Intraosseous device including a sensing obturator

Information

  • Patent Grant
  • 11998237
  • Patent Number
    11,998,237
  • Date Filed
    Wednesday, June 2, 2021
    3 years ago
  • Date Issued
    Tuesday, June 4, 2024
    22 days ago
Abstract
Disclosed herein are medical device systems, and methods thereof, for automatically detecting access to a medullary cavity. Embodiments include intraosseous access systems with sensing obturators, configured to detect a change in modality, e.g. pressure, oxygen saturation, electrical impedance, etc. at a distal tip thereof. Signals can be transmitted to a control logic that can modify the activation of a driver in response. Signals can be transmitted by way of wired or wireless communication. In an embodiment, signals can be transmitted through conductive polymer material that forms the obturator and allows the obturator to be flexible enough to mitigate accidental needle stick injuries.
Description
SUMMARY

Embodiments disclosed herein are directed to intraosseous (10) access devices including sensing obturators configured to automatically detect access to a medullary cavity and modify the activation of the drill. Intraosseous access devices often require training to ensure correct placement of the access device. Users must apply sufficient distal driving force to penetrate the bone without applying too much driving force that can result in “back walling” where a needle penetrates a far wall of the bone. Further complications can arise when accessing bones of different sizes and density depending on the age and health of the patient. Moreover, 10 access devices are often used in emergency situations where delays can be critical and fully trained users may not always be available.


Disclosed herein is an obturator configured for use with an intraosseous access system including, an obturator, and a sensor disposed proximate a distal end of the obturator, the sensor configured to detect a change in modality to determine access to a medullary cavity.


In some embodiments, the sensor includes one of a pressure transducer, an oxygen saturation sensor, an electrical impedance sensor, a temperature sensor, or a pH sensor. The sensor is communicatively coupled with a control logic disposed in a driver of the intraosseous access system, the control logic configured to modify operation of the driver when the sensor detects the change in modality. The obturator further includes a sensor interface disposed at a proximal end of the obturator hub and configured to both rotatably and communicatively couple the sensor with the control logic. The obturator includes one of an electrically conductive or an optically conductive thermoplastic configured to communicatively couple the sensor with the sensor interface. The obturator includes a wire extending axially therethrough and configured to communicatively couple the sensor with the sensor interface. The obturator is configured to be disposed within a needle, and wherein the sensor is disposed proximate a distal end of the needle.


In some embodiments, the obturator further includes a second sensor configured to detect a second modality configured to determine access to the medullary cavity. The second sensor includes one of a pressure transducer, an oxygen saturation sensor, an electrical impedance sensor, a temperature sensor, or a pH sensor. The sensor includes a passive RFID chip, and wherein the control logic is configured to provide an interrogation signal configured to induce a response signal from the passive RFID chip to determine access to a medullary cavity.


Also disclosed is a method of detecting access to an internal cavity including, providing an elongate medical device including a sensor disposed at a distal end thereof, urging the elongate medical device through a first tissue, detecting a first modality level, accessing the internal cavity, detecting a change in modality level from the first modality level to determine access to the internal cavity, and communicating the change in modality level to a control logic.


In some embodiments, the elongate medical device includes an obturator configured to be disposed within an intraosseous access needle, and wherein the first tissue is a bone cortex and the internal cavity is a medullary cavity. The sensor includes one of a pressure transducer, an oxygen saturation sensor, an electrical impedance sensor, a temperature sensor, or a pH sensor. The control logic is disposed within an intraosseous access driver releasably coupled to the elongate medical device. The control logic is configured to modify operation of the intraosseous access driver when the sensor detects the change in modality level.


In some embodiments, the obturator further includes a sensor interface disposed at a proximal end thereof and configured to engage the driver and communicatively and rotatably couple the sensor and the control logic. The obturator includes an electrically conductive thermoplastic configured to communicatively couple the sensor with the sensor interface. The medical device includes a wire extending axially therethrough and configured to communicatively couple the sensor with the sensor interface. In some embodiments, the method further includes detecting a change in a second modality level to determine access to the internal cavity and communicating the change in the second modality level to the control logic. The sensor includes a passive RFID chip, and wherein the control logic is configured to provide an interrogation signal configured to induce a response signal from the passive RFID chip to determine access to a medullary cavity.





DRAWINGS

A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1A illustrates an exploded view of an embodiment of an intraosseous access medical device system, wherein an access assembly subset of the system is depicted slightly enlarged and in elevation, and an automated driver component is depicted in perspective, in accordance with embodiments disclosed herein.



FIG. 1B shows a cross-sectional view of an access assembly, in accordance with embodiments disclosed herein.



FIG. 1C shows a cross-sectional view of an obturator tip and a safety shield in a locked position and removed from the access assembly of FIG. 1B, in accordance with embodiments disclosed herein.



FIGS. 1D-1F show close up detailed views of the access assembly of FIG. 1B, in accordance with embodiments disclosed herein.



FIGS. 2A-2C show various embodiments of a sensing obturator, in accordance with embodiments disclosed herein.



FIGS. 3A-3B show various embodiments of a sensing obturator, in accordance with embodiments disclosed herein.



FIG. 4 shows an embodiment of a sensing obturator, in accordance with embodiments disclosed herein.





DESCRIPTION

Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.


Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


With respect to “proximal,” a “proximal portion” or a “proximal end portion” of, for example, a needle disclosed herein includes a portion of the needle intended to be near a clinician when the needle is used on a patient. Likewise, a “proximal length” of, for example, the needle includes a length of the needle intended to be near the clinician when the needle is used on the patient. A “proximal end” of, for example, the needle includes an end of the needle intended to be near the clinician when the needle is used on the patient. The proximal portion, the proximal end portion, or the proximal length of the needle can include the proximal end of the needle; however, the proximal portion, the proximal end portion, or the proximal length of the needle need not include the proximal end of the needle. That is, unless context suggests otherwise, the proximal portion, the proximal end portion, or the proximal length of the needle is not a terminal portion or terminal length of the needle.


With respect to “distal,” a “distal portion” or a “distal end portion” of, for example, a needle disclosed herein includes a portion of the needle intended to be near or in a patient when the needle is used on the patient. Likewise, a “distal length” of, for example, the needle includes a length of the needle intended to be near or in the patient when the needle is used on the patient. A “distal end” of, for example, the needle includes an end of the needle intended to be near or in the patient when the needle is used on the patient. The distal portion, the distal end portion, or the distal length of the needle can include the distal end of the needle; however, the distal portion, the distal end portion, or the distal length of the needle need not include the distal end of the needle. That is, unless context suggests otherwise, the distal portion, the distal end portion, or the distal length of the needle is not a terminal portion or terminal length of the needle.


In the following description, certain terminology is used to describe aspects of the invention. For example, in certain situations, the term “logic” is representative of hardware, firmware or software that is configured to perform one or more functions. As hardware, logic may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a hardware processor (e.g., microprocessor with one or more processor cores, a digital signal processor, a programmable gate array, a microcontroller, an application specific integrated circuit “ASIC,” etc.), a semiconductor memory, or combinatorial elements.


Alternatively, logic may be software, such as executable code in the form of an executable application, an Application Programming Interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. The software may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM,” power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code may be stored in persistent storage.


The term “computing device” should be construed as electronics with the data processing capability and/or a capability of connecting to any type of network, such as a public network (e.g., Internet), a private network (e.g., a wireless data telecommunication network, a local area network “LAN”, etc.), or a combination of networks. Examples of a computing device may include, but are not limited or restricted to, the following: a server, an endpoint device (e.g., a laptop, a smartphone, a tablet, a “wearable” device such as a smart watch, augmented or virtual reality viewer, or the like, a desktop computer, a netbook, a medical device, or any general-purpose or special-purpose, user-controlled electronic device), a mainframe, internet server, a router; or the like.


A “message” generally refers to information transmitted in one or more electrical signals that collectively represent electrically stored data in a prescribed format. Each message may be in the form of one or more packets, frames, HTTP-based transmissions, or any other series of bits having the prescribed format.


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware.


As shown in FIG. 1, and to assist in the description of embodiments described herein, a longitudinal axis extends substantially parallel to an axial length of a needle 204 extending from the driver 101. A lateral axis extends normal to the longitudinal axis, and a transverse axis extends normal to both the longitudinal and lateral axes.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.


The present disclosure relates generally to intraosseous (IO) access device systems that includes a sensing obturator configured to detect access to a medullary cavity. FIG. 1A shows an exploded view of an exemplary intraosseous access system (“system”) 100, with some components thereof shown in elevation and another shown in perspective. In an embodiment, the intraosseous access system 100 can be used to penetrate skin surface tissue layers 70 and underlying hard bone, i.e. bone cortex 80, for intraosseous access, such as, for example to access the marrow of the bone and/or a vasculature of the patient via a pathway through an interior of the bone, i.e. the medullary cavity 90. As used herein, an “access event” includes accessing the medullary cavity 90 with an intraosseous access system 100.


In an embodiment, the system 100 includes a driver 101 and an access assembly 109. The driver 101 can be used to rotate the access assembly 109 and “drill” a needle 204 into the bone of a patient. In embodiments, the driver 101 can be automated or manual. As shown, the driver 101 is an automated driver 101. For example, the automated driver 101 can be a drill that achieves high rotational speeds. In an embodiment, the intraosseous access system 100 can further include an obturator assembly 102, a safety shield (“shield”) 105, and a needle assembly 202, which may be referred to, collectively, as the access assembly 109. The needle assembly 202 can include an access needle (“needle”) 204 supported by a needle hub 203. In an embodiment, the obturator assembly 102 includes an elongate obturator body (“obturator”) 104. As used herein, an obturator 104 includes an elongate medical device configured to be disposed within a lumen of a needle and to prevent bone fragments, tissue, or the like from entering the needle lumen. Advantageously, the obturator prevents tissues from obstructing a fluid flow through the needle lumen, after the needle has been placed to access the medullary cavity 90. As will be appreciated, in some embodiments, the obturator 104 may be replaced with a different elongated medical instrument. As used herein, the term “elongated medical instrument” is a broad term used in its ordinary sense that includes, for example, such devices as needles, cannulas, trocars, obturators, stylets, and the like. Accordingly, the obturator assembly 102 may be referred to more generally as an elongated medical instrument assembly. In like manner, the obturator 104 may be referred to more generally as an elongated medical instrument.


In an embodiment, the obturator assembly 102 includes a coupling hub 103 that is attached to the obturator 104 in any suitable manner (e.g., one or more adhesives or overmolding). The coupling hub 103 can be configured to interface with the driver 101. The coupling hub 103 may alternatively be referred to as an obturator hub 103 or, more generally, as an elongated instrument hub 103. In an embodiment, the shield 105 is configured to couple with the obturator 104 to prevent accidental needle stick injuries when the obturator is removed after placement of the needle 204.


In an embodiment, the needle assembly 202 includes a needle 204. However, in some embodiments, the needle 204 may be replaced with a different instrument, such as, for example, a cannula, a tube, or a sheath, and/or may be referred to by a different name, such as one or more of the foregoing examples. Accordingly, the needle assembly 202 may be referred to more generally as a cannula assembly or as a tube assembly. In like manner, the needle 204 may be referred to more generally as a cannula. In an embodiment, the needle assembly 202 includes a needle hub 203 that is attached to the needle 204 in any suitable manner. The needle hub 203 can be configured to couple with the obturator hub 103 and may thereby be coupled with the driver 101. The needle hub 203 may alternatively be referred to as a cannula hub 203. In an embodiment, a cap 107 may be provided to cover at least a distal portion of the needle 204 and the obturator 104 prior to use of the access assembly 109. For example, in an embodiment, a proximal end of the cap 107 can be coupled to the obturator hub 103.



FIGS. 1B-1F show further details of the access assembly 109. FIG. 1B shows a cross-sectional view of the access assembly 109 with the needle hub 203 retained by the obturator hub 103. The obturator 104 is disposed within the needle and the shield 105 is in the unlocked position within the access assembly 109. FIG. 1C shows a cross-sectional view of the access assembly 109 with the obturator 104 removed from the needle and the shield in the second, locked operational mode. FIG. 1D shows an exploded view of the access assembly 109. FIG. 1E shows a close up, cross-sectional view of a distal portion of the needle 204. FIG. 1F shows a close up, cross-sectional view of a distal portion of the obturator 104. In an embodiment, as the obturator 104 is withdrawn from the needle lumen 251, the shield 105 can engage recesses 150 to lock the shield 105 relative to the obturator tip 146 to prevent accidental needle stick injuries.


As discussed herein, the obturator 104 can be formed of any suitable material to inhibit tissue and/or bone from entering a lumen of the needle 204 during an access event. Exemplary materials can include, but not limited to, metal, alloys, stainless steel, copper, aluminum, titanium, plastics, polymer, thermoplastic, electrically conductive thermoplastics, combinations thereof, or the like.


With continued reference to FIG. 1A, the driver 101 may take any suitable form. The driver 101 may include a handle 110 that may be gripped by a single hand of a user. In an embodiment, the driver 101 further includes a coupling interface 112, which is formed as a socket 113 that defines a cavity 114. The coupling interface 112 can be configured to couple with the obturator hub 103. In an embodiment, the socket 113 includes sidewalls that substantially define a hexagonal cavity into which a hexagonal protrusion of the obturator hub 103 can be received. Other suitable connection interfaces are also contemplated.


The driver 101 can include an energy source 115 of any suitable variety that is configured to energize the rotational movement of the coupling interface 112 and provide a motive force. For example, in some embodiments, the energy source 115 may comprise one or more batteries that provide electrical power for the driver 101. In some embodiments, the energy source 115 can comprise one or more springs (e.g., a coiled spring, flat spring, or the like) or other biasing member that may store potential mechanical energy that may be released upon actuation of the driver 101.


The energy source 115 may be coupled with the coupling interface 112 in any suitable manner. For example, in an embodiment, the driver 101 includes an electrical, mechanical, or electromechanical coupling 116 to a gear assembly 117. In some embodiments, the coupling 116 may include an electrical motor that generates mechanical movement from electrical energy provided by an electrical energy source 115. In other embodiments, the coupling 116 may include a mechanical linkage to the gear assembly 117. The driver 101 can include a mechanical coupling of any suitable variety to couple the gear assembly 117 with the coupling interface 112. In other embodiments, the gear assembly 117 may be omitted.


Further details and embodiments of the intraosseous access system 100 can be found in WO 2018/075694, WO 2018/165334, WO 2018/165339, and US 2018/0116693, each of which is incorporated by reference in its entirety into this application.


In an embodiment, the system 100 can include a sensing obturator 304 supported by an obturator hub 303 and configured to be coupled to an access assembly 109 and driver 101, as described herein. Exemplary embodiments of sensing obturators 304 are shown in FIGS. 2A-4. The sensing obturator 304 can include one or more sensors, e.g. sensor 310, disposed proximate a distal tip 146 of the obturator. In an embodiment, the sensor 310 can be disposed on a beveled distal surface 147 of the sensing obturator 304 and can contact a tissue of the patient during an access event.


In an embodiment, the sensor 310 can be configured to detect a change in modality to determine if a distal tip 346 of the obturator 304, and thereby a distal tip 246 of the needle 204, has accessed a medullary cavity 90. Exemplary modalities can include, but not limited to, pressure, oxygen saturation, electrical impedance, temperature, pH, combinations thereof, or the like, as described in more detail herein.


In an embodiment, the sensing obturator 304 can include a sensor interface 320 disposed at a proximal end thereof. In an embodiment, as shown in FIG. 2A, the sensor 310 and the sensor interface 320 can be communicatively coupled by way of a wire 322 extending axially through the sensing obturator 304. In an embodiment, the wire 322 can be coextruded with the sensing obturator 304. In an embodiment, the wire 322 can extend through a lumen defined by the obturator 304.


In an embodiment, as shown in FIG. 2B, the obturator 304 can be formed of a conductive material, for example an electrically conductive polymer, fiber optically conductive thermoplastic, combinations thereof, or the like. As such, an input that is detected by the sensor 310 can be communicated to the sensor interface 320 through the body of the sensing obturator 304 itself. In an embodiment, the sensing obturator 304 can be formed of a conductive material that also displays flexible characteristics to mitigate needle stick injuries. For example, the obturator 304, when disposed within the needle lumen 251, can display sufficient compressive strength to prevent tissue entering the needle lumen 251 during an access event. Further, when removed from the needle lumen 251, the obturator 304 can display sufficient flexible characteristics to deform when a force applied and mitigate needle stick injuries. Further details and embodiments can be found in U.S. patent application Ser. No. 17/183,820, filed Feb. 24, 2021, which is incorporated by reference in its entirety into this application.


In an embodiment, the sensor interface 320 can be configured to communicatively couple with a control logic 380 disposed within the driver 101. In an embodiment, the sensor interface 320 can be both rotatably and communicatively coupled with the driver 101 to allow the access assembly 109, with the sensing obturator 304 disposed therein, to rotate relative to the driver 101, while maintaining a communicative coupling therebetween. As used herein, the control logic 380 can include one or more processor(s), storage, communications logic, and the like, configured to receive information from the one or more sensors 310, determine if a distal tip 246 of the needle 204 has accessed a medullary cavity 90, and modify the activation of the driver 101. In an embodiment, the reusable components, e.g. control logic 380, associated components, etc., can be disposed within the reusable drill 101. As such only the sensor 310 is disposed within the single-use sensing obturator 304, and is configured to communicate with the reusable components disposed within the drill 101. Advantageously, the cost and complexity of the disposable components, i.e. the obturator 304, are mitigated.


In an embodiment, a sensor 310 can include a pressure transducer configured to detect a change in compressive force applied to a proximal end of the sensing obturator 304 and provide a signal to the sensing interface 320. The sensing interface 320 in turn provides the signal to the control logic 380 that detects and interprets the pressure transducer signal. Where a pressure transducer signal indicates a relatively high pressure level, the control logic 380 can determine the needle tip 246 and obturator tip 346 are disposed within the relatively hard bone cortex 80. Where a pressure transducer signal indicates a decrease in relative pressure level, the control logic 380 can determine the needle tip 246 and obturator tip 346 has passed through the bone cortex 80 and accessed the relatively soft tissue disposed within the medullary cavity 90. As such, the control logic 380 can automatically stop the electric motor 116 to indicate to the user that the medullary cavity 90 has been accessed, and/or to prevent backwalling.


In an embodiment, a sensor 310 can include an oxygen saturation sensor configured to detect a change in oxygen saturation of the tissue that is in contact with a distal tip of the sensing obturator 304 and provide a signal to the sensing interface 320. The sensing interface 320 in turn provides the signal to the control logic 380 that detects and interprets the oxygen saturation signal. Where a signal indicates a relatively low oxygen saturation level, the control logic 380 can determine the needle tip 246 and obturator tip 346 are disposed within the bone cortex 80. Where a signal indicates an increase in relative oxygen saturation level, the control logic 380 can determine the needle tip 246 and obturator tip 346 has passed through the bone cortex 80 and accessed the relatively oxygenated tissue disposed within the medullary cavity 90. As such, the control logic 380 can automatically stop the electric motor 116 to indicate to the user that the medullary cavity 90 has been accessed, and/or to prevent backwalling.


In an embodiment, a sensor 310 can include an electrical impedance sensor configured to detect a change in electrical impedance of the tissue that is in contact with a distal tip of the sensing obturator 304 and provide a corresponding change in signal to the sensing interface 320. The sensing interface 320 in turn provides the signal to the control logic 380 disposed within drill 101, which detects and interprets the electrical impedance signal. Where a signal indicates a first electrical impedance, the control logic 380 can determine the needle tip 246 and obturator tip 346 are disposed within the bone cortex 80. Where a signal indicates a change in electrical impedance to a second electrical impedance level, the control logic 380 can determine the needle tip 246 and obturator tip 346 has passed through the bone cortex 80 and accessed the tissue disposed within the medullary cavity 90. As such, the control logic 380 can automatically stop the electric motor 116 to indicate to the user that the medullary cavity 90 has been accessed, and/or to prevent backwalling. These and other modalities as also contemplated, including sensors configured to detect changes in temperature, pH, or the like that can be employed to determine when the needle tip 251 has accessed the medullary cavity 90.


As shown in FIG. 2C, the sensing obturator can include two or more sensors 310, e.g. a first sensor 310A and a second sensor 310B, each configured to detect a different modality such pressure, oxygen saturation, electrical saturation, temperature, pH, combinations thereof, or the like. Advantageously, the control logic 380 can receive information the two or more sensors 310A, 310B to provide increased accuracy as to when the needle tip 251 has passed through the bone cortex 80 and accessed the medullary cavity 90. The first sensor 310A and the second sensor 310B can be communicatively coupled to the sensor interface 320 via wires 322A and 322B, respectively.


As shown in FIG. 3A, in an embodiment, the sensor 310 and the control logic 380 can be communicatively coupled by way of wireless communication. Exemplary wireless communication modalities can include WiFi, Bluetooth, Near Field Communications (NFC), electromagnetic (EM), radio frequency (RF), combinations thereof, or the like. In an embodiment, the control logic 380 can include a communication logic configured to provide an interrogation signal 382. The sensor 310 can include a passive RFID chip configured to activate in the presence or absence of a given modality, or change in modality, as described herein. For example a drop in pressure, an increase in oxygen saturation, a change in relative electrical impedance, combinations thereof, or the like. As such, when sensor 310 is activated, the interrogation signal 382 can induce the sensor 310 to provide a response signal 384 that can be detected and interpreted by the control logic 380 to determine that the obturator tip 346 and as such a needle tip 246 has accessed the medullary cavity 90, as described herein.


In an embodiment, as shown in FIG. 3B, a sensor 310 can be communicatively coupled with a sensor interface 320 by either a wired coupling 322 or by a conductive obturator body 304, as describe herein. The interface 320 can include a passive RFID chip and when the sensor 310 detects a change in modality that indicates the medullary cavity 90 has been accessed, signals communicated to the sensor interface 320 can activate an RFID chip causing the RFID chip to be responsive to an interrogation signal 382. The interrogation 382 can then induce the RFID to provide a response signal 384 that can be detected and interpreted by the control logic 380, as described herein.


In an embodiment, as shown in FIG. 4 a distal portion of the obturator 304 can include a marker 390, configured to be detected by a tracking system. In an embodiment the marker 390 can be a passive magnet configured to be detected by a multi-modal tracking system that can use magnetic, electromagnetic, ultrasonic modalities, combinations thereof, or the like. Details of exemplary tracking systems configured to detect the marker 390 can be found in U.S. Pat. Nos. 8,388,541, 8,781,555, 8,849,382, 9,445,743, 9,456,766, 9,492,097, 9,521,961, 9,554,716, 9,636,031, 9,649,048, 10,159,531, 10,172,538, 10,413,211, 10,449,330, U.S. Publication Nos. 2014/0031674, 2014/0188133, 2015/0080762, and U.S. Publication No. 2018/0116551, each of which are incorporated by reference in their entirety into this application. Advantageously, the obturator 304 with the marker 390, and the needle tip 246, could be detected and tracked using a tracking system to facilitate determining access to the medullary cavity 90.


As will be appreciated although embodiments are described herein in terms of sensing obturators of an intra-osseous access system 100, embodiments of sensing obturators, elongate medical devices, and the like can also be used with various medical device systems configured to access an interior portion of a patient, e.g. ultrasound systems, medical device tracking systems, catheter systems, or similar electronic devices. Accordingly, sensing obturators and the like can be used to detect changes in modalities and modify operation of the medical device systems, or provide alerts, to indicate access to the target area has been achieved.


While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.

Claims
  • 1. An obturator assembly configured for use with an intraosseous access system, comprising: an elongate obturator body; andan electrical impedance sensor disposed proximate a distal end of the obturator body, the electrical impedance sensor configured to detect a change in modality to determine access to a medullary cavity, the electrical impedance sensor communicatively coupled with a control logic disposed in a driver of the intraosseous access system, the control logic configured to modify operation of the driver when the electrical impedance sensor detects the change in modality, the electrical impedance sensor further including an RFID chip, wherein the change in modality detected by the electrical impedance sensor transitions the RFID chip from an inactive state to an active state and, wherein the control logic is configured to provide an interrogation signal configured to induce a response signal from the RFID chip in the active state to determine access to the medullary cavity.
  • 2. The obturator assembly according to claim 1, wherein the obturator body further includes a sensor interface disposed at a proximal end of a hub of the obturator body, the sensor interface configured to both rotatably and communicatively couple the electrical impedance sensor with the control logic.
  • 3. The obturator assembly according to claim 2, wherein the obturator body includes one of an electrically conductive or an optically conductive thermoplastic configured to communicatively couple the electrical impedance sensor with the sensor interface.
  • 4. The obturator assembly according to claim 2, wherein the obturator body includes a wire extending axially therethrough to communicatively couple the electrical impedance sensor with the sensor interface.
  • 5. The obturator assembly according to claim 1, wherein the obturator body is configured to be disposed within a needle, and wherein the electrical impedance sensor is disposed proximate a distal end of the needle.
  • 6. The obturator assembly according to claim 1, wherein the obturator body further includes a second sensor configured to detect a second modality configured to determine access to the medullary cavity.
  • 7. The obturator assembly according to claim 6, wherein the second sensor is selected from a group consisting of a pressure transducer, an oxygen saturation sensor, a temperature sensor, and a pH sensor.
  • 8. A method of detecting access to a medullary cavity, comprising: providing an elongate obturator body including an electrical impedance sensor disposed at a distal end of the obturator body;urging the elongate obturator body through a bone cortex;detecting a first electrical impedance modality level;accessing the medullary cavity;detecting a change in modality level from the first electrical impedance modality level to determine access to the medullary cavity; andcommunicating the change in modality level to a control logic, wherein the electrical impedance sensor further includes an RFID chip configured to transition between an active state and an inactive state, and wherein detecting the change in modality level transitions the RFID chip to the active state and, wherein, the control logic provides an interrogation signal configured to induce a response signal from the RFID chip in the active state and determines access to the medullary cavity.
  • 9. The method according to claim 8, wherein the elongate obturator body is disposed within an intraosseous access needle.
  • 10. The method according to claim 8, wherein the control logic is disposed within an intraosseous access driver releasably coupled to the elongate obturator body.
  • 11. The method according to claim 10, further including modifying an operation of the intraosseous access driver by the control logic when the electrical impedance sensor detects the change in modality level.
  • 12. The method according to claim 10, wherein the obturator body further includes a sensor interface disposed at a proximal end thereof and configured to engage the intraosseous access driver and communicatively and rotatably couple the electrical impedance sensor and the control logic.
  • 13. The method according to claim 12, wherein the obturator body includes an electrically conductive thermoplastic configured to communicatively couple the electrical impedance sensor with the sensor interface.
  • 14. The method according to claim 12, wherein the obturator body includes a wire extending axially therethrough and configured to communicatively couple the electrical impedance sensor with the sensor interface.
  • 15. The method according to claim 8, further including detecting a change in a second modality level to determine access to the medullary cavity and communicating the change in the second modality level to the control logic.
  • 16. The method according to claim 15, wherein the second modality level is selected from a group consisting of a pressure, an oxygen saturation, a temperature and a pH.
PRIORITY

This application claims priority to U.S. Provisional Application No. 63/034,338, filed Jun. 3, 2020, which is incorporated by reference in its entirety into this application.

US Referenced Citations (355)
Number Name Date Kind
2773501 Young Dec 1956 A
3071135 Baldwin et al. Jan 1963 A
3734207 Fishbein May 1973 A
3804544 Adams Apr 1974 A
3811442 Maroth May 1974 A
3815605 Schmidt et al. Jun 1974 A
3991765 Cohen Nov 1976 A
4266555 Jamshidi May 1981 A
4314565 Lee Feb 1982 A
4381777 Garnier May 1983 A
4383530 Bruno May 1983 A
4736742 Alexson et al. Apr 1988 A
4787893 Villette Nov 1988 A
4889529 Haindl Dec 1989 A
4952207 Lemieux Aug 1990 A
4964854 Luther Oct 1990 A
4969870 Kramer et al. Nov 1990 A
5040542 Gray Aug 1991 A
5042558 Hussey et al. Aug 1991 A
5053017 Chamuel Oct 1991 A
5122114 Miller et al. Jun 1992 A
5207697 Carusillo et al. May 1993 A
5263939 Wortrich Nov 1993 A
5290267 Zimmermann Mar 1994 A
5312364 Jacobs May 1994 A
5332398 Miller et al. Jul 1994 A
5364367 Banks et al. Nov 1994 A
5372583 Roberts et al. Dec 1994 A
5406940 Melzer et al. Apr 1995 A
5451210 Kramer et al. Sep 1995 A
5554154 Rosenberg Sep 1996 A
5575780 Saito Nov 1996 A
5591188 Waisman Jan 1997 A
5601559 Melker et al. Feb 1997 A
5667509 Westin Sep 1997 A
5688249 Chang et al. Nov 1997 A
5779708 Wu Jul 1998 A
5817052 Johnson et al. Oct 1998 A
5853393 Bogert Dec 1998 A
5868711 Kramer et al. Feb 1999 A
5885293 McDevitt Mar 1999 A
5927976 Wu Jul 1999 A
5960797 Kramer et al. Oct 1999 A
5967143 Klappenberger Oct 1999 A
6056165 Speranza May 2000 A
6104162 Sainsbury et al. Aug 2000 A
6117108 Woehr et al. Sep 2000 A
6135769 Kwan Oct 2000 A
6159161 Hodosh Dec 2000 A
6199664 Tkaczyk et al. Mar 2001 B1
6210373 Allmon Apr 2001 B1
6228088 Miller et al. May 2001 B1
6247928 Meller et al. Jun 2001 B1
6270484 Yoon Aug 2001 B1
6273715 Meller et al. Aug 2001 B1
6419490 Kitchings Weathers, Jr. Jul 2002 B1
6458117 Pollins, Sr. Oct 2002 B1
6527778 Athanasiou et al. Mar 2003 B2
6547561 Meller et al. Apr 2003 B2
6602214 Heinz et al. Aug 2003 B2
6626887 Wu Sep 2003 B1
6629959 Kuracina et al. Oct 2003 B2
6641395 Kumar et al. Nov 2003 B2
6652490 Howell Nov 2003 B2
6692471 Boudreaux Feb 2004 B2
6761726 Findlay et al. Jul 2004 B1
6814734 Chappuis et al. Nov 2004 B2
6830562 Mogensen et al. Dec 2004 B2
6875219 Arramon et al. Apr 2005 B2
6905486 Gibbs Jun 2005 B2
6916292 Morawski et al. Jul 2005 B2
6984213 Horner et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
7112191 Daga Sep 2006 B2
7135031 Flint Nov 2006 B2
7214208 Vaillancourt et al. May 2007 B2
7347838 Kulli Mar 2008 B2
7347840 Findlay et al. Mar 2008 B2
7407493 Cane' Aug 2008 B2
7458954 Ferguson et al. Dec 2008 B2
7513888 Sircom et al. Apr 2009 B2
7530965 Villa et al. May 2009 B2
7534227 Kulli May 2009 B2
7569033 Greene et al. Aug 2009 B2
7582102 Heinz et al. Sep 2009 B2
7588559 Aravena et al. Sep 2009 B2
7658725 Bialecki et al. Feb 2010 B2
7670328 Miller Mar 2010 B2
7699807 Faust et al. Apr 2010 B2
7699850 Miller Apr 2010 B2
7736332 Carlyon et al. Jun 2010 B2
7749225 Chappuis et al. Jul 2010 B2
7798994 Brimhall Sep 2010 B2
7811260 Miller et al. Oct 2010 B2
7815642 Miller Oct 2010 B2
7828774 Harding et al. Nov 2010 B2
7833204 Picha Nov 2010 B2
7842038 Haddock et al. Nov 2010 B2
7850620 Miller et al. Dec 2010 B2
7850650 Breitweiser Dec 2010 B2
D633199 MacKay et al. Feb 2011 S
7899528 Miller et al. Mar 2011 B2
7905857 Swisher Mar 2011 B2
7951089 Miller May 2011 B2
7955297 Radmer et al. Jun 2011 B2
7972339 Nassiri et al. Jul 2011 B2
7976502 Baid Jul 2011 B2
8038664 Miller et al. Oct 2011 B2
8043253 Kraft et al. Oct 2011 B2
8043265 Abe et al. Oct 2011 B2
8142365 Miller Mar 2012 B2
8152771 Mogensen et al. Apr 2012 B2
8162904 Takano et al. Apr 2012 B2
8167899 Justis et al. May 2012 B2
8235945 Baid Aug 2012 B2
8246584 Aravena et al. Aug 2012 B2
8273053 Saltzstein Sep 2012 B2
8292891 Browne et al. Oct 2012 B2
8308693 Miller et al. Nov 2012 B2
8333769 Browne et al. Dec 2012 B2
8356598 Rumsey Jan 2013 B2
8357163 Sidebotham et al. Jan 2013 B2
8388541 Messerly et al. Mar 2013 B2
8388623 Browne et al. Mar 2013 B2
8414539 Kuracina et al. Apr 2013 B1
8419683 Miller et al. Apr 2013 B2
8480632 Miller et al. Jul 2013 B2
8480672 Browne et al. Jul 2013 B2
8486027 Findlay et al. Jul 2013 B2
8506568 Miller Aug 2013 B2
8535271 Fuchs et al. Sep 2013 B2
8562615 Browne et al. Oct 2013 B2
8641715 Miller Feb 2014 B2
8647257 Jansen et al. Feb 2014 B2
8656929 Miller et al. Feb 2014 B2
8657790 Tal et al. Feb 2014 B2
8663231 Browne et al. Mar 2014 B2
8668698 Miller et al. Mar 2014 B2
8684978 Miller et al. Apr 2014 B2
8690791 Miller Apr 2014 B2
8715287 Miller May 2014 B2
8771230 White et al. Jul 2014 B2
8781555 Burnside et al. Jul 2014 B2
8801663 Woehr Aug 2014 B2
8812101 Miller et al. Aug 2014 B2
8814835 Baid Aug 2014 B2
8821493 Anderson Sep 2014 B2
8828001 Stearns et al. Sep 2014 B2
8849382 Cox et al. Sep 2014 B2
8870872 Miller Oct 2014 B2
8894654 Anderson Nov 2014 B2
8936575 Moulton Jan 2015 B2
8944069 Miller et al. Feb 2015 B2
8974410 Miller et al. Mar 2015 B2
8998848 Miller et al. Apr 2015 B2
9072543 Miller et al. Jul 2015 B2
9078637 Miller Jul 2015 B2
9149625 Woehr et al. Oct 2015 B2
9173679 Tzachar et al. Nov 2015 B2
9226756 Teisen et al. Jan 2016 B2
9278195 Erskine Mar 2016 B2
9295487 Miller et al. Mar 2016 B2
9302077 Domonkos et al. Apr 2016 B2
9314232 Stark Apr 2016 B2
9314270 Miller Apr 2016 B2
9358348 Weilbacher et al. Jun 2016 B2
9393031 Miller Jul 2016 B2
9414815 Miller et al. Aug 2016 B2
9415192 Kuracina et al. Aug 2016 B2
9421345 Woehr et al. Aug 2016 B2
9427555 Baid Aug 2016 B2
9433400 Miller Sep 2016 B2
9439667 Miller Sep 2016 B2
9439702 Arthur et al. Sep 2016 B2
9445743 Kassab Sep 2016 B2
9451968 Miller et al. Sep 2016 B2
9451983 Windolf Sep 2016 B2
9456766 Cox et al. Oct 2016 B2
9480483 Browne et al. Nov 2016 B2
9492097 Wilkes et al. Nov 2016 B2
9504477 Miller et al. Nov 2016 B2
9521961 Silverstein et al. Dec 2016 B2
9545243 Miller et al. Jan 2017 B2
9554716 Burnside et al. Jan 2017 B2
9615816 Woodard Apr 2017 B2
9615838 Nino et al. Apr 2017 B2
9623210 Woehr Apr 2017 B2
9636031 Cox May 2017 B2
9636484 Baid May 2017 B2
9649048 Cox et al. May 2017 B2
9681889 Greenhalgh et al. Jun 2017 B1
9687633 Teoh Jun 2017 B2
9717564 Miller et al. Aug 2017 B2
9730729 Kilcoin et al. Aug 2017 B2
9782546 Woehr Oct 2017 B2
9839740 Beamer et al. Dec 2017 B2
9844646 Knutsson Dec 2017 B2
9844647 Knutsson Dec 2017 B2
9872703 Miller et al. Jan 2018 B2
9883853 Woodard et al. Feb 2018 B2
9895512 Kraft et al. Feb 2018 B2
9962211 Csernatoni May 2018 B2
10052111 Miller et al. Aug 2018 B2
10092320 Morgan et al. Oct 2018 B2
10092706 Denzer et al. Oct 2018 B2
10159531 Misener et al. Dec 2018 B2
10172538 Kassab Jan 2019 B2
10413211 Kassab Sep 2019 B2
10449330 Newman et al. Oct 2019 B2
D898908 Denzer et al. Oct 2020 S
10893887 Blanchard Jan 2021 B2
10973532 Miller et al. Apr 2021 B2
10973545 Miller et al. Apr 2021 B2
10980522 Muse Apr 2021 B2
11298202 Miller et al. Apr 2022 B2
20030060781 Mogensen et al. Mar 2003 A1
20030225344 Miller Dec 2003 A1
20030225411 Miller Dec 2003 A1
20030229308 Tsals et al. Dec 2003 A1
20040010236 Morawski et al. Jan 2004 A1
20040059317 Hermann Mar 2004 A1
20040220497 Findlay et al. Nov 2004 A1
20040243135 Koseki Dec 2004 A1
20050035014 Cane Feb 2005 A1
20050101912 Faust et al. May 2005 A1
20050113866 Heinz et al. May 2005 A1
20050131345 Miller Jun 2005 A1
20050165403 Miller Jul 2005 A1
20060015066 Turieo et al. Jan 2006 A1
20060025723 Ballarini Feb 2006 A1
20060058826 Evans et al. Mar 2006 A1
20070049945 Miller Mar 2007 A1
20070191772 Wojcik Aug 2007 A1
20070270775 Miller et al. Nov 2007 A1
20070276352 Crocker et al. Nov 2007 A1
20070282344 Yedlicka et al. Dec 2007 A1
20080015467 Miller Jan 2008 A1
20080154304 Crawford et al. Jun 2008 A1
20080208136 Findlay et al. Aug 2008 A1
20080215056 Miller et al. Sep 2008 A1
20080221580 Miller et al. Sep 2008 A1
20080257359 Rumsey Oct 2008 A1
20090048575 Waters Feb 2009 A1
20090054808 Miller Feb 2009 A1
20090093830 Miller Apr 2009 A1
20090194446 Miller et al. Aug 2009 A1
20090204024 Miller Aug 2009 A1
20090306697 Fischvogt Dec 2009 A1
20100004606 Hansen et al. Jan 2010 A1
20100174243 McKay Jul 2010 A1
20100204649 Miller et al. Aug 2010 A1
20100286607 Saltzstein Nov 2010 A1
20100298830 Browne et al. Nov 2010 A1
20100298831 Browne et al. Nov 2010 A1
20100312246 Browne et al. Dec 2010 A1
20110004163 Vaidya Jan 2011 A1
20110028976 Miller Feb 2011 A1
20110202065 Takizawa et al. Aug 2011 A1
20120202180 Stock et al. Aug 2012 A1
20120203154 Tzachar Aug 2012 A1
20120274280 Yip et al. Nov 2012 A1
20130030439 Browne et al. Jan 2013 A1
20130041345 Kilcoin et al. Feb 2013 A1
20130072938 Browne et al. Mar 2013 A1
20130102924 Findlay et al. Apr 2013 A1
20130158484 Browne et al. Jun 2013 A1
20130178807 Baid Jul 2013 A1
20140031674 Newman et al. Jan 2014 A1
20140031794 Windolf Jan 2014 A1
20140039400 Browne et al. Feb 2014 A1
20140081281 Felder Mar 2014 A1
20140142577 Miller May 2014 A1
20140171873 Mark Jun 2014 A1
20140188133 Misener Jul 2014 A1
20140262408 Woodard Sep 2014 A1
20140262880 Yoon Sep 2014 A1
20140276205 Miller et al. Sep 2014 A1
20140276206 Woodward et al. Sep 2014 A1
20140276471 Emery et al. Sep 2014 A1
20140276833 Larsen et al. Sep 2014 A1
20140276839 Forman et al. Sep 2014 A1
20140343454 Miller et al. Nov 2014 A1
20140343497 Baid Nov 2014 A1
20150011941 Saeki Jan 2015 A1
20150045732 Murphy et al. Feb 2015 A1
20150080762 Kassab et al. Mar 2015 A1
20150126931 Holm et al. May 2015 A1
20150196737 Baid Jul 2015 A1
20150223786 Morgan et al. Aug 2015 A1
20150230823 Morgan et al. Aug 2015 A1
20150238733 Bin Abdulla Aug 2015 A1
20150342615 Keinan et al. Dec 2015 A1
20150342756 Bays et al. Dec 2015 A1
20150351797 Miller et al. Dec 2015 A1
20150366569 Miller Dec 2015 A1
20150367487 Nino et al. Dec 2015 A1
20160022282 Miller et al. Jan 2016 A1
20160022284 Lele et al. Jan 2016 A1
20160058432 Miller Mar 2016 A1
20160066954 Miller et al. Mar 2016 A1
20160136410 Aklog et al. May 2016 A1
20160183974 Miller Jun 2016 A1
20160184509 Miller et al. Jun 2016 A1
20160235949 Baid Aug 2016 A1
20160305497 Victor et al. Oct 2016 A1
20160354539 Tan et al. Dec 2016 A1
20160361519 Teoh et al. Dec 2016 A1
20170020533 Browne et al. Jan 2017 A1
20170020560 Van Citters et al. Jan 2017 A1
20170021138 Sokolski Jan 2017 A1
20170043135 Knutsson Feb 2017 A1
20170105763 Karve et al. Apr 2017 A1
20170136217 Riesenberger et al. May 2017 A1
20170151419 Sonksen Jun 2017 A1
20170156740 Stark Jun 2017 A9
20170156751 Csernatoni Jun 2017 A1
20170209129 Fagundes et al. Jul 2017 A1
20170231644 Anderson Aug 2017 A1
20170303962 Browne et al. Oct 2017 A1
20170303963 Kilcoin et al. Oct 2017 A1
20180049772 Brockman et al. Feb 2018 A1
20180092662 Rioux et al. Apr 2018 A1
20180116551 Newman et al. May 2018 A1
20180116642 Woodard et al. May 2018 A1
20180116693 Blanchard et al. May 2018 A1
20180117262 Islam May 2018 A1
20180125465 Muse et al. May 2018 A1
20180153474 Aeschlimann Jun 2018 A1
20180154112 Chan et al. Jun 2018 A1
20180221003 Hibner et al. Aug 2018 A1
20180228509 Fojtik Aug 2018 A1
20180242982 Laughlin et al. Aug 2018 A1
20190059986 Shelton, IV Feb 2019 A1
20190069812 Isaacson Mar 2019 A1
20190083753 Chu Mar 2019 A1
20190175220 Coppedge Jun 2019 A1
20190282244 Muse Sep 2019 A1
20200054347 Coppedge et al. Feb 2020 A1
20200054410 Pfotenhauer et al. Feb 2020 A1
20200113584 McGinley et al. Apr 2020 A1
20200129186 Miller et al. Apr 2020 A1
20200197121 Morey et al. Jun 2020 A1
20200297382 Coppedge et al. Sep 2020 A1
20200297452 Coppedge et al. Sep 2020 A1
20200337782 Glassman Oct 2020 A1
20210093357 Pett et al. Apr 2021 A1
20210093358 Lindekugel et al. Apr 2021 A1
20210282812 Tierney et al. Sep 2021 A1
20210322055 Lindekugel et al. Oct 2021 A1
20210375445 Lindekugel et al. Dec 2021 A1
20220240976 Pett et al. Aug 2022 A1
20220249104 Pett et al. Aug 2022 A1
20230106545 Pett et al. Apr 2023 A1
20230285049 Howell Sep 2023 A1
20230414251 Pett et al. Dec 2023 A1
Foreign Referenced Citations (62)
Number Date Country
108742795 Nov 2018 CN
110547847 Dec 2019 CN
0923961 Jun 1999 EP
2390297 Nov 2012 ES
2581548 Nov 1986 FR
2018509969 Apr 2018 JP
20090006621 Jan 2009 KR
1997024151 Jul 1997 WO
1998052638 Feb 1999 WO
2005046769 May 2005 WO
05041790 May 2005 WO
2005053506 Jun 2005 WO
2005072625 Aug 2005 WO
2007018809 Feb 2007 WO
2008002961 Jan 2008 WO
2008016757 Feb 2008 WO
2008033871 Mar 2008 WO
2008033872 Mar 2008 WO
2008033873 Mar 2008 WO
2008033874 Mar 2008 WO
2008054894 May 2008 WO
2008086258 Jul 2008 WO
2008124206 Oct 2008 WO
2008124463 Oct 2008 WO
2008130893 Oct 2008 WO
2008134355 Nov 2008 WO
2008144379 Nov 2008 WO
2009070896 Jun 2009 WO
2010043043 Apr 2010 WO
2011070593 Jun 2011 WO
2011097311 Aug 2011 WO
2011139294 Nov 2011 WO
2013009901 Jan 2013 WO
2013173360 Nov 2013 WO
2014075165 May 2014 WO
2014142948 Sep 2014 WO
2014144239 Sep 2014 WO
2014144262 Sep 2014 WO
2014144489 Sep 2014 WO
2014144757 Sep 2014 WO
2014144797 Sep 2014 WO
2015177612 Nov 2015 WO
2016033016 Mar 2016 WO
16053834 Apr 2016 WO
2016085973 Jun 2016 WO
2016163939 Oct 2016 WO
18006045 Jan 2018 WO
2018025094 Feb 2018 WO
2018058036 Mar 2018 WO
2018075694 Apr 2018 WO
18098086 May 2018 WO
2018165334 Sep 2018 WO
2018165339 Sep 2018 WO
2019051343 Mar 2019 WO
2019164990 Aug 2019 WO
2021011795 Jan 2021 WO
2021016122 Jan 2021 WO
2021062385 Apr 2021 WO
2021062038 Apr 2021 WO
2021062394 Apr 2021 WO
2022165232 Aug 2022 WO
2022170269 Aug 2022 WO
Non-Patent Literature Citations (37)
Entry
PCT/US2022/014391 filed Jan. 28, 2022 International Search Report and Written Opinion dated Apr. 14, 2022.
PCT/US2022/015686 filed Feb. 8, 2022 International Search Report and Written Opinion dated May 25, 2022.
U.S. Appl. No. 17/031,650, filed Sep. 24, 2020 Final Office Action dated Jul. 20, 2022.
U.S. Appl. No. 17/031,650, filed Sep. 24, 2020 Notice of Allowance dated Oct. 12, 2022.
U.S. Appl. No. 17/035,336, filed Sep. 28, 2020 Restriction Requirement dated Jul. 26, 2022.
U.S. Appl. No. 17/035,272, filed Sep. 28, 2020 Non-Final Office Action dated Mar. 9, 2023.
U.S. Appl. No. 17/035,272, filed Sep. 28, 2020 Restriction Requirement dated Dec. 9, 2022.
U.S. Appl. No. 17/035,336, filed Sep. 28, 2020 Notice of Allowance dated Jan. 11, 2023.
U.S. Appl. No. 17/235,134, filed Apr. 20, 2021 Restriction Requirement dated Mar. 7, 2023.
Ekchian Gregory James et al: “Quantitative Methods for In Vitro and In Vivo Characterization of Cell and Tissue Metabolism”, Jun. 11, 2018, XP055839281, retrieved from the internet on Sep. 8, 2021 : URL: https://dspace.mit.edu/bitstream/handle/1721.1/117890/1051211749-MIT.pdf?sequence=1&isAllowed=y.
PCT/US2019/ 018828 filed Feb. 20, 2019 International Preliminary Report on Patentability dated Aug. 27, 2020.
PCT/US2019/ 018828 filed Feb. 20, 2019 International Search Report and Written Opinion dated Jun. 13, 2019.
PCT/US2020/ 053119 filed Sep. 28, 2020 International Search Report and Written Opinion dated Jan. 5, 2021.
PCT/US2020/052558 filed Sep. 24, 2020 International Search Report and Written Opinion dated Feb. 11, 2021.
PCT/US2020/053135 filed Sep. 28, 2020 International Search Report and Written Opinion dated Dec. 18, 2020.
PCT/US2021/ 035232 filed Jun. 1, 2021 International Search Report and Written Opinion dated Oct. 19, 2021.
PCT/US2021/028114 filed Apr. 20, 2021 International Search Report and Written Opinion dated Jul. 12, 2021.
PCT/US2021/035475 filed Jun. 2, 2021 International Search Report and Written Opinion dated Sep. 17, 2021.
U.S. Appl. No. 17/031,650, filed Sep. 24, 2020 Non-Final Office Action dated Jan. 19, 2022.
PCT/US2021/ 046573 filed Aug. 18, 2021 International Search Report and Written Opinion dated Nov. 30, 2021.
PCT/US2021/ 047378 filed Aug. 24, 2021 International Search Report and Written Opinion dated Nov. 17, 2021.
PCT/US2021/ 048542 filed Aug. 31, 2021 International Search Report and Written Opinion dated Dec. 9, 2021.
PCT/US2021/ 049475 filed Sep. 8, 2021 International Search Report and Written Opinion dated Dec. 9, 2021.
EP 19757667.1 filed Sep. 18, 2020 Extended European Search Report dated Oct. 22, 2021.
EP 20867024.0 filed Apr. 21, 2022 Extended European Search Report dated Aug. 8, 2023.
EP 20868351.6 filed Apr. 21, 2022 Extended European Search Report dated Aug. 10, 2023.
EP 23166984.7 filed Apr. 6, 2023 Extended European Search Report dated Jul. 5, 2023.
PCT/US2023/015127 filed Mar. 13, 2023 International Search Report and Written Opinion dated Jun. 26, 2023.
U.S. Appl. No. 17/035,272, filed Sep. 28, 2020 Notice of Allowance dated Jul. 7, 2023.
U.S. Appl. No. 17/235,134, filed Apr. 20, 2021 Non-Final Office Action dated Jun. 27, 2023.
U.S. Appl. No. 17/335,870, filed Jun. 1, 2021 Restriction Requirement dated Jul. 25, 2023.
U.S. Appl. No. 17/667,291, filed Feb. 8, 2022 Restriction Requirement dated May 31, 2023.
U.S. Appl. No. 17/235,134, filed Apr. 20, 2021 Notice of Allowance dated Sep. 20, 2023.
U.S. Appl. No. 17/469,613, filed Sep. 8, 2021 Restriction Requirement dated Oct. 23, 2023.
U.S. Appl. No. 17/667,291, filed Feb. 8, 2022 Non-Final Office Action dated Aug. 31, 2023.
U.S. Appl. No. 17/469,613, filed Sep. 8, 2021 Non-Final Office Action dated Jan. 19, 2024.
U.S. Appl. No. 17/863,898, filed Jul. 13, 2022 Final Office Action dated Nov. 22, 2023.
Related Publications (1)
Number Date Country
20210378707 A1 Dec 2021 US
Provisional Applications (1)
Number Date Country
63034338 Jun 2020 US