The present disclosure relates to devices and methods utilized for intraoral imaging.
Current methods of measuring clinical performance of plaque removal often involve subjective assessments. Likewise, current methods of measuring other dental standards that relate to the health and/or cosmetic appearance of teeth and gums also involve subjective assessments. Such subjective assessments naturally include a degree of variability. More uniform and objective methods of measurement are of continued interest.
One embodiment of an intraoral imaging method includes providing an intraoral imaging device having at least one biteplate including a dental impression material and a track, at least one carriage assembly that travels along at least a portion of the track, and imaging equipment which is secured to the at least one carriage assembly; locating the at least one biteplate between upper and lower teeth of the subject such that the dental impression material cooperates with at least one of the upper and lower teeth to provide repeatable registration within an oral cavity of the subject; and obtaining image data using the imaging equipment.
Another embodiment of an intraoral imaging method includes providing an intraoral imaging device having a biteplate including a dental impression material and a track, a carriage assembly that travels along at least a portion of the track, and imaging equipment which is secured to the carriage assembly and in communication with computing equipment; locating the biteplate between upper and lower teeth of the subject such that the dental impression material cooperates with at least one of the upper and lower teeth to provide repeatable registration within an oral cavity of the subject; obtaining image data using the imaging equipment; sending the image data from the imaging equipment to the computing equipment; and utilizing the computing equipment to generate a plurality of images of at least one of the upper and lower teeth of the subject based on the image data received from the imaging equipment.
One embodiment of an intraoral imaging device includes at least one biteplate having a dental impression material and a track; at least one carriage assembly that travels along at least a portion of the track; and imaging equipment which is secured to the carriage assembly and in communication with computing equipment, wherein the imaging equipment includes a viewing tip that includes a camera lens, an illumination lens, and at least one window covering the camera and illumination lenses that includes at least one polarizing filter.
As will be discussed herein, embodiments of an intraoral imaging device 100 may comprise a biteplate 110 including a dental impression material 112 and a track 120, a carriage assembly 130, imaging equipment 140, a light source 150 and computing equipment 160. It should be understood, however, that embodiments of intraoral imaging device 100 may also include further structure, such as, for example, a disposable probe cap 170.
Referring to
Biteplate 110 may be constructed in multiple sizes for use with different subjects. Biteplate 110 may include a dental impression material 112 disposed along at least a portion of the biteplate to create a custom fit and registration for the teeth of a particular subject. Accordingly, when biteplate 110 is located between the upper and lower teeth of a subject, dental impression material 112 may cooperate with at least one of the upper and lower teeth to provide a repeatable registration within the oral cavity of the particular subject (i.e., the biteplate may be repeatably positioned in the same location between the teeth of a particular subject). To cooperate with the upper and/or lower teeth of a subject, impression material 112 may be molded to form a negative of the profile of one or more teeth of the subject. Once molded, each time dental impression material 112 and a portion of the upper and/or lower teeth of a subject are brought together, specific protrusions and cavities in the dental impression material may cooperate (e.g., interface or match-up) with specific protrusions and cavities in the profile of the teeth. For intraoral imaging methods that include the obtaining of image data in multiple steps, the repeatable registration imparted by the cooperation between impression material 112 and at least one of the upper and/or lower teeth of a subject may provide for more accurate and/or precise measurements.
Although any impression material known in the art may be employed, one exemplary impression material is Exafast Fast Set Vinyl Polysiloxane™, Standard Package, P/N 137307. As depicted in
Embodiments of intraoral imaging device 100 may include at least one biteplate 110 for each patient. In some embodiments of intraoral imaging device 100, two or four biteplates 110 may be utilized for each subject. In embodiments that include two biteplates 110, a first biteplate may be utilized for the imaging of at least one-half of the upper and/or lower teeth of a subject and a second biteplate may be utilized for the imaging of at least the other-half of the upper and/or lower teeth of the subject. One embodiment includes a first biteplate that may include dental impression material 112 on at least a portion of the left side of the biteplate so that the right side of the teeth of the subject can be imaged. A second biteplate may include dental impression material 112 on at least a portion of the right side of the biteplate so that the left side of the teeth of the subject can be imaged. This dual biteplate arrangement may assist in the imaging of the full set of upper and/or lower teeth of a patient without obstruction from dental impression material 112. Moreover, a first biteplate which includes dental impression material 112 on at least a portion of the right side may cooperate with a first carriage assembly (described in detail below) to image the upper left teeth of the subject and may cooperate with a second carriage assembly to image the lower left teeth of the subject. Similarly, a second biteplate which includes dental impression material 112 on at least a portion of the left side may cooperate with each of the carriage assemblies to image the remaining upper and lower right quadrants. In embodiments that include four biteplates 110, a separate biteplate may be created for imaging each of at least a first half of the upper teeth, at least a second half of the upper teeth, at least a first half of the lower teeth and at least a second half of the lower teeth of a subject.
Still referring to
Additional structure may also be included on intraoral imaging device 100 to assist in the tracking and/or positioning of carriage assembly 130 along track 120 during the imaging process. In utilizing intraoral imaging device 100 for a particular imaging application, carriage assembly 130 may or may not stop at predetermined locations along track 120. Therefore, the following embodiments may be employed in applications utilizing static imaging and/or dynamic imaging. One embodiment of intraoral imaging device 100 may include a series of optically detectable features (e.g., bar coding or existing texture) on biteplate 110 and/or track 120 and an optical detector on carriage assembly 130. As carriage assembly 130 travels along track 120 during the imaging process, the optical detector identifies the optically detectable features on biteplate 110 and/or track 120 and provides tracking and/or positioning information to imaging equipment 140 and/or computing equipment 160. Another embodiment of intraoral imaging device 100 may include a series of magnetically detectable features (e.g., embedded magnets) on biteplate 110 and/or track 120 and a magnetic detector on carriage assembly 130. As carriage assembly 130 travels along track 120 during the imaging process, the magnetic detector identifies the magnetically detectable features on biteplate 110 and/or track 120 and provides tracking and/or positioning information to imaging equipment 140 and/or computing equipment 160. Yet another embodiment of intraoral imaging device 100 may include protrusions on biteplate 110 and/or track 120 and a rotatable gear on carriage assembly 130 that engages the protrusions and turns as the carriage assembly travels along the track. The rotatable gear spins an encoder (e.g. optical, magnetic or Hall effect) thus providing tracking and/or positioning information to imaging equipment 140 and/or computing equipment 160 during imaging. In such embodiments of intraoral imaging device 100, the rotating gear on carriage assembly 130 may further be driven by a miniature motor which may propel the carriage assembly along track 120 at a selected and/or constant velocity. Movement of carriage assembly 130 at a constant velocity reduces or eliminates accelerations and/or decelerations caused by the manual positioning of the carriage assembly. In embodiments of intraoral imaging device 100 that utilize dynamic imaging, the reduction or elimination of accelerations and/or decelerations will reduce or eliminate motion blur and assist in obtaining more accurate image data.
As illustrated in
Sheath portion 134 may be a hollow tube constructed of stainless steel, various plastics, including, but not limited to, DuPont Delrin®, and/or any other material known in the art. In embodiments of intraoral imaging device 100 that include imaging equipment 140 with a flexible neck (e.g., the flexible braided cable of a videoscope), sheath portion 134 may function to stiffen the flexible neck and therefore assist in maintaining the proper positioning of the imaging equipment. Imaging equipment 140 may be inserted into a first end 136 of sheath portion 134 with the viewing tip 148 exiting at a second end 138 of sheath portion 134. Imaging equipment 140 may further be fitted with a custom collar 144 that interfaces with first end 136 of sheath portion 134 and operates to maintain the engagement of the sheath portion with the imaging equipment.
Carriage portion 132 may connect to sheath portion 134 through any method known in the art. Non-limiting examples include welding and soldering, as well as the use of adhesive, fasteners and/or engaging structure, such as, for example, structure for a slip fit arrangement. Carriage portion 132 and sheath portion 134 may also be formed in a one-piece construction of carriage assembly 130. The relative positioning of carriage portion 132 to sheath portion 134 may be selected to ensure the optimum spacing between camera lens 142 of imaging equipment 140 and the tooth and/or gum surface of the subject for the most accurate imaging. As detailed above, in some embodiments of intraoral imaging device 100, a set of mirror image carriage assemblies 130 may assist in imaging all four quadrants of the teeth of a subject. A first carriage assembly may be used to acquire the upper left and lower right quadrants of the teeth and a second carriage assembly (a mirror of the first carriage assembly) may be used to acquire the lower left and upper right quadrants of the teeth. Carriage assembly 130 may be disposable or reusable. In embodiments of intraoral imaging device 100 that include reusable carriage assembly 130, the carriage assembly can be sterilized by autoclave or cold sterilization solutions such as Sporox® and/or glutaraldehyde.
Referring to
Imaging equipment 140 may include any suitable viewing tip 148. In embodiments of intraoral imaging device 100 that employ the Olympus® IV6C6-13 videoscope, the Olympus® IV6C6-AT120S/FF Far Focus Side View Tip is one non-limiting option for viewing tip 148. Such a videoscope tip is a side viewing tip adaptor with a 120° field of view and 7 mm-90 mm depth of field. Referring to
The polarizing of the window(s) of viewing tip 148 may substantially reduce the reflected glare resulting in more stable camera gain control, as well as no loss of measurable tooth surface area. However, in some embodiments of intraoral imaging device 100, the window(s) of viewing tip 148 may not utilize polarization. Embodiments of intraoral imaging device 100 not utilizing polarization on the window(s) of viewing tip 148 may be utilized in intraoral imaging methods for gloss/shine measurements.
Intraoral imaging device 100 may include a probe cap 170 (as illustrated in
Probe cap 170 may comprise a flat section 174 oriented over the window(s) of viewing tip 148 that may assist in the obtaining of accurate image data by imaging equipment 140 (e.g., reduced glare due to the flat shape). Embodiments of probe cap 170 may further include means, such as a cutout (not shown) on mounting portion 172 that cooperates with a protrusion in sheath portion 134 in order to reduce or prevent rotation of the probe cap and maintain the proper orientation of flat section 174 (i.e., over the window(s) of viewing tip 148). Probe cap 170 may be disposable or reusable. In embodiments of intraoral imaging device 100 that include a reusable probe cap, probe cap 170 can be sterilized by autoclave or cold sterilization solutions such as Sporox® and/or glutaraldehyde.
Referring to
The embodiments of intraoral imaging device 100 described above may be utilized in various intraoral imaging applications and methods. One such application is the measuring of plaque levels on the teeth of a subject. Other applications for intraoral imaging device 100 may include measuring stain on teeth, detecting cavities/caries on or within teeth, measuring the whiteness of teeth, measuring the cleanliness of teeth, measuring the gloss/shine of teeth, measuring gum recession, measuring gingivitis indicators, and measuring any other dental standard that relates to the health and/or cosmetic appearance of teeth, gums, and/or other oral cavity tissues. Embodiments of the intraoral imaging devices for the above described applications may or may not employ some or all of the particular elements detailed above. For example, embodiments of intraoral imaging devices employed in applications to measure the gloss/shine of teeth may lack polarizing filters on the window(s) of the viewing tip.
In some embodiments, the intraoral imaging devices described herein may also be utilized to image teeth and/or gums as well as identify problem areas and/or perform a process upon teeth and/or gums. As a non-limiting example, embodiments of intraoral imaging devices may be employed to image and detect areas containing plaque in the oral cavity of a user and then spot treat such areas. In some embodiments, the equipment utilized in identifying problem areas and/or spot treating such areas may be separate from the intraoral imaging devices described above. In other embodiments, such equipment may be incorporated within the intraoral imaging devices.
Referring to
In some embodiments of intraoral imaging methods, not all of the above detailed exemplary steps are necessary. As an example, some embodiments of intraoral imaging methods only include steps 601-605. Moreover, additional steps may be included in some embodiments of intraoral imaging methods that were not detailed above. As an example, in embodiments of intraoral imaging methods for detecting plaque on the teeth of a subject, an initial step of applying a stain to at least one of the upper and lower teeth of a subject may be employed before locating the biteplate between the upper and lower teeth of a subject. Accordingly, embodiments of intraoral imaging methods may include steps that incorporate, employ or utilize any structure or function of the intraoral imaging devices detailed herein.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm”.
All documents cited in the Detailed Description are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any meaning or definition of a term in this written document conflicts with any meaning or definition of the term in a document incorporated by reference, the meaning or definition assigned to the term in this written document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.