Intrasaccular inverting braid with highly flexible fill material

Information

  • Patent Grant
  • 11602350
  • Patent Number
    11,602,350
  • Date Filed
    Thursday, December 5, 2019
    5 years ago
  • Date Issued
    Tuesday, March 14, 2023
    a year ago
Abstract
A tubular braided implant is provided including a braid that can be delivered as a single layer braid, invert into itself during deployment to form at least two nested sacks and include additional braid material that can fill the innermost sack. The additional braid material can loop or coil like a ribbon and/or invert to form smaller and smaller nested sacks. The braid can have a variable braid angle along its length such that when positioned for delivery, the can have a high braid angle near its distal end and a low braid angle near the proximal end. In addition, or as a replacement for the braid material that fills the innermost sack, the implant can include an embolic coil that can loop within the innermost sack.
Description
FIELD OF INVENTION

The present invention generally relates to medical instruments, and more particularly, to embolic implants for aneurysm therapy.


BACKGROUND

Cranial aneurysms can be complicated and difficult to treat due to their proximity to critical brain tissues. Prior solutions have included endovascular treatment whereby an internal volume of the aneurysm sac is removed or excluded from arterial blood pressure and flow. Current alternatives to endovascular or other surgical approaches can include intravascularly delivered treatment devices that fill the sac of the aneurysm with embolic material or block the entrance or neck of the aneurysm. Both approaches attempt to prevent blood flow into the aneurysm. When filling an aneurysm sac, the embolic material clots the blood, creating a thrombotic mass within the aneurysm. When treating the aneurysm neck, blood flow into the entrance of the aneurysm is inhibited, inducing venous stasis in the aneurysm and facilitating a natural formation of a thrombotic mass within the aneurysm.


Current intravascularly delivered devices typically utilize multiple embolic coils to either fill the sac or treat the entrance of the aneurysm. Naturally formed thrombotic masses formed by treating the entrance with embolic coils can result in improved healing compared to aneurysm masses packed with embolic coils because naturally formed thrombotic masses can reduce the likelihood of distention from arterial walls and facilitate reintegration into the original parent vessel shape along the neck plane. However, embolic coils delivered to the neck of the aneurysm can potentially have the adverse effect of impeding the flow of blood in the adjoining blood vessel, particularly if the entrance is overpacked. Conversely, if the entrance is insufficiently packed, blood flow can persist into the aneurysm. Treating certain aneurysm morphology (e.g. wide neck, bifurcation, etc.) can require ancillary devices such a stents or balloons to support the coil mass and obtain the desired packing density. Once implanted, the coils cannot easily be retracted or repositioned. Furthermore, embolic coils do not always effectively treat aneurysms as aneurysms treated with multiple coils often recanalize or compact because of poor coiling, lack of coverage across the aneurysm neck, blood flow, or large aneurysm size.


Alternatives to embolic coils are being explored, for example a tubular braided implant is disclosed in U.S. Patent Publication Number 2018/0242979, incorporated herein by reference. Tubular braided implants have the potential to easily, accurately, and safely treat an aneurysm or other arterio-venous malformation in a parent vessel without blocking flow into perforator vessels communicating with the parent vessel. Compared to embolic coils, however, tubular braided implants are a newer technology, and there is therefore capacity for improved geometries, configurations, delivery systems, etc. for the tubular braided implants.


There is therefore a need for improved methods, devices, and systems for implants for aneurysm treatment.


SUMMARY

It is an object of the present invention to provide systems, devices, and methods to meet the above-stated needs. Generally, it is an object of the present invention to provide a tubular braided implant including a braid that can be delivered as a single layer braid, can invert into itself during deployment to form at least two nested sacks, and can include additional braid material that can fill the innermost sack. The additional braid material can loop or coil like a ribbon and/or invert to form smaller and smaller nested sacks. In order to have an implant that can invert and fill an aneurysm, the braid can be made such that the distal end, the braid is made stronger, having a tendency to move toward a predetermined shape when implanted and forming the two nested sacks, and at the proximal end, the braid can be made weaker, having a tendency to flatten and fold in a ribbon shape inside of the sacks. The braid can have a variable braid angle along its length such that when positioned for delivery, the braid can have a high braid angle near its distal end and a low braid angle near the proximal end. In addition to the variable braid angle, or as an alternative, the braid can be heat treated to weaken the braid at the proximal end. In addition, or as a replacement for the braid material that fills the innermost sack, the implant can include an embolic coil that can loop within the innermost sack.


An example method for treating an aneurysm can include one or more of the following steps presented in no particular order. The example method can further include additional steps not listed here. A substantially tubular braid can be selected that has a first end, a second end, a first portion extending from the first end, and a second portion extending from the second end. The substantially tubular braid can be selected such that the braid, when in a single layer cylindrical shape having a uniform circumference along a length from one end of the braid to the other end of the braid, the braid has a smaller braid angle in the second portion of the braid compared to the first portion of the braid. The braid can be selected such that, when in the single layer cylindrical shape, the braid has a continuously decreasing braid angle extending from the first portion to the second portion.


The braid can be delivered through a microcatheter to an aneurysm. The braid can be delivered in the single layer tubular shape such that the first end is positioned in the distal direction in relation to the second end.


The first portion of the braid can be expanded to the aneurysm's wall. A proximal inversion can be formed in the braid at the aneurysm's neck. An inverted portion of the braid can be expanded to press into the expanded first portion. A distal inversion can be formed in the braid at a distal portion of the aneurysm's wall such that the inverted portion of the braid extends between the distal and proximal inversions.


The braid can be shaped to form a dome near the distal portion of the aneurysm's wall within the inverted portion. Additionally, or alternatively, the braid can be twisted at the distal inversion and the braid can be expanded to form a sack within the inverted portion.


The second portion of the braid can be positioned within the inverted portion, either directly in contact with the inverted portion, within sacks formed within the inverted portion, or otherwise positioned in the inverted portion. The second portion of the braid can be positioned such that the second portion is flattened and looped within the inverted portion.


An embolic coil can be selected. The embolic coil can be positioned such that it is affixed to the second end of the braid. The embolic coil can be delivered through the microcatheter to the aneurysm. The embolic coil can be positioned within the inverted portion of the implanted braid.


An example implant can include a tubular braid with two ends that is shapeable to a single layer cylindrical shape having a length measurable from one end to the other end, a substantially uniform circumference along the length, a larger braid angle on a first portion of the braid extending from a first of the two ends, and a smaller braid angel on a second portion of the braid extending from a second of the two ends. In the single layer cylindrical shape, the braid can have a continuously decreasing braid angle extending from the first portion to the second portion. In the single layer tubular shape, the braid can be sized to be delivered through a microcatheter to an aneurysm.


The braid can be movable from the single layer cylindrical shape to an implanted shape. In the implanted shape, the first portion can be positioned to appose an aneurysm wall, an inverted sack can be positioned to press the first portion to the aneurysm wall, and the second portion can be positioned within the inverted sack. In the implanted shape, at least a portion of the second portion of the braid can be looped within the inverted portion. In the implanted shape, the second portion can be positioned to press the inverted portion to the first portion.


In the implanted shape, an inner sack can be positioned to press the inverted sack to the first portion, the braid can have an inversion separating the inner sack and the inverted sack, and the braid can be twisted at the inversion.


In the implanted shape, the braid can have a dome shape within the inverted sack positioned near a distal portion of the aneurysm's wall.


The implant can further include an embolic coil affixed to the second end of the braid. In the implanted shape, the braid can be shaped to allow the embolic coil to be positioned within the inverted sack, either in direct contact with the inverted sack, separated from the inverted sack by braid material, or otherwise positioned in the inverted sack.


Another example implant can include a tubular braid having a first end and a second end. The braid can have a predetermined shape having two inversions dividing the braid into three segments: an outer segment extending from the first end to a first inversion of the two inversions, a middle segment extending between the two inversions and at least partially surrounded by the outer segment, and an inner segment extending from the second of the two inversions to the second end and at least partially surrounded by the middle segment. In the predetermined shape, the braid can have an abrupt change in braid angle at a position on the inner segment such that a distal portion of the inner segment extending from the second inversion has a higher braid angle than a proximal portion of the inner segment extending from the second end.


The braid can be movable to an implanted shape sized to be positioned within an aneurysm sac. In the implanted shape, a part of the braid corresponding to the inner segment in the predetermined shape can be collapsed to a ribbon shape and positioned in an inverted sack formed from a part of the braid corresponding to the middle segment in the predetermined shape.


The braid can be shaped to a single layer cylindrical shape having a substantially uniform circumference between the two ends of the braid, a larger braid angle in a first portion of the braid extending from the first end, and a smaller braid angle in a second portion of the braid extending from the second end. In the single layer cylindrical shape, the braid can have a continuously decreasing braid angle from the first portion to the second portion. In the single layer cylindrical shape, the braid can be sized to be delivered through a microcatheter to an aneurysm.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and further aspects of this invention are further discussed with reference to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the invention. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation.



FIG. 1 is an illustration of an implant having a braid shaped for delivery through a catheter according to aspects of the present invention;



FIG. 2 is an illustration of an implant having a braid in a predetermined shape according to aspects of the present invention;



FIGS. 3A through 3I are illustrations of steps of an aneurysm treatment process according to aspects of the present invention;



FIG. 4 is an illustration of an implant having a braid twisting near a distal inversion according to aspects of the present invention;



FIGS. 5A through 5B are illustrations of steps of an aneurysm treatment process according to aspects of the present invention;



FIG. 6 is an illustration of an implant having a braid and an embolic coil each shaped for delivery through a catheter according to aspects of the present invention;



FIG. 7 is an illustration of an implant having a braid and an embolic coil with the braid in a predetermined shape according to aspects of the present invention;



FIG. 8 is an illustration of an implant having a braid and an embolic coil implanted in an aneurysm according to aspects of the present invention; and



FIG. 9 is a flow diagram listing method steps that can be performed according to aspects of the present invention.





DETAILED DESCRIPTION

In known treatments of wide neck aneurysms, the aneurysm is typically treated by placing embolic coils within the aneurysm sac and placing a stent within the parent blood vessel across the aneurysm neck. The stent is necessary in many cases to inhibit the embolic coils from entering the parent blood vessel. If embolic coils enter the parent blood vessel, the coils can obstruct the vessel and/or clots can form on the coils within the blood vessel and create an obstruction in the parent blood vessel. Braided aneurysm intrasaccular implants can be used to treat wide neck aneurysms without requiring a stent to secure the braided implant at the aneurysm neck. However, to achieve the forces necessarily to anchor braided implants in a wide neck bifurcation, the braid can be stiff and resistant to reshaping to an implanted shape that is significantly different than a predetermined shape. It can therefore be challenging, in some cases, to pack the aneurysm with a sufficient braid density to quickly and effectively induce blood stasis within the aneurysm sac. A braid made too soft can compact in shape and cause the aneurysm to recanalize as the implant is no longer sealing the neck of the aneurysm.


Aspects of the present invention are directed to address the above challenges. In examples presented herein, a tubular braided implant can include a braid that can be delivered as a single layer braid, can invert into itself during deployment to form at least two nested sacks, and can include additional braid material that can fill the innermost sack. The additional braid material can loop or coil like a ribbon and/or invert to form smaller and smaller nested sacks. An aspect of the present invention is to provide a structure that allows a sufficient amount of additional braid material to be placed into the innermost sack such that the aneurysm clots quickly for an effective treatment.


When used herein, the terms “tubular” and “tube” are to be construed broadly and are not limited to a structure that is a right cylinder or strictly circumferential in cross-section or of a uniform cross-section throughout its length. For simplicity, tubular structures are generally illustrated herein as having a substantially right cylindrical structure. However, a tubular structure can have a tapered or curved outer surface without departing from the scope of the present invention.


To meet the competing needs for braid stiffness to achieve secure anchoring within the aneurysm and braid softness to deform the braid to a high packing density within the aneurysm, the braid can be made such that portions of the braid pushed into the aneurysm when the aneurysm has a higher packing density are weaker compared to stiffer portions of the braid that expand to anchor the braid within the aneurysm. Stiffness/flexibility of the braid portions can be controlled by braid angle (e.g. picks per inch), strand diameter, number of strands, material of strands, and/or treatment (e.g. heat treatment) to modify strand material properties, etc. A stiffer portion can have a higher braid angle, a larger strand diameter, more strands, strands comprising a stiffer material, and/or strands treated to have greater stiffness compared to a weaker portion.


Stiffer portions of the braid can be positioned near a distal end of the braid when the braid is being delivered through a catheter so that the stiffer portions of the braid exit the catheter and expand to anchor in the aneurysm before the aneurysm is packed. Stiffer portions of the braid can be shaped in a predetermined shape by heat setting or other means such that when the stiffer portions, they expand toward the predetermined shape. The tendency of the stiffer portions of the braid to expand toward the predetermined shape can create sufficient force against the aneurysm walls to anchor the braid in the aneurysm sac. Weaker portions of the braid can be positioned near the proximal end of the braid when the braid is delivered through the catheter. Portions of the braid which have the most flexibility can be dynamically deformed to loop or nest within the aneurysm, folding within the stiffer, anchoring portions of braid.


In addition, or as a replacement for the braid material that fills the innermost sack, the implant can include an embolic coil that can loop within the innermost sack.


Examples presented herein generally include a braided implant that can secure within an aneurysm sac and occlude a majority of the aneurysm's neck. The implant can include a tubular braid having a stiffer portion and a weaker portion, at least the stiffer portion being set into a predetermined shape, the braid being compressible for delivery through a microcatheter, and the braid being implantable in an implanted position that is based on the geometry of the aneurysm in which the braid is implanted and based at least in part on the predetermined shape.


An example implant 100, as illustrated in FIG. 1 can include a braid 110 that can be shaped into a substantially tubular, single layer shape having a length L measured between each end 112, 114 and a variable stiffness along the length L. As illustrated, stiffness can be determined at least in part by braid angle θ1, θ2, θ3, θ4. For ease of discussion, weaker, more flexible portions of braid are illustrated as having a lower braid angle compared to stronger, stiffer portions of the braid; however, weaker and stiffer portions of the braids can differ in strand diameter, number of strands, material of strands, be treated to have differing stiffness/flexibility, and/or by other means as would be appreciated and understood by a person of ordinary skill in the art. Further, example implants comprising braid segments of differing stiffness can include two separate sections joined to form a braid, and the braid need not include the segments of differing stiffness as a contiguous braided tube.


In the single layer tubular shape illustrated in FIG. 1, the braid 110 can have a circumference C that is substantially uniform along the length L. The tubular shape can have a central axis A extending along the length of the braid 110. A braid angle θ1, θ2, θ3, θ4 can be measured by comparing the tangential trajectory of a braid strand to the central axis A as illustrated and as would otherwise be understood by a person of ordinary skill in the art according to the teachings herein.


The braid can include a number of strands, for example, from about 4 to about 96 strands, each extending from one braid end 112 to the other 114. As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values ±20% of the recited value, e.g. “about 90%” may refer to the range of values from 71% to 99%. The strands can wrap helically around the circumference C. The number of strands, angle of strands, diameter of the strands, material of strands, and material properties of strands, can all be factors in controlling material properties of the braid 110, including porosity and flexibility. Braid strands can be woven such that about half of the strands wrap in a clockwise helix, the other half wraps in a counterclockwise helix, and the oppositely wrapping strands cross over and under each other in an alternating fashion. Constructed as such, portions of the braid having a higher braid angle can therefore having a higher density of strands compared to portions of the braid having lower braid angle. Higher strand density can result in a denser, stiffer braid portion.


The strands can be made from multiple alloys such as a nickel-titanium alloy, cobalt chromium alloys, platinum, nitinol, stainless steel, tantalum, or other alloys, or any other suitable biocompatible materials, or combination of these materials. Also, these materials can be absorbable or non-absorbable by the patient over time. Some or all of braid 110 can be a multi-filament cylindrical mesh made preferably of nitinol with interwoven platinum filaments for radiopacity or Drawn Filled Tube (DFT) Nitinol with about 10 to about 40% platinum. The apertures in the mesh of braid 110 can also create a substantially unitary frame work or mesh. Thus, the apertures can have variable size, shape, or porosity, and may be uniformly or randomly spaced throughout the wall of the mesh of braid 110. The apertures can provide the braid 110 with flexibility and also assist in the transformation of the braid from the collapsed state to the expanded, deployed state, and vice versa.


The braid 110 as illustrated in FIG. 1 depicts four braid angles θ1, θ2, θ3, θ4 that increase as measured from the proximal end 112 of the braid 110 to the distal end 114 with the braid angle θ4 in the proximal portion 116 of the braid 110 being the smallest, the braid angle θ3 in the section immediate distal to the proximal portion 116 being larger than the braid angle θ4 in the proximal portion 116, the braid angle θ2 in the next distal section being larger than the angle θ3 in the section immediately proximal to it, and the braid angle θ1 in the distal most section 118 of the braid 110 being the largest. As would be appreciated and understood, the braid 110 can include two or more sections having differing braid angles and thereby differing stiffness/flexibility. The braid can additionally include a continuous gradient change in braid angle and thereby continuous gradient change in stiffness/flexibility from one braid section to another, for instance the braid angle can change continuously from the proximal portion 116 to the distal portion 118.


The implant 100 can be delivered to an aneurysm when the braid 110 is sized to traverse a catheter. For instance, the braid 110 can be delivered in the single-layer tubular shape as illustrated in FIG. 1 such that one end of the braid 114 is a distal end positioned to exit the catheter before the remainder of the braid 110 and the other end 112 is a proximal end positioned to exit the catheter after the remainder of the braid 110. Alternatively, the braid can be delivered in other shapes that include folds, inversions, and/or multiple layers. Regardless of the delivery shape, the braid 110 can have a distal portion 118 positioned to exit the catheter before the remainder of the braid 110 and a proximal portion 116 positioned to exit the catheter after the remainder of the braid 110. The distal portion 118 can have a high braid angle θ1 such that the distal portion 118 has sufficient stiffness to anchor the braid 110 within the aneurysm. The proximal portion 116 can have a low braid angle θ4 such that the proximal portion has sufficient flexibility to collapse into an aneurysm sac containing the remainder of braid 110. The implant 100 can further include a detachment feature 150 configured to be detachably attached to an implant delivery system. The detachment feature 150 can be affixed to the braid 110 at the proximal end 112 of the braid 110.



FIG. 2 illustrates a braid 110 such as the braid 110 illustrated in FIG. 1 shaped into a predetermined shape. The braid 110 can include a memory shape material such as Nitinol, a Nitinol alloy, a polymer memory shape material, or other memory shape material having properties for reshaping as described herein. The braid 110 can be set to the predetermined shape by heat setting or other means as appreciated and understood by a person of ordinary skill in the art. The braided segment 110 can be collapsed from the predetermined shape to a deformed shape sized to traverse a microcatheter to an aneurysm. Upon contact with blood when exiting the microcatheter, the braid 110 can move from the deformed shape toward the predetermined shape. The anatomy of the aneurysm and treatment site can inhibit the braid 110 from moving to the predetermined shape such that when the braid 110 is deployed, it can take on a deployed shape that is based in part on the predetermined shape and the shape of the anatomy in which the braid is implanted.


In the predetermined shape, the braid 110 can include two inversions 122, 124 and a pinch point 126 dividing the braid 110 into four segments 142, 144, 146, 130. In the predetermined shape, the braid 110 can have an outer segment 142 extending from the open end 114 of the braid 110 to a first inversion 122 of the two inversions 122, 124, a middle segment 144 extending between the two inversions 122, 124, an inner segment 146 extending from a second inversion 124 of the two inversions 122, 124 to the pinched point 126 of the braid 110, and an elongated section 130 extending from the pinch point 126 to an opposite end 112 of the braid 110. When in the predetermined shape, the tubular braid 110 can be substantially radially symmetrical around a central vertical axis y.



FIG. 2 illustrates a profile of each segment 142, 144, 146, 130. The detachment feature 150 is illustrated as a flat key that can be used with a mechanical implant delivery system (not illustrated). Example implant delivery systems are described, for instance, in U.S. Patent Application Publication Numbers 2019/0192162 and 2019/0328398 each incorporated herein by reference as if set for in their entireties herein. During delivery and/or positioning of the implant, the key 150 can be visualized radiographically. The key 150 can be released from the delivery system, thereby releasing the implant 100 from the delivery system. When the implant is released, the key can remain attached to the implant.


The tubular braid 110 can be formed into the predetermined shape by first pinching the braid 110 at the pinch point 126, then inverting the braid outwardly to separate the inner segment 146 from the middle segment 144 with an inversion 124, then shaping the middle segment 144 over a form to produce the substantially “S” shaped profile illustrated, and finally, inverting the braid 110 outwardly again to separate the middle segment 144 from the outer segment 142 with another inversion 122. Optionally, the braid can be trimmed at the open end 114 and/or the proximal end 112. The open end 114 can be positioned to encircle the middle segment 144. The open end 114 can positioned within the middle third section of the braid's height as illustrated. Alternatively, the open end 114 can be positioned elsewhere, such as near the distal inversion 124.


The outer sack 142 can correspond to the distal portion 118 of the braid 110 as illustrated in FIG. 1. The distal portion 118 can have a substantially uniform braid angle θ1 along its length when the single layer tubular shape illustrated in FIG. 1 The braid 110 can have an abrupt braid angle change at the proximal inflection 122. The braid 110 can have a graduated braid angle change through the middle section 144 and inner section 146. The tail 130 can have a braid angle θ4 that is substantially consistent along the length of the tail 130. The tail 130 can correspond to the proximal portion 116 of the braid 110 in the single layer tubular shape as illustrated in FIG. 1.


Alternatively, sections 142, 144, 146 distal to the pinch point 126 can have a high braid angle θ1 that is consistent along the length of those sections 142, 144, 146 when the braid 110 is in a single layer tubular shape, the tail section 130 can have a low braid angle θ4 consistent along its length, and the braid 110 can have an abrupt change in braid angle at the pinch point 126. The tail 130 can be sufficiently flexible such that, when manipulated at an intravascular treatment site, it flattens to a ribbon shape and folds onto itself. Alternatively, braid 110 can include an abrupt braid angle change at the proximal inflection 122, at the distal inflection 124, at the pinch point 126, or any combination thereof.


Strands of the braid 110 at the open end 114 can be free, cut ends; or, alternatively, the strands at the open end 114 be closed, meaning strands within the braid at the open end 114 are attached to each other by glue, weld, etc. or the strands bend back at the open end 114. Free cut ends can have an advantage of being easier to manufacture while the closed strand ends can have an advantage of being more atraumatic compared to the cut ends.



FIGS. 3A through 3I illustrate an implant 100 such as the implant 100 illustrated in FIGS. 1 and/or 2 being implant in an aneurysm 10 via a catheter 20. The size of the catheter 20 can be selected in consideration of the size, shape, and directionality of the aneurysm or the body lumens the catheter must pass through to get to the treatment site. The catheter 20 can have a total usable length from about 80 centimeters to about 170 centimeters. The catheter 20 can have an inner diameter ID of from about 0.015 to about 0.032 inches. The outer diameter OD can also range in size and may narrow at either its proximal end or distal end. At its proximal end 26, the catheter 20 can be manually operated by the end-user, and at its distal end can be operable, as illustrated, to be positioned at the neck 16 of the aneurysm 10. While the distal end of the catheter 20 can contain the implant 100, the distal end can be varied in shape and can curve at an angle.



FIG. 3A illustrates the open end 114 of the braid 110 expanding within a sac 12 of the aneurysm 10 to contact walls 14 of the aneurysm 10. The section 142′ contacting the aneurysm wall 14 can correspond to the outer 142 section in the predetermined shape illustrated in FIG. 2 and/or the distal, stiffer portion 118 of the braid 110 illustrated in FIG. 1. The implant 100 can be selected for treatment such that the selected implant 100 has an outer segment 142 in the predetermined shape having a circumference greater than the circumference of the aneurysm sac 12, meaning the section 142′ of the braid 110 contacting the aneurysm wall provides a force against the aneurysm wall 14 as it tends to expand to the predetermined shape. The implanted shape of the outer section 142′ can thereby be smaller in circumference than the predetermined shape of the outer section 142.



FIG. 3B illustrates the braid 110 inverting to form a proximal inversion 122′ in the implanted shape. The proximal inversion 122′ can correspond to the proximal inversion 122 in the predetermined shape.



FIG. 3C illustrates the braid 110 expanding within the outer section 142′.



FIG. 3D illustrates the braid forming an inner sack 144′ inside of the outer section 142′. A distal inversion 124′ is illustrated positioned near a distal portion 15 of the aneurysm wall 14. The distal inversion 124′ can correspond to a distal inversion 124 of the braid 110 in the predetermined shape. The inner sack 144′ can correspond to the middle segment 144 in the predetermined shape illustrated in FIG. 2. The inner sack 144′ can correspond to the stiff, distal portion 118 of the braid 110 illustrated in FIG. 1 and/or a portion of the braid 110 having less stiffness than the distal portion 118. The inner sack 144′ can correspond to a portion of the braid 110 having greater stiffness than the flexible proximal portion 116 illustrated in FIG. 1.



FIG. 3E illustrates a collapsible portion 146′ of the braid 110 further exiting the catheter 20 and expanding within the inner sack 144′. The collapsible portion 146′ can correspond to the inner segment 146 of the braid 110 in the predetermined shape. The collapsible portion 146′ can correspond to the stiff, distal portion 118 of the braid 110 illustrated in FIG. 1 and/or a portion of the braid 110 having less stiffness than the distal portion. The collapsible portion 146′ can correspond to a portion of the braid 110 having greater stiffness than the flexible proximal portion 116 illustrated in FIG. 1.



FIG. 3F illustrates the collapsible portion 146′ forming a dome near the distal inversion 124′. A pinch point 126′ is illustrated on the proximal side of the dome formed by the collapsible portion 146′. The pinch point 126′ in the implanted shape can correspond to the pinch point 126 in the predetermined shape.



FIG. 3G illustrates a proximal tail 130′ of the braid 110 flattening to a ribbon shape and folding within a space defined by the inner sack 144′ and the dome of the collapsible portion 146′. The proximal tail 130′ can correspond to the proximal tail 130 of the braid in the predetermined shape as illustrated in FIG. 2. The proximal tail 130′ can correspond to the flexible, proximal portion 116 illustrated in FIG. 1.



FIG. 3H illustrates additional length of the proximal tail 130′ folding within the space defined by the inner sack 144′ and the dome of the collapsible portion 146′.



FIG. 3I illustrates the implant 100 in a final implanted shape. The outer section 142′, inner sack 144′, and collapsible portion 146′ are illustrated in cross-section to better illustrate the folded ribbon shape of the proximal tail 130′.



FIG. 4 illustrates an alternative implanted shape of a braid 110. As illustrated in FIG. 4, the braid 110 can include a twist 125 near the distal inversion 124′. Either with the twist 125 as illustrated in FIG. 4, or without the twist, as illustrated in FIG. 3I, the inner sack 144′ can provide a force F1 pressing into the aneurysm wall 14 and/or the outer section 142′, depending on the coverage of the outer section 142′. The outer section 142′ is also illustrated in an alternative configuration such that the open end 114 is positioned approximate the distal portion 15 of the aneurysm wall 14.



FIGS. 5A and 5B illustrate subsequent implantation steps of the implant 100 illustrated in FIG. 4. FIG. 5A illustrates a second inner sack 132 expanding within the aforementioned, first inner sack 144′. FIG. 5B illustrates the second inner sack 132 providing a second force F2 pressing into the first inner sack 144′. The braid 110 is illustrated in cross section in FIG. 5B. In subsequent implantation steps, the braid 110 can form additional nested sacks. Additionally, or alternatively, the braid can collapse to form a ribbon shape and fold into a space defined by one or more nested sacks similar to as illustrated in FIGS. 3G through 3I.



FIG. 6 illustrates an alternative implant 100a including a braid 110 having two sections 116, 118 of differing braid angle θ1, θ4, an embolic coil 160, and a detachment key 150. The embolic coil 160 can be attached to a proximal end 112 of the braid 110. A proximal portion 116 of the braid 110 near the proximal end 112 can have a small braid angle θ4. A distal portion 118 of the braid 110 near the distal end 114 of the braid can have a larger braid angle θ4. The braid 110 can be shaped into a single layer tubular shape as illustrated in FIG. 6. The braid can be shaped for delivery as described elsewhere herein.



FIG. 7 illustrates an alternative implant 100a such as the implant 100a illustrated in FIG. 6 having a braid 110 in a predetermined shape. The predetermined shape can have four sections 142, 144, 146, 130, two inversions 122, 124, and a pinch point 126 similar to as described in relation to FIG. 2. The embolic coil 160 can extend from the tail section 130 of the braid 110. When implanted, the embolic coil 160 can take the place of some or all of the tail portion 130′ of the implant 100 illustrated in FIG. 3I.



FIG. 8 illustrates an implant 100a such as the implant 100a illustrated in FIG. 6 and/or FIG. 7 in an implanted shape. The braid 110 can have an outer section 142′ and an inner sack 144′ when implanted similar as disclosed in relation to FIG. 3I and/or FIG. 4. The embolic coil 160 can wind within the inner sack 144′.



FIG. 9 is a flow diagram outlining example method steps for treating an aneurysm with an implant and/or system such as an example implant 100, 100a and/or system described herein, variations thereof, or alternative implant and/or system as would be appreciated and understood by a person ordinary skill in the art.


Referring to method 300 outlined in FIG. 9, in step 302 a tubular braid having a stronger section and a weaker section can be selected. The selected tubular braid can include an example tubular braid 110 as described herein, a variation thereof, or an alternative thereto as would be appreciated and understood by a person of ordinary skill in the art. The stronger section can have a larger braid angle relative to the weaker section such that the strength of the braid sections is respectively determined at least in part by the respective braid angles. Additionally, or alternatively, one or both of the stronger and weaker sections can be treated (e.g. heat treated) to modify material properties of one or both of the sections such that difference in strength between the two sections is determined at least in part by the treatment. Additionally, or alternatively, the stronger section can have a greater number of strands compared to the weaker section such that the strength of the braid sections is respectively determined at least in part by the number of strands. Additionally, or alternatively, the strands in the stronger section can have a larger diameter compared to the diameter of the strands in the weaker section such that the strength of the braid sections is respectively determined at least in part of the diameter of the strands. Additionally, or alternatively, the strands in the stronger section and the weaker section can include differing materials such that the strength of the sections is respectively determined at least in part by the material properties of the strands.


In step 304, the braid can be delivered through a microcatheter to an aneurysm. The braid can be detachably attached to an elongated delivery system. The implant (and thereby the braid) can be attached to the delivery system at a distal end of the delivery system. The delivery system and the implant can be positioned within the microcatheter such that the delivery system extends from a proximal end of the microcatheter. A user (e.g. physician) can deliver the implant through the microcatheter by manipulating the portion of the delivery system that extends out of the proximal end of the microcatheter. A user can place the implant similar to as illustrated in FIGS. 3A through 3I, FIG. 4, FIGS. 5A through 5B, and/or FIG. 8, otherwise described herein, or as otherwise understood by a person of ordinary skill in the art according to the teachings herein by manipulating the portion of the delivery system extending from the proximal end of the microcatheter.


In step 306, the distal end of the braid can be positioned at a distal portion 15 of the aneurysm wall 14. The distal end of the braid can be positioned as illustrated in FIG. 4, FIGS. 5A through 5B, and/or FIG. 8. Alternatively, the distal end of the braid can be positioned elsewhere, for instance within a middle third of the aneurysm wall 14, about half way between the distal portion 15 of the wall 14 and the aneurysm neck 16 as illustrated in FIGS. 3A through 3I.


In step 308, the stronger section of the braid can be expanded to form an outer sack apposing the aneurysm wall 14. The outer sack can be shaped similar to the outer sack 142′ illustrated in FIG. 4, FIGS. 5A through 5B, and/or FIG. 8. Alternatively, the stronger section of the braid can be expanded to form a bowl shape similar to the outer section 142′ shape illustrated in FIGS. 3A through 3I.


In step 310, a proximal inversion can be formed in the braid at the aneurysm's neck. The proximal inversion can be positioned similar to the proximal inversion 122′ illustrated in FIGS. 3A through 3I, FIG. 4, FIGS. 5A through 5B, and/or FIG. 8. The proximal inversion can be shaped similar to the proximal inversion 122′ illustrated in FIGS. 3A through 3I, FIG. 4, FIGS. 5A through 5B, and/or FIG. 8. The proximal inversion 122′ can define a boundary between the outer sack or outer section expanded in step 308 and an inverted portion positioned within the outer sack or outer section.


In step 312, the inverted portion can be expanded to form a sack inside the outer sack or outer section. The inverted portion can press against the outer sack (or section), thereby pressing the outer sack (or section) into the aneurysm wall 14. The inverted portion can form an inner sack 144′ such as illustrated in FIGS. 3A through 3I, FIG. 4, FIGS. 5A through 5B, and/or FIG. 8.


In step 314, a distal inversion can be formed in the braid. The distal inversion can define a distal side of the inverted, inner sack expanded in step 312. The distal inversion can define a boundary between the inner sack and an inner, non-inverted portion of the braid. The inner, non-inverted portion of the braid can include the weaker section of the braid.


In step 316, the weaker section of the braid can be positioned in the inverted sack. The weaker section can be flattened to a ribbon shape and folded into the inverted sack. The weaker section can be flattened and folded such as illustrated in FIGS. 3G through 3I, as otherwise described herein, and/or as understood by a person of ordinary skill in the art according to the teachings herein. The weaker section can correspond to the tail section 130, 130′ of the braid 110.


The descriptions contained herein are examples of embodiments of the invention and are not intended in any way to limit the scope of the invention. The invention contemplates many variations and modifications of the implant, including: alternative delivery methods, alternative braid materials, alternative means for achieving a desired stiffness/flexibility of braid material, additional structures affixed to the implant (e.g. to aid in anchoring the implant, blood flow diversion, embolism formation, etc.), alternative predetermined braid shapes (e.g. one inversion, three inversions, four inversions, five or more inversions, non-radially symmetric shapes, alternative segment shapes, etc.), alternative implanted shapes, etc. Modifications apparent to one of ordinary skill in the art following the teachings of this disclosure are intended to be within the scope of the claims which follow.

Claims
  • 1. A method comprising: selecting a substantially tubular braid comprising a first end, a second end, a length therebetween, a first portion extending from the first end, and a second portion extending from the second end such that the tubular braid is shapeable to a single layer cylindrical shape comprising a substantially uniform circumference along the length, a first braid angle in the first portion, and a second braid angle in the second portion, the second braid angle measuring less than the first braid angle;delivering the tubular braid through a microcatheter to an aneurysm;expanding the first portion of the braid to appose the aneurysm's wall;forming a proximal inversion of the braid approximate the aneurysm's neck;expanding an inverted portion of the braid to press the first portion to the aneurysm's wall;forming a distal inversion of the braid approximate the distal portion of the aneurysm's wall such that the inverted portion extends from the proximal inversion to the distal inversion;positioning the second portion of the braid within the inverted portion;twisting the braid approximate the distal inversion; andexpanding the braid to form a sack within the inverted portion.
  • 2. The method of claim 1, wherein selecting the substantially tubular braid further comprises selecting the tubular braid such that the single layer cylindrical shape further comprises a continuously decreasing braid angle extending from the first portion to the second portion.
  • 3. The method of claim 1, wherein positioning the second portion of the braid further comprises flattening the second portion of the braid to a ribbon shape and looping the ribbon shape within the inverted portion.
  • 4. The method of claim 1, further comprising: shaping the braid to form a dome within the inverted portion, the dome positioned approximate the distal portion of the aneurysm wall.
  • 5. The method of claim 1, wherein delivering the tubular braid further comprises delivering the tubular braid in the single layer cylindrical shape such that the first end is positioned in the distal direction in relation to the second end.
  • 6. The method of claim 1, further comprising: selecting an embolic coil;positioning the embolic coil such that it is affixed to the tubular braid approximate the second end of the braid;delivering the embolic coil through the microcatheter to the aneurysm; andpositioning the embolic coil within the inverted portion.
  • 7. An implant comprising: a substantially tubular braid shapeable to a single layer cylindrical shape and movable to an implanted shape, the braid comprising:a first end;a second end;a length measurable from the first end to the second end;a first portion extending from the first end;a second portion extending from the second end;the single layer cylindrical shape comprises a substantially uniform circumference along the length, a first braid angle in the first portion, and a second braid angle in the second portion, the second braid angle measuring less than the first braid angle; andwherein, in the implanted shape, the first portion is configured to be positioned to appose an aneurysm wall, an inverted sack is formed by a proximal inversion of the braid approximate an aneurysm neck, the inverted sack being expandable and positioned to press the first portion to the aneurysm wall, and the second portion is positioned within the inverted sack,wherein, in the implanted shape, the second portion is configured to be expanded to form an inner sack, the inner sack is positioned to press the inverted sack to the first portion, the braid comprises a distal inversion configured to be approximate the distal portion of the aneurysm wall such that the inverted sack extends from the proximal inversion to the distal inversion and separates the inner sack and the inverted sack, wherein the first end terminates proximal of the distal inversion, and the braid is twisted approximate the distal inversion.
  • 8. The implant of claim 7, wherein, in the single layer cylindrical shape, the braid comprises a continuously decreasing braid angle extending from the first portion to the second portion.
  • 9. The implant of claim 7, wherein, in the implanted shape, at least a portion of the second portion of the braid is looped within the distal inversion.
  • 10. The implant of claim 7, wherein, when the braid is in the single layer cylindrical shape, the braid is sized to be delivered through a microcatheter to an aneurysm, andwherein the braid is movable from the single layer cylindrical shape to the implanted shape.
  • 11. The implant of claim 7, further comprising: an embolic coil affixed to the tubular braid approximate the second end of the braid,wherein, in the implanted shape, the braid is shaped to allow the embolic coil to be positioned within the inverted sack.
US Referenced Citations (432)
Number Name Date Kind
2849002 Oddo Aug 1958 A
3480017 Shute Nov 1969 A
4085757 Pevsner Apr 1978 A
4282875 Serbinenko et al. Apr 1981 A
4364392 Strother et al. Dec 1982 A
4395806 Wonder et al. Aug 1983 A
4517979 Pecenka May 1985 A
4545367 Tucci Oct 1985 A
4836204 Landymore et al. Jun 1989 A
4991602 Amplatz et al. Feb 1991 A
5002556 Ishida et al. Mar 1991 A
5025060 Yabuta et al. Jun 1991 A
5065772 Cox, Jr. Nov 1991 A
5067489 Lind Nov 1991 A
5122136 Guglielmi et al. Jun 1992 A
5192301 Kamiya et al. Mar 1993 A
5261916 Engelson Nov 1993 A
5304195 Twyford, Jr. et al. Apr 1994 A
5334210 Gianturco Aug 1994 A
5350397 Palermo Sep 1994 A
5423829 Pham et al. Jun 1995 A
5624449 Pham et al. Apr 1997 A
5645558 Horton Jul 1997 A
5733294 Forber et al. Mar 1998 A
5891128 Gia et al. Apr 1999 A
5916235 Guglielmi Jun 1999 A
5928260 Chin et al. Jul 1999 A
5935148 Villar Aug 1999 A
5941249 Maynard Aug 1999 A
5951599 McCrory Sep 1999 A
5964797 Ho Oct 1999 A
6007573 Wallace et al. Dec 1999 A
6024756 Pham Feb 2000 A
6036720 Abrams Mar 2000 A
6063070 Eder May 2000 A
6063100 Diaz et al. May 2000 A
6063104 Villar May 2000 A
6080191 Thaler Jun 2000 A
6086577 Ken et al. Jul 2000 A
6096021 Helm et al. Aug 2000 A
6113609 Adams Sep 2000 A
6123714 Gia et al. Sep 2000 A
6168615 Ken Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6193708 Ken et al. Feb 2001 B1
6221086 Forber Apr 2001 B1
6270515 Linden et al. Aug 2001 B1
6315787 Tsugita et al. Nov 2001 B1
6331184 Abrams Dec 2001 B1
6334048 Edvardsson et al. Dec 2001 B1
6346117 Greenhalgh Feb 2002 B1
6350270 Roue Feb 2002 B1
6375606 Garbaldi et al. Apr 2002 B1
6375668 Gifford Apr 2002 B1
6379329 Naglreiter et al. Apr 2002 B1
6391037 Greenhalgh May 2002 B1
6419686 McLeod et al. Jul 2002 B1
6428558 Jones Aug 2002 B1
6454780 Wallace Sep 2002 B1
6463317 Kucharczyk et al. Oct 2002 B1
6506204 Mazzocchi et al. Jan 2003 B2
6527919 Roth Mar 2003 B1
6547804 Porter et al. Apr 2003 B2
6551303 Van Tassel et al. Apr 2003 B1
6569179 Teoh May 2003 B2
6569190 Whalen, II et al. May 2003 B2
6572628 Dominguez Jun 2003 B2
6589230 Gia et al. Jul 2003 B2
6589256 Forber Jul 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6620152 Guglielmi Sep 2003 B2
6669719 Wallace et al. Dec 2003 B2
6689159 Lau et al. Feb 2004 B2
6746468 Sepetka Jun 2004 B1
6780196 Chin et al. Aug 2004 B2
6802851 Jones Oct 2004 B2
6811560 Jones Nov 2004 B2
6833003 Jones et al. Dec 2004 B2
6846316 Abrams Jan 2005 B2
6849081 Sepetka et al. Feb 2005 B2
6855154 Abdel-Gawwad Feb 2005 B2
6949116 Solymar et al. Sep 2005 B2
6964657 Cragg et al. Nov 2005 B2
6964671 Cheng Nov 2005 B2
6994711 Hieshima et al. Feb 2006 B2
7044134 Khairkhahan et al. May 2006 B2
7083632 Avellanet Aug 2006 B2
7093527 Rapaport et al. Aug 2006 B2
7128736 Abrams et al. Oct 2006 B1
7152605 Khairkhahan et al. Dec 2006 B2
7153323 Teoh Dec 2006 B1
7195636 Avellanet et al. Mar 2007 B2
7229454 Tran et al. Jun 2007 B2
7229461 Chin et al. Jun 2007 B2
7309345 Wallace Dec 2007 B2
7371249 Douk et al. May 2008 B2
7377932 Mitelberg et al. May 2008 B2
7410482 Murphy et al. Aug 2008 B2
7572288 Cox Aug 2009 B2
7597704 Frazier et al. Oct 2009 B2
7608088 Jones Oct 2009 B2
7695488 Berenstein et al. Apr 2010 B2
7713264 Murphy May 2010 B2
7744652 Morsi Jun 2010 B2
7892248 Tran Feb 2011 B2
7985238 Balgobin et al. Jul 2011 B2
RE42758 Ken Sep 2011 E
8016852 Ho Sep 2011 B2
8021416 Abrams Sep 2011 B2
8025668 McCartney Sep 2011 B2
8034061 Amplatz et al. Oct 2011 B2
8048145 Evans et al. Nov 2011 B2
8062325 Mitelberg et al. Nov 2011 B2
8075585 Lee et al. Dec 2011 B2
8142456 Rosqueta et al. Mar 2012 B2
8221483 Ford et al. Jul 2012 B2
8261648 Marchand et al. Sep 2012 B1
8267923 Murphy Sep 2012 B2
8361106 Solar et al. Jan 2013 B2
8361138 Adams Jan 2013 B2
8372114 Hines Feb 2013 B2
8398671 Chen Mar 2013 B2
8430012 Marchand Apr 2013 B1
8454633 Amplatz et al. Jun 2013 B2
8523897 van der Burg et al. Sep 2013 B2
8523902 Heaven et al. Sep 2013 B2
8551132 Eskridge et al. Oct 2013 B2
8777974 Amplatz et al. Jul 2014 B2
8900304 Alobaid Dec 2014 B1
8974512 Aboytes et al. Mar 2015 B2
8992568 Duggal et al. Mar 2015 B2
8998947 Aboytes et al. Apr 2015 B2
9055948 Jaeger et al. Jun 2015 B2
9107670 Hannes et al. Aug 2015 B2
9161758 Figulla et al. Oct 2015 B2
9232992 Heidner et al. Jan 2016 B2
9259337 Cox et al. Feb 2016 B2
9314326 Wallace et al. Apr 2016 B2
9351715 Mach May 2016 B2
9414842 Glimsdale et al. Aug 2016 B2
9526813 Cohn et al. Dec 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561096 Kim et al. Feb 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579104 Beckham et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9585669 Becking et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9629635 Hewitt et al. Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign et al. Jun 2017 B2
9681861 Heisel et al. Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman et al. Sep 2017 B2
9770577 Li et al. Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Peterson et al. Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman et al. Nov 2017 B2
9826980 Figulla et al. Nov 2017 B2
9833252 Sepetka et al. Dec 2017 B2
9833604 Lam et al. Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
9918720 Marchand et al. Mar 2018 B2
9955976 Hewitt et al. May 2018 B2
10004510 Gerberding Jun 2018 B2
10130372 Griffin Nov 2018 B2
10307148 Heisel et al. Jun 2019 B2
10327781 Divino et al. Jun 2019 B2
10342546 Sepetka et al. Jul 2019 B2
10517604 Bowman et al. Dec 2019 B2
10653425 Gorochow et al. May 2020 B1
10716573 Connor Jul 2020 B2
10743884 Lorenzo Aug 2020 B2
10751066 Lorenzo Aug 2020 B2
11464518 Connor Oct 2022 B2
20020068974 Kuslich et al. Jun 2002 A1
20020082638 Porter et al. Jun 2002 A1
20020143349 Gifford, III et al. Oct 2002 A1
20020147497 Belef et al. Oct 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20030028209 Teoh et al. Feb 2003 A1
20030120337 Van Tassel et al. Jun 2003 A1
20030171739 Murphy et al. Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030181927 Wallace Sep 2003 A1
20030181945 Opolski Sep 2003 A1
20030195553 Wallace Oct 2003 A1
20030216772 Konya Nov 2003 A1
20040034366 van der Burg et al. Feb 2004 A1
20040034386 Fulton et al. Feb 2004 A1
20040044391 Porter Mar 2004 A1
20040087998 Lee et al. May 2004 A1
20040098027 Teoh et al. May 2004 A1
20040127935 Van Tassel et al. Jul 2004 A1
20040133222 Tran et al. Jul 2004 A1
20040153120 Seifert et al. Aug 2004 A1
20040210297 Lin et al. Oct 2004 A1
20040254594 Alfaro Dec 2004 A1
20050021016 Malecki et al. Jan 2005 A1
20050021072 Wallace Jan 2005 A1
20050159771 Petersen Jul 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050251200 Porter Nov 2005 A1
20060052816 Bates et al. Mar 2006 A1
20060058735 Lesh Mar 2006 A1
20060064151 Guterman et al. Mar 2006 A1
20060106421 Teoh May 2006 A1
20060155323 Porter et al. Jul 2006 A1
20060155367 Hines Jul 2006 A1
20060167494 Suddaby Jul 2006 A1
20060247572 McCartney Nov 2006 A1
20070088387 Eskridge et al. Apr 2007 A1
20070106311 Wallace et al. May 2007 A1
20070208376 Meng Jun 2007 A1
20070162071 Burkett et al. Jul 2007 A1
20070167876 Euteneuer et al. Jul 2007 A1
20070173928 Morsi Jul 2007 A1
20070186933 Domingo Aug 2007 A1
20070191884 Eskridge et al. Aug 2007 A1
20070233188 Hunt et al. Oct 2007 A1
20070265656 Amplatz et al. Nov 2007 A1
20070288083 Hines Dec 2007 A1
20080097495 Feller, III et al. Apr 2008 A1
20080103505 Fransen May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080281350 Sepetka et al. Nov 2008 A1
20090036877 Nardone et al. Feb 2009 A1
20090062841 Amplatz et al. Mar 2009 A1
20090099647 Glimsdale Apr 2009 A1
20090227983 Griffin et al. Sep 2009 A1
20090281557 Sander et al. Nov 2009 A1
20090287291 Becking et al. Nov 2009 A1
20090287294 Rosqueta et al. Nov 2009 A1
20090287297 Cox Nov 2009 A1
20090318941 Sepetka Dec 2009 A1
20100023046 Heidner et al. Jan 2010 A1
20100023048 Mach Jan 2010 A1
20100063573 Hijlkema Mar 2010 A1
20100063582 Rudakov Mar 2010 A1
20100069948 Veznedaroglu et al. Mar 2010 A1
20100168781 Berenstein Jul 2010 A1
20100211156 Linder et al. Aug 2010 A1
20100324649 Mattsson et al. Dec 2010 A1
20110046658 Conner et al. Feb 2011 A1
20110054519 Neuss Mar 2011 A1
20110112588 Linderman et al. May 2011 A1
20110137317 O'Halloran et al. Jun 2011 A1
20110152993 Marchand et al. Jun 2011 A1
20110196413 Wallace Aug 2011 A1
20110319978 Schaffer Dec 2011 A1
20120010644 Sideris et al. Jan 2012 A1
20120071911 Sadasivan Mar 2012 A1
20120165732 Müller Jun 2012 A1
20120191123 Brister et al. Jul 2012 A1
20120283768 Cox et al. Nov 2012 A1
20120310270 Murphy Dec 2012 A1
20120323267 Ren Dec 2012 A1
20120330341 Becking et al. Dec 2012 A1
20130035665 Chu Feb 2013 A1
20130035712 Theobald et al. Feb 2013 A1
20130066357 Aboytes et al. Mar 2013 A1
20130079864 Boden Mar 2013 A1
20130110066 Sharma et al. May 2013 A1
20130204351 Cox et al. Aug 2013 A1
20130211495 Halden et al. Aug 2013 A1
20130261658 Lorenzo et al. Oct 2013 A1
20130261730 Bose et al. Oct 2013 A1
20130274863 Cox et al. Oct 2013 A1
20130345738 Eskridge Dec 2013 A1
20140005714 Quick Jan 2014 A1
20140012307 Franano et al. Jan 2014 A1
20140012363 Franano et al. Jan 2014 A1
20140018838 Franano et al. Jan 2014 A1
20140135812 Divino et al. May 2014 A1
20140200607 Sepetka Jul 2014 A1
20140257360 Keillor Sep 2014 A1
20140257361 Prom Sep 2014 A1
20140277013 Sepetka et al. Sep 2014 A1
20140358178 Hewitt et al. Dec 2014 A1
20150057703 Ryan Feb 2015 A1
20150209050 Aboytes et al. Jul 2015 A1
20150272589 Lorenzo Oct 2015 A1
20150313605 Griffin Nov 2015 A1
20150342613 Aboytes et al. Dec 2015 A1
20150374483 Janardhan Dec 2015 A1
20160022445 Ruvalcaba et al. Jan 2016 A1
20160030050 Franano et al. Feb 2016 A1
20160192912 Kassab et al. Jul 2016 A1
20160249934 Hewitt et al. Sep 2016 A1
20160249935 Hewitt et al. Sep 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu et al. Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer et al. Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079661 Bardsley et al. Mar 2017 A1
20170079662 Rhee et al. Mar 2017 A1
20170079671 Morero et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079717 Walsh et al. Mar 2017 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka et al. Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace et al. Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100143 Granfield Apr 2017 A1
20170100183 Iaizzo et al. Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170147765 Mehta May 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein et al. Jun 2017 A1
20170165454 Tuohy et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170114350 Shimizu et al. Aug 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170252064 Staunton Sep 2017 A1
20170258473 Plaza et al. Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder et al. Oct 2017 A1
20170290593 Cruise et al. Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa et al. Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman et al. Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman et al. Nov 2017 A1
20170340333 Badruddin et al. Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20180140305 Connor May 2018 A1
20180206850 Wang et al. Jul 2018 A1
20180242979 Lorenzo Aug 2018 A1
20180303531 Sanders et al. Oct 2018 A1
20180338767 Dasnurkar et al. Nov 2018 A1
20190008522 Lorenzo Jan 2019 A1
20190110796 Jayaraman Apr 2019 A1
20190142567 Janardhan et al. May 2019 A1
20190192162 Lorenzo Jun 2019 A1
20190192167 Lorenzo Jun 2019 A1
20190192168 Lorenzo Jun 2019 A1
20190223878 Lorenzo Jul 2019 A1
20190223879 Jayaraman Jul 2019 A1
20190223881 Hewitt et al. Sep 2019 A1
20190328398 Lorenzo Oct 2019 A1
20190357914 Gorochow Nov 2019 A1
20190365385 Gorochow et al. Dec 2019 A1
20200000477 Nita et al. Jan 2020 A1
20200069313 Xu Mar 2020 A1
20200268365 Hebert Aug 2020 A1
20200375606 Lorenzo Dec 2020 A1
20210007755 Lorenzo et al. Jan 2021 A1
20210177429 Lorenzo Jun 2021 A1
Foreign Referenced Citations (98)
Number Date Country
2395796 Jul 2001 CA
2 431 594 Sep 2002 CA
2598048 May 2008 CA
204 683 687 Oct 2015 CN
107374688 Nov 2017 CN
102008015781 Oct 2009 DE
102010053111 Jun 2012 DE
102009058132 Jul 2014 DE
10 2013 106031 Dec 2014 DE
202008018523 Apr 2015 DE
102011102955 May 2018 DE
1054635 Nov 2000 EP
1295563 Mar 2003 EP
1441649 Aug 2004 EP
1483009 Dec 2004 EP
1527753 May 2005 EP
1569565 Sep 2005 EP
1574169 Sep 2005 EP
1494619 Jan 2006 EP
1633275 Mar 2006 EP
1659988 May 2006 EP
1725185 Nov 2006 EP
1862122 Dec 2007 EP
1923005 May 2008 EP
2063791 Jun 2009 EP
2134263 Dec 2009 EP
2157937 Mar 2010 EP
2266456 Dec 2010 EP
2324775 May 2011 EP
2367482 Sep 2011 EP
2387951 Nov 2011 EP
2460476 Jun 2012 EP
2468349 Jun 2012 EP
2543345 Jan 2013 EP
2567663 Mar 2013 EP
2617386 Jul 2013 EP
2623039 Aug 2013 EP
2647343 Oct 2013 EP
2848211 Mar 2015 EP
2854704 Apr 2015 EP
2923674 Sep 2015 EP
2926744 Oct 2015 EP
3146916 Mar 2017 EP
3501429 Jun 2019 EP
3517055 Jul 2019 EP
H04-47415 Apr 1992 JP
H07-37200 Jul 1995 JP
2006-509578 Mar 2006 JP
2013-509972 Mar 2013 JP
2013537069 Sep 2013 JP
2014-522268 Sep 2014 JP
2016-502925 Feb 2015 JP
WO 9641589 Dec 1996 WO
WO 9905977 Feb 1999 WO
WO 9908607 Feb 1999 WO
WO 9930640 Jun 1999 WO
WO 2003073961 Sep 2003 WO
WO 03086240 Oct 2003 WO
WO 2005020822 Mar 2005 WO
WO 2005074814 Aug 2005 WO
2005117718 Dec 2005 WO
WO 2006034149 Mar 2006 WO
WO 2006052322 May 2006 WO
2007076480 Jul 2007 WO
WO 2008150346 Dec 2008 WO
WO 2008151204 Dec 2008 WO
WO 2009048700 Apr 2009 WO
WO 2009105365 Aug 2009 WO
WO 2009132045 Oct 2009 WO
WO 2009135166 Nov 2009 WO
WO 2010030991 Mar 2010 WO
WO 2011057002 May 2011 WO
WO 2012032030 Mar 2012 WO
WO-2012034135 Mar 2012 WO
WO 2012099704 Jul 2012 WO
WO 2012099909 Jul 2012 WO
WO 2012113554 Aug 2012 WO
WO 2013016618 Jan 2013 WO
WO 2013025711 Feb 2013 WO
WO 2013109309 Jul 2013 WO
WO 2013159065 Oct 2013 WO
WO 2013162817 Oct 2013 WO
WO 2014029835 Feb 2014 WO
WO 2014078286 May 2014 WO
WO 2014110589 Jul 2014 WO
WO 2014137467 Sep 2014 WO
WO 2015073704 May 2015 WO
2015160721 Oct 2015 WO
2015171268 Nov 2015 WO
WO 2015166013 Nov 2015 WO
WO 2015184075 Dec 2015 WO
WO 2015187196 Dec 2015 WO
WO 2016044647 Mar 2016 WO
WO 2016107357 Jul 2016 WO
WO 2016137997 Sep 2016 WO
WO 2017161283 Sep 2017 WO
WO 2018051187 Mar 2018 WO
WO 2019038293 Feb 2019 WO
Non-Patent Literature Citations (4)
Entry
Extended European Search Report dated May 2, 2019 in corresponding European Application No. 18214052.5.
Extended European Search Report issued in corresponding European Patent Application No. 19 21 5277 dated May 12, 2020.
Altes et al., Creation of Saccular Aneurysms in the Rabbit: A Model Suitable for Testing Endovascular Devices. AJR 2000; 174: 349-354.
Schaffer, Advanced Materials & Processes, Oct. 2002, pp. 51-54.
Related Publications (1)
Number Date Country
20210169495 A1 Jun 2021 US