001 | A1 |
20020010510 | Silverstrini | Jan 2002 | A1 |
20020082288 | Horn | Jun 2002 | A1 |
20020120329 | Lang et al. | Aug 2002 | A1 |
20020167640 | Francis et al. | Nov 2002 | A1 |
20020196409 | Jani | Dec 2002 | A1 |
20030014042 | Juhasz et al. | Jan 2003 | A1 |
20030105521 | Perez | Jun 2003 | A1 |
20030135272 | Brady et al. | Jul 2003 | A1 |
20030149480 | Shadduck | Aug 2003 | A1 |
20030204258 | Graham et al. | Oct 2003 | A1 |
20030216763 | Patel | Nov 2003 | A1 |
20040019379 | Glick et al. | Jan 2004 | A1 |
20040056371 | Liao et al. | Mar 2004 | A1 |
20040068317 | Knight | Apr 2004 | A1 |
20040106929 | Masket | Jun 2004 | A1 |
20040140578 | Kelly et al. | Jul 2004 | A1 |
20050027355 | Murakami et al. | Feb 2005 | A1 |
20050046794 | Silvestrini et al. | Mar 2005 | A1 |
20050056954 | Devlin | Mar 2005 | A1 |
20050090895 | Peyman | Apr 2005 | A1 |
20050124983 | Frey et al. | Jun 2005 | A1 |
20050134793 | Roffman | Jun 2005 | A1 |
20050137703 | Chen | Jun 2005 | A1 |
20050143751 | Makker et al. | Jun 2005 | A1 |
20050182488 | Peyman | Aug 2005 | A1 |
20050187621 | Brady | Aug 2005 | A1 |
20050288784 | Peyman | Dec 2005 | A1 |
20060064077 | Peyman | Mar 2006 | A1 |
20060079959 | Christie et al. | Apr 2006 | A1 |
20060113054 | Silvestrini | Jun 2006 | A1 |
20060184243 | Yilmaz | Aug 2006 | A1 |
20060232665 | Schowengerdt et al. | Oct 2006 | A1 |
20060235428 | Silvestrini | Oct 2006 | A1 |
20060235514 | Silvestrini | Oct 2006 | A1 |
20060241751 | Marmo et al. | Oct 2006 | A1 |
20060265058 | Silvestrini | Nov 2006 | A1 |
20060268226 | Christie et al. | Nov 2006 | A1 |
20060268227 | Christie et al. | Nov 2006 | A1 |
20060268228 | Christie et al. | Nov 2006 | A1 |
20060268229 | Silvestrini et al. | Nov 2006 | A1 |
20060270946 | Silvestrini et al. | Nov 2006 | A1 |
20060271026 | Silvestrini et al. | Nov 2006 | A1 |
20060271178 | Christie et al. | Nov 2006 | A1 |
20060271179 | Christie et al. | Nov 2006 | A1 |
20060271180 | Christie et al. | Nov 2006 | A1 |
20060271181 | Christie et al. | Nov 2006 | A1 |
20060271182 | Christie et al. | Nov 2006 | A1 |
20060271183 | Christie et al. | Nov 2006 | A1 |
20060271184 | Silvestrini | Nov 2006 | A1 |
20060271185 | Silvestrini | Nov 2006 | A1 |
20060274264 | Christie et al. | Dec 2006 | A1 |
20060274265 | Christie et al. | Dec 2006 | A1 |
20070032866 | Portney | Feb 2007 | A1 |
20070091472 | Alkemper et al. | Apr 2007 | A1 |
20070092592 | Chiang | Apr 2007 | A1 |
20070129797 | Lang et al. | Jun 2007 | A1 |
20070225691 | Silvestrini et al. | Sep 2007 | A1 |
20080033546 | Liang | Feb 2008 | A1 |
20080077238 | Deacon et al. | Mar 2008 | A1 |
20080100921 | Nishikawa | May 2008 | A1 |
20080151183 | Altmann | Jun 2008 | A1 |
20080208335 | Blum et al. | Aug 2008 | A1 |
20080212030 | Bentley et al. | Sep 2008 | A1 |
20080220214 | Uozu et al. | Sep 2008 | A1 |
20080221674 | Blum et al. | Sep 2008 | A1 |
20080255663 | Akpek et al. | Oct 2008 | A1 |
20080269884 | Vannoy | Oct 2008 | A1 |
20080306587 | Your | Dec 2008 | A1 |
20090012505 | Chernyak | Jan 2009 | A1 |
20090021692 | Miller et al. | Jan 2009 | A1 |
20090287306 | Smith et al. | Jan 2009 | A1 |
20090059168 | Miller et al. | Mar 2009 | A1 |
20090069817 | Peyman | Mar 2009 | A1 |
20090171458 | Kellan et al. | Jul 2009 | A1 |
20090204207 | Blum et al. | Aug 2009 | A1 |
20090222086 | Lui et al. | Sep 2009 | A1 |
20090234448 | Weeber et al. | Sep 2009 | A1 |
20090306773 | Silvestrini et al. | Dec 2009 | A1 |
20100082100 | Mikawa | Apr 2010 | A1 |
20100127412 | Lake | May 2010 | A1 |
20100149618 | Sprague | Jun 2010 | A1 |
20100312336 | Hong et al. | Dec 2010 | A1 |
20110037184 | Shoji et al. | Feb 2011 | A1 |
20110040376 | Christie | Feb 2011 | A1 |
20110051080 | Bandhauer et al. | Mar 2011 | A1 |
20110125261 | Portney | May 2011 | A1 |
20110166652 | Bogaert et al. | Jul 2011 | A1 |
20110172675 | Danta et al. | Jul 2011 | A1 |
20110245919 | Pettit | Oct 2011 | A1 |
20110251685 | Chu | Oct 2011 | A1 |
20120203239 | Vukich et al. | Aug 2012 | A1 |
20120245683 | Christie et al. | Sep 2012 | A1 |
20120309761 | Chow et al. | Dec 2012 | A1 |
20120310338 | Christie et al. | Dec 2012 | A1 |
20130053953 | Silvestrini | Feb 2013 | A1 |
20130131795 | Miller et al. | May 2013 | A1 |
20130147072 | Bothe et al. | Jun 2013 | A1 |
20130238091 | Danta et al. | Sep 2013 | A1 |
20130289543 | Mordaunt | Oct 2013 | A1 |
20140131905 | Webb | May 2014 | A1 |
20140379078 | Trindade | Dec 2014 | A1 |
20150025627 | Christie et al. | Jan 2015 | A1 |
20150073549 | Webb et al. | Mar 2015 | A1 |
20150177422 | Liu et al. | Jun 2015 | A1 |
20150183173 | Linhardt et al. | Jul 2015 | A1 |
20150366658 | Christie et al. | Dec 2015 | A1 |
20160297107 | Shim et al. | Oct 2016 | A1 |
20170049560 | Cherne | Feb 2017 | A1 |
20170143477 | Christie et al. | May 2017 | A1 |
20170156850 | Silvestrini et al. | Jun 2017 | A1 |
20180125639 | Vilupuru et al. | May 2018 | A1 |
20180133990 | Reboul et al. | May 2018 | A1 |
20180338826 | Link et al. | Nov 2018 | A1 |
20190076235 | Webb et al. | Mar 2019 | A1 |
20190076241 | Alarcon Heredia et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
2004201751 | May 2004 | AU |
1875895 | Dec 2006 | CN |
100368846 | Feb 2008 | CN |
101322663 | Dec 2008 | CN |
101341426 | Jul 2012 | CN |
4134320 | Apr 1992 | DE |
0165652 | Dec 1985 | EP |
0443094 | Aug 1991 | EP |
1173790 | Jan 2002 | EP |
1674049 | Jun 2006 | EP |
1548489 | Aug 2006 | EP |
2319457 | May 2011 | EP |
2243052 | Sep 2011 | EP |
2365379 | Sep 2011 | EP |
2455799 | May 2012 | EP |
2823789 | Jan 2015 | EP |
2364457 | Aug 2015 | EP |
2620687 | Mar 1989 | FR |
2649605 | Jan 1991 | FR |
1276003 | Jun 1972 | GB |
62-167343 | Jul 1987 | JP |
64-002644 | Jan 1989 | JP |
H02-7954 | Jan 1990 | JP |
04-158859 | Jun 1992 | JP |
06-509731 | Mar 1993 | JP |
H05-65340 | Sep 1993 | JP |
06-502782 | Mar 1994 | JP |
H07-067896 | Mar 1995 | JP |
07-265340 | Oct 1995 | JP |
08-103457 | Apr 1996 | JP |
H09-502542 | Mar 1997 | JP |
11-503657 | Aug 1997 | JP |
07-178125 | Jul 1998 | JP |
2000-047145 | Feb 2000 | JP |
2002-537895 | Nov 2002 | JP |
2003-502109 | Jan 2003 | JP |
2004-510199 | Apr 2004 | JP |
2004-538034 | Dec 2004 | JP |
2005-533576 | Nov 2005 | JP |
2007-516794 | Jun 2007 | JP |
2007-523720 | Aug 2007 | JP |
2008-506710 | Mar 2008 | JP |
S59-54527 | May 2008 | JP |
10-0335722 | May 2002 | KR |
2138837 | Sep 1999 | RU |
1380743 | Mar 1988 | SU |
WO 8705797 | Oct 1987 | WO |
WO 9503747 | Feb 1995 | WO |
WO 9508135 | Mar 1995 | WO |
WO 9635397 | Nov 1996 | WO |
WO 9848715 | Nov 1998 | WO |
WO 00025704 | May 2000 | WO |
WO 00038594 | Jul 2000 | WO |
WO 0051682 | Sep 2000 | WO |
WO 0052516 | Sep 2000 | WO |
WO 0070388 | Nov 2000 | WO |
WO 2001010641 | Feb 2001 | WO |
WO 0115779 | Mar 2001 | WO |
WO 0117460 | Mar 2001 | WO |
WO 0119364 | Mar 2001 | WO |
WO 01082815 | Nov 2001 | WO |
WO 02076320 | Oct 2002 | WO |
WO 02102241 | Dec 2002 | WO |
WO 03020177 | Mar 2003 | WO |
WO 03022168 | Mar 2003 | WO |
WO 03061518 | Jul 2003 | WO |
WO 2004014969 | Feb 2004 | WO |
WO 2004034917 | Apr 2004 | WO |
WO 2004105588 | Dec 2004 | WO |
WO 2004113959 | Dec 2004 | WO |
WO 2005082265 | Sep 2005 | WO |
WO 2006020638 | Feb 2006 | WO |
WO 2006047534 | May 2006 | WO |
WO 2006060380 | Jun 2006 | WO |
WO 2006069012 | Jun 2006 | WO |
WO 2006113377 | Oct 2006 | WO |
WO 2006113411 | Oct 2006 | WO |
WO 2006113563 | Oct 2006 | WO |
WO 2006113564 | Oct 2006 | WO |
WO 2007057734 | Oct 2007 | WO |
WO 2007133384 | Nov 2007 | WO |
WO 2007142981 | Dec 2007 | WO |
WO 2008036671 | Mar 2008 | WO |
WO 2008102096 | Aug 2008 | WO |
WO 2009050511 | Apr 2009 | WO |
WO 2009122409 | Oct 2009 | WO |
WO 2009140080 | Nov 2009 | WO |
WO 2009149060 | Dec 2009 | WO |
WO 2010059214 | May 2010 | WO |
WO 2011020074 | Feb 2011 | WO |
WO 2011020078 | Feb 2011 | WO |
WO 2011047076 | Apr 2011 | WO |
WO 2011069059 | Jun 2011 | WO |
WO 2011088107 | Jul 2011 | WO |
WO 2012170066 | Dec 2012 | WO |
WO 2013019871 | Feb 2013 | WO |
WO 2013082545 | Jun 2013 | WO |
WO 2013101793 | Jul 2013 | WO |
WO 2013112589 | Aug 2013 | WO |
WO 2013123265 | Aug 2013 | WO |
WO 2014054946 | Apr 2014 | WO |
WO 2014074610 | May 2014 | WO |
WO 2014158653 | Oct 2014 | WO |
WO 2014164056 | Oct 2014 | WO |
WO 2015021323 | Feb 2015 | WO |
WO 2015069927 | May 2015 | WO |
WO 2015073718 | May 2015 | WO |
WO 2016081493 | May 2016 | WO |
WO 2017062316 | Apr 2017 | WO |
WO 2017091520 | Jun 2017 | WO |
WO 2019010178 | Jan 2019 | WO |
Entry |
---|
Internet Archive Wayback Machine; Aniridia Implants; downloaded from https://web.archive.org/web/20110824062840/http://www.morcher.com/nc/produkte/aniridiaimplants.html (Archived Aug. 24, 2011; printed on Feb. 5, 2015). |
Guyton A.C., Textbook of Medical Physiology, 7th Edition, W.B. Saunders Company, Jan. 1986: Chapter 58, in 13 pages. |
International Search Report and Written Opinion for PCT/US2010/0455481 dated Dec. 20, 2010 in 20 pages. |
International Search Report and Written Opinion for PCT/US2014/050223 dated Nov. 27, 2014 in 14 pages. |
Lu Xuequan, et al. “Radiation preparation and thermo-response swelling of interpenetrating polymer network hydrogel composed of PNIPAAm and PMMA”, Radiation Physics and Chemistry, vol. 57, Mar. 2000, pp. 477-480, XP002473596. |
Patel, C.K., et al. “Imaging the macula through a black occlusive intraocular lens”. Arch. Ophthalmol. Oct. 2010; 128(10):1374-1376. |
Yusuf, et al., “Inability to perform posterior segment monitoring by scanning laser ophthalmoscopy or optical coherence tomography with some occlusive intraocular lenses in clinical use”, J. Cataract Refract. Surg., Mar. 2012, 38: 513-518. |
Yusuf, et al., “Occlusive IOLs for Intractable Diplopia Demonstrate a Novel Near-Infrared Window of Transmission for SLO/OCT Imaging and Clinical Assessment”. Investigative Ophthalmology & Visual Science, May 2011, 52(6): 3737-3743. |
Number | Date | Country | |
---|---|---|---|
20180296322 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
61233804 | Aug 2009 | US | |
61233794 | Aug 2009 | US | |
61863833 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14454585 | Aug 2014 | US |
Child | 16017834 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12856492 | Aug 2010 | US |
Child | 14454585 | US |