Intravascular balloon with slidable central irrigation tube

Information

  • Patent Grant
  • 11957852
  • Patent Number
    11,957,852
  • Date Filed
    Thursday, December 9, 2021
    2 years ago
  • Date Issued
    Tuesday, April 16, 2024
    13 days ago
Abstract
A balloon catheter has a central tube that is configured to both structurally support and inflate a balloon membrane. The central tube has a lumen and sidewall inflation ports that provide a path for inflating the balloon. The lumen of the central tube is obstructed by a distal end piece, nose piece, or other structure to prevent fluid from exiting a distal end of the central tube. The central tube is configured such that, during inflation, inflation media is allowed to pass through an elongated shaft of the catheter, into a proximal open end of the central tube, and through the inflation ports into the balloon. The central tube can slide longitudinally in relation to the shaft to longitudinally elongate and/or truncate the balloon.
Description
FIELD

The present invention relates to medical instruments, and in particular balloon catheters.


BACKGROUND

Some intravascular treatments utilize balloon catheters having an inflatable balloon near a distal end of the catheter. There are a variety of balloon catheter designs usable for various purposes where, generally, the balloon is collapsible to traverse vasculature and expandable within a blood vessel and/or heart. Typically, the balloon is inflated and deflated by pumping a fluid (e.g. saline solution) through an inflation tube and/or lumen of the catheter. Some balloon catheters can further provide irrigation through pores in the balloon, where such porous balloons are referred to herein as an “irrigation balloon”.


Some irrigation balloons include electrodes for sensing and/or ablation such as described in U.S. Patent Application Publication 2020/0155226, U.S. Patent Application Publication 2019/0298441, and U.S. Pat. No. 7,410,486, each incorporated by reference herein. Such irrigation balloons can be used in treatments involving catheter ablation of cardiac arrhythmias. The irrigation balloon catheter can provide fluid for controlling temperature of blood and/or tissue during ablation, for instance.


Generally, larger volume balloons can require longer inflation and deflation times compared to smaller volume balloons. In some irrigation balloons, pores in the balloon can allow fluidic ingress into the irrigation balloon absent negative pressure, which may allow the balloon to at least partially expand when deflated. Some irrigation balloons include a mechanism within and/or attached to the irrigation balloon to facilitate inflation and/or deflation of the irrigation balloon. See, for example, U.S. Patent Application Publication 2018/0140807, U.S. Patent Application Publication 2018/0161093, U.S. Patent Application Publication 2019/0059818, U.S. Patent Application Publication 2019/0201669, U.S. Patent Application Publication 2019/0217065, U.S. Patent Application Publication 2020/0147295, and U.S. Pat. No. 9,907,610, each incorporated by reference herein. Such irrigation balloons can also include electrodes for sensing and/or ablation.


SUMMARY

Examples presented herein generally include a balloon catheter having a central tube that is configured to both structurally support and inflate a balloon membrane, methods of use, and methods of construction of the same. The central tube has a lumen and inflation ports that provide a flow path for inflating the balloon. The central tube allows the balloon membrane to be inflated without requiring an additional inflation tube inserted under the balloon membrane. The lumen of the central tube is obstructed by a distal end piece, nose piece, or other structure to prevent fluid from exiting a distal end of the central tube. The central tube is configured such that, during inflation, inflation media is allowed to pass through an elongated shaft of the catheter, into a proximal open end of the central tube, and through the inflation ports into the balloon. The central tube can be configured to slide longitudinally in relation to the shaft to longitudinally elongate and/or truncate the balloon. The balloon catheter can include various sensors and electrodes to function with cardiac mapping and/or ablation systems.


An example balloon catheter can include an elongated shaft, an inflatable balloon, a central tube, and an end plug. The elongated shaft extends along a longitudinal axis of the balloon catheter. The inflatable balloon can be disposed approximate a distal end of the shaft. The end plug can be disposed approximate a distal end of the central tube.


The inflatable balloon can have an interior configured to receive an inflation medium to inflate the inflatable balloon. A distal end of the inflatable balloon can be affixed to the central tube. A proximal end of the inflatable balloon being affixed to the shaft.


The central tube can extend along the longitudinal axis. At least a portion of the central tube can be positioned within the inflatable balloon, provide structural support for the inflatable balloon, include inflation ports, and have a central lumen in fluidic communication with the inflation ports. The central tube can be coupled to the distal end of the shaft so that the central tube is movable to extend and/or contract the inflatable balloon in length in relation to the longitudinal axis.


The central lumen and inflation ports can provide a flow path between the inflatable balloon interior and the shaft to allow the inflation medium to pass from the shaft into the interior of the inflatable balloon. The central lumen can include an opening positioned in a proximal direction in relation to the inflation ports and in fluidic communication with the shaft to allow the inflation medium to travel from the shaft into the central lumen.


The central lumen can be obstructed by an obstruction at a position distal to the inflation ports so that inflation medium is inhibited from moving through the central lumen distal of the obstruction. The end plug can be configured to prevent loss of fluid through the distal end of the tube. The end plug and the obstruction can be one in the same.


The balloon catheter can further include a collapsing set of splines and a membrane affixed to the splines. The splines can be made at least partially from a shape-memory material having a collapsed pre-formed shape that collapses the inflatable balloon. The inflatable balloon can include the membrane.


The balloon catheter can further include an elastic element and a puller-wire. The elastic element can be coupled to the central tube and shaft. The elastic element can be configured to self-elongate thereby sliding the central tube distally in relation to the shaft and extending the inflatable balloon in length in relation to the longitudinal axis. The puller-wire can be connected to the central tube, extend through the shaft, and be accessible for retraction during treatment so that retraction of the puller-wire compresses the elastic element in the direction of the longitudinal axis thereby sliding the central tube in relation to the shaft and contracting the inflatable balloon in length in relation to the longitudinal axis.


The balloon catheter can further include a fluid impermeable seal between the central tube and the shaft, disposed over the central tube and within the shaft.


The balloon catheter can further include a navigation sensor disposed within the central lumen. The navigation sensor can be a three axis inductive sensor. The navigation sensor can be positioned in a distal direction in relation to the inflation ports. The balloon catheter can further include a sensor wire in electrical communication with the navigation sensor and extending through at least a portion of the central lumen.


The balloon catheter can further include irrigation ports disposed on or over the inflatable balloon. The balloon catheter can be configured to irrigate via the irrigation ports. The irrigation ports can be positioned on the inflatable balloon so that the flow path extends from the shaft, through the central lumen, through the inflation ports, through the interior of the inflatable balloon, and through the irrigation ports. The balloon catheter can further include a plurality of electrodes disposed on the outer surface of the inflatable balloon and one or more wires connected to each of the plurality of electrodes. Each wire can extend through the shaft.


As an alternative to the inflation balloon being also an irrigation balloon, the balloon catheter can include an irrigation balloon comprising irrigation ports and being disposed over the inflatable balloon so that inflation of the inflatable balloon at least partially inflates the irrigation balloon. The balloon catheter can include a chamber between the irrigation balloon and the inflatable balloon that is fluidically separate from the interior of the inflatable balloon and in fluidic communication with the irrigation ports. The balloon catheter can further include a plurality of electrodes disposed on the outer surface of the irrigation balloon and one or more wires connected to each of the plurality of electrodes, each wire extending through the shaft.


An example method can include some or all of the following steps that can be executed in various orders, and the method can include additional steps not listed. The method can include inflating an inflatable balloon of a balloon catheter through a flow path that traverses an elongated shaft of the balloon catheter, a central lumen of a central tube positioned within the inflatable balloon, inflation ports of the central tube, and an interior of the inflatable balloon. The method can include structurally supporting the inflatable balloon along a longitudinal axis of the balloon catheter with the central tube, the central tube being aligned with the longitudinal axis so that at least a portion of the central tube is positioned within the inflatable balloon.


The method can include sliding the central tube in relation to the shaft to thereby extend and/or contract the inflatable balloon in length in relation to the longitudinal axis.


The method can include collapsing a set of splines made at least partially from a shape-memory material having a collapsed pre-formed shape that collapses the inflatable balloon.


The method can include extending the inflatable balloon in length in relation to the longitudinal axis by allowing an elastic element coupled to the central tube and shaft to self-elongate thereby sliding the central tube longitudinally in relation to the shaft. The method can include retracting the inflatable balloon in length in relation to the longitudinal axis by retracting a puller-wire connected to the central tube and extending through the shaft thereby compressing the elastic element in the direction of the longitudinal axis and sliding the central tube longitudinally in relation to the shaft.


The method can include inhibiting, by a distal end piece of the catheter, inflation medium from exiting a distal end of the central lumen.


The method can include traversing, with the flow path, an opening in the central tube, the opening being in fluidic communication with the central lumen, in fluidic communication with the shaft, and positioned in a proximal direction from the inflation ports.


The method can include determining a position of the inflatable balloon based on electrical signals provided by a navigation sensor disposed within the central lumen. The navigation sensor can be a three axis inductive sensor.


The method can include positioning the navigation sensor in a distal direction in relation to the inflation ports.


The method can include receiving the electrical signals via a sensor wire in electrical communication with the navigation sensor and extending through at least a portion of the central lumen.


The method can include irrigating through irrigation ports disposed on or over the inflatable balloon.


The method can include positioning the irrigation ports on the inflatable balloon so that the flow path extends from the shaft, through the central lumen, through the inflation ports, through the interior of the inflatable balloon, and through the irrigation ports. The method can include receiving and/or providing electrical signals to a plurality of electrodes disposed on the outer surface of the inflatable balloon via one or more wires connected to each of the plurality of electrodes, each wire extending through the shaft.


As an alternative to positioning irrigation ports on the inflatable balloon, the method can include disposing the irrigation ports on an irrigation balloon. The method can include disposing the irrigation balloon over the inflatable balloon. The method can include inflating the inflatable balloon to at least partially inflate the irrigation balloon. The method can include fluidically separating the irrigation balloon and the interior of the inflatable balloon with a chamber therebetween. The method can include fluidically communicating the chamber with the irrigation ports. The method can include receiving and/or providing electrical signals to a plurality of electrodes disposed on the outer surface of the irrigation balloon via one or more wires connected to each of the plurality of electrodes, each wire extending through the shaft.


Another example method can include some or all of the following steps that can be executed in various orders, and the method can include additional steps not listed. The method can include coupling a central tube to a distal end of an elongated catheter shaft so that the central tube has a central lumen in fluidic communication with the catheter shaft and so that inflation ports on the central tube are in fluidic communication with the central lumen and thereby the shaft. The method can include affixing an inflatable balloon approximate a distal end of the shaft and over at least a portion of the central tube so that the inflation ports are positioned within an interior of the inflatable balloon and the inflatable balloon is configured to receive inflation medium through a flow path that extends through the shaft, through the central lumen, and through the inflation ports into the interior of the balloon to inflate the inflatable balloon.


The method can include coupling the central tube to the distal end of the shaft so that the central tube is movable to extend and/or contract the inflatable balloon in length in relation to the longitudinal axis.


The method can include affixing a distal end of the inflatable balloon to the central tube. The method can include affixing a proximal end of the inflatable balloon to the shaft.


The method can include forming a set of splines made at least partially from a shape-memory material into a collapsed pre-formed shape. The method can include affixing the set of splines to the balloon catheter in relation to the inflatable balloon such that moving the splines to the collapsed pre-formed shape collapses the inflatable balloon.


The method can include coupling an elastic element to the central tube and shaft such the elastic element is configured to self-elongate and cause the central tube to slide in relation to the shaft thereby extending the inflatable balloon in length in relation to the longitudinal axis. The method can include connecting a puller-wire to the central tube. The method can include extending the puller-wire through the shaft so that the puller-wire is accessible for retraction during treatment so that retraction of the puller-wire compresses the elastic element in the direction of the longitudinal axis thereby sliding the central tube proximally in relation to the shaft and contracting the inflatable balloon in length in relation to the longitudinal axis.


The method can include obstructing the central lumen at a position distal to the inflation ports so that inflation medium is inhibited from moving through the central lumen distal of the obstruction.


The method can include positioning an opening on the central tube to the central lumen in a proximal direction in relation to the inflation ports so that the opening is in fluidic communication with the shaft to allow the inflation medium to travel from the shaft into the central lumen.


The method can include disposing a fluid impermeable seal between the central tube and the shaft so that the fluid impermeable seal is over the central tube and within the shaft.


The method can include affixing a navigation sensor within the central lumen. The navigation sensor can be a three axis inductive sensor. The method can include affixing the navigation sensor in a distal direction in relation to the inflation ports. The method can include electrically connecting a sensor wire to the navigation sensor. The method can include extending the sensor wire through at least a portion of the central lumen.


The method can include configuring the balloon catheter to irrigate through irrigation ports disposed on or over the inflatable balloon. The method can include configuring the inflatable balloon to irrigate through the irrigation ports.


The method can include positioning the irrigation ports on the inflatable balloon so that the flow path extends from the shaft, through the central lumen, through the inflation ports, through the interior of the inflatable balloon, and through the irrigation ports. The method can include disposing a plurality of electrodes on the outer surface of the inflatable balloon. The method can include electrically connecting one or more wires to each of the plurality of electrodes. The method can include extending each wire through the shaft.


As an alternative to positioning irrigation ports on the inflatable balloon, the method can include disposing an irrigation balloon having irrigation ports over the inflatable balloon so that inflation of the inflatable balloon at least partially inflates the irrigation balloon. The method can include forming a chamber between the irrigation balloon and the inflatable balloon that is fluidically separate from the interior of the inflatable balloon and in fluidic communication with the irrigation ports. The method can include disposing a plurality of electrodes on the outer surface of the irrigation balloon. The method can include electrically connecting one or more wires to each of the plurality of electrodes. The method can include extending each wire through the shaft.


Another example catheter can include an elongated shaft, an inflatable balloon, a central tube, and a distal end piece. The elongated shaft can extend from a proximal end to a distal end along a longitudinal axis of the balloon catheter. The inflatable balloon can be disposed approximate the distal end of the shaft. The inflatable balloon can include an interior configured to receive an inflation medium to inflate the inflatable balloon to a first expanded volume defined by a truncated cone having its base connected to a semi-toroid. The central tube can extend along the longitudinal axis. At least a portion of the central tube can be positioned within the inflatable balloon, provide structural support for the inflatable balloon, include inflation ports, and have a central lumen in fluidic communication with the inflation ports. The central lumen and inflation ports can provide a flow path between the inflatable balloon interior and the shaft to allow the inflation medium to pass from the shaft into the interior of the inflatable balloon. The central tube can be configured to move along the longitudinal axis to change the first expanded volume to a second expanded volume defined substantially by two truncated cones connected at their respective bases.


The distal end piece can include an end plug (or nose piece) to prevent loss of fluid through the central tube.


This example catheter can further include features and structures of the above example catheter. This example catheter can be constructed and/or used according to the above example methods.


Steps of the above example methods can be combined in a single method.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is an illustration of a distal portion of an example irrigation balloon catheter in a radially expanded, longitudinally retracted state (first inflated state) according to aspects of the present invention.



FIG. 1B is an illustration of the distal portion of the irrigation balloon catheter in a radially expanded, longitudinally extended state (second inflated state) according to aspects of the present invention.



FIG. 1C is an illustration of the distal portion of the irrigation balloon catheter further extended in radially contracted, longitudinally extended state (deflated state) according to aspects of the present invention.



FIGS. 2A and 2B are respectively illustrations of a cross section of the irrigation balloon catheter in the state illustrated in FIGS. 1A and 1B in a plane parallel to the viewing plane of FIGS. 1A and 1B and mid-way through the catheter.



FIG. 3 is an isometric view of the irrigation balloon catheter having cross section through a distal portion of a shaft of the catheter as indicated in FIG. 1A.



FIG. 4A is an illustration of a distal portion of the example irrigation balloon catheter including an optional expandable conic membrane according to aspects of the present invention.



FIG. 4B is an illustration of an exploded view of the distal portion of the irrigation balloon catheter illustrated in FIG. 4A.



FIG. 5A is an illustration of a distal portion of another example irrigation balloon catheter in a radially expanded, longitudinally retracted state (inflated state) according to aspects of the present invention.



FIG. 5B is an illustration of the distal portion of the irrigation balloon catheter illustrated in FIG. 5A in a radially contracted, longitudinally extended state (deflated state) according to aspects of the present invention.



FIG. 6 is an illustration of a distal portion of another example irrigation balloon catheter having collapsible and/or expandable splines according to aspects of the present invention.



FIG. 7A is an illustration of a distal portion of another example irrigation balloon catheter in a radially contracted, longitudinally extended state (deflated state) and having a self-expandable spring according to aspects of the present invention.



FIG. 7B is an illustration of the distal portion of the irrigation balloon catheter illustrated in FIG. 7A in a radially expanded, longitudinally retracted state (inflated state) according to aspects of the present invention.



FIG. 8 is an illustration of a system for diagnosis and treatment of a heart of a living patient according to aspects of the present invention.





DETAILED DESCRIPTION

Documents incorporated by reference herein are to be considered an integral part of the application except that, to the extent that any terms are defined in these incorporated documents in a manner that conflicts with definitions made explicitly or implicitly in the present specification, only the definitions in the present specification should be considered.


As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values±20% of the recited value, e.g. “about 90%” may refer to the range of values from 71% to 99%.


As used herein, the terms “patient,” “host,” “user,” and “subject” refer to any human or animal subject and are not intended to limit the systems or methods to human use, although use of the subject invention in a human patient represents a preferred embodiment.


As used herein, the terms “tubular” and “tube” are not limited to a structure that is a right cylinder or strictly circumferential in cross-section or of a uniform cross-section throughout its length. For example, the tubular structure or system is generally illustrated as a substantially right cylindrical structure. However, the tubular system may have a tapered outer surface, a curved outer surface, and/or a partially flat outer surface without departing from the scope of the present disclosure.


Examples presented herein generally include a balloon catheter having a central tube that is configured to both structurally support and inflate a balloon membrane. The central tube can have a lumen and sidewall inflation ports that provide a path for inflating the balloon. The lumen of the central tube can be obstructed by a distal end piece, nose piece, or other structure to prevent fluid from exiting a distal end of the central tube. The central tube can be configured such that, during inflation, inflation media is allowed to pass through an elongated shaft of the catheter, into a proximal open end of the central tube, and through the inflation ports into the balloon. The central tube lumen may be configured to accommodate a larger inner diameter compared to an irrigation lumen of a balloon catheter having a separate support tube and irrigation tube. A larger irrigation lumen can potentially reduce overall back pressure and load on a pump supplying fluid to the balloon. The central tube can further be configured to slide longitudinally in relation to the shaft to longitudinally elongate and/or retract the balloon.


The central tube can be attached via the shaft to a luer hub for catheter irrigation. The central tube can be attached to an advancement system within a handle (such as a drive or slider, manually or powered via hydraulic or electrically activated) which an end user (e.g. physician) can use to push the central tube resulting in balloon advancement. Interstitial space around an outer diameter of the central tube can be sealed using a conformal friction seal or bellows or folding sleeve to prevent irrigation at pressure in balloon from entering the proximal section of the catheter including handle. The seal can prevent leaking while allowing advancement of the central tube from the shaft to elongate the balloon. Various types of seals may be suitable for the purpose such as bellows, conformal, O-ring, etc. Balloon membrane can be made from polyethylene terephthalate (PET), polyurethane, polyether block amide, or any other suitable material


A navigation sensor (e.g. three axis sensor, “TAS”) can be embedded in the central tube at a position that is distal to the inflation ports. Positioned as such, a sensor wire carrying signals from the navigation sensor can be positioned in the central tube lumen. Positioning of the sensor wire within the central tube lumen can alleviate space constraints within the balloon at a marginal tradeoff of increasing back pressure of inflation fluid. The sensor wire can be brought out of the central tube lumen and sealed in the handle. The sensor wire can be positioned and otherwise configured to provide strain relief to accommodate slack in the handle.


Example catheters presented herein can be modified in several manners as understood by a person skilled in the pertinent art according the teachings herein. Irrigation balloons can include electrodes for sensing and/or ablation such as described in U.S. Patent Application Publication 2020/0155226, U.S. Patent Application Publication 2019/0298441, and U.S. Pat. No. 7,410,486, each incorporated by reference herein. Irrigation balloons can include a mechanism within and/or attached to the irrigation balloon to facilitate inflation and/or deflation of the irrigation balloon and/or telescoping of the central tube such as presented in U.S. Patent Application Publication 2018/0140807, U.S. Patent Application Publication 2018/0161093, U.S. Patent Application Publication 2019/0059818, U.S. Patent Application Publication 2019/0201669, U.S. Patent Application Publication 2019/0217065, U.S. Patent Application Publication 2020/0147295, and U.S. Pat. No. 9,907,610, each incorporated by reference herein. Likewise, example catheters presented herein can include additional components such as navigation sensors, thermocouples, a mechanism for deflecting a distal portion of the catheter shaft, a force sensor, and other compatible electrical and mechanical features. Omission of such features from the figures are solely for the sake of clarity in illustration, and any of the depicted example catheters can be modified to include such features as understood by a person skilled in the pertinent art.



FIGS. 1A through 1C are illustrations of a distal portion of an example balloon catheter 100. The distal portion of the balloon catheter 100 is illustrated in a radially expanded, longitudinally retracted state in FIG. 1A, a longitudinally extended state in FIG. 1B, and in a deflated state in FIG. 1C.



FIGS. 2A and 2B are cross-sectional illustrations of the views of the balloon catheter 100 in FIGS. 1A and 1B respectively.


Referring collectively to FIGS. 1A-1C, 2A, and 2B, the balloon catheter 100 includes an elongated shaft 130, an inflatable balloon 162, a central tube 102, and a distal plug 106. The elongated shaft 130 extends along a longitudinal axis L-L of the balloon catheter 100 and can be manipulated at its proximal end by a handle or other apparatus as understood by a person skilled in the pertinent art. The inflatable balloon 162 is disposed approximate a distal end of the shaft 130. At least a portion of the central tube 102 is positioned within the inflatable balloon 162 The central tube 102 provides structural support for the inflatable balloon 162. The central tube 102 includes inflation ports 104. As better visualized in FIGS. 2A and 2B, the central tube 102 includes a central lumen 103 in fluidic communication with the inflation ports 104. The central lumen 103 and inflation ports 104 provide a flow path between the inflatable balloon interior and the shaft 130 to allow the inflation medium to pass from the shaft 130 into the interior of the inflatable balloon 162. The central tube 102 can move distally along the longitudinal axis L-L to facilitate reshaping of the balloon 162. The distal plug 106 is positioned at a distal end 126 of the catheter 100 to prevent loss of fluid through a distal end of the central tube 102. The distal plug 106 has an atraumatic shape. Alternatively, the distal plug 106 can be positioned within the central tube 102. In such an example, the catheter 100 can have an internal distal end similar to corresponding structures in U.S. 2019/0201669.



FIGS. 1A and 2A illustrate the balloon 162 in a first inflated state inflated to a first expanded volume defined by a truncated cone having its base connected to a semi-toroid. The semi-toroid extends radially and distally from a distal end 188 of the balloon 162 that is attached near a distal end of the central tube 102; the semi-toroid then curves proximally to a first circumference C1 that is a maximum circumference of the balloon 162 in the illustrated shape. The truncated cone has an apex at a proximal end 186 of the balloon 162 that is attached to the shaft 130; the truncated cone extends radially and distally from the apex to meet the semi-toroid at the maximum circumference C1. The balloon 162 has a first longitudinal dimension, or first height H1, measured from the proximal end 186 of the balloon 162 to the distal plug 106.



FIGS. 1B and 2B illustrate the balloon in a second inflated state inflated to a second expanded volume defined substantially by two truncated cones connected at their respective bases. The balloon 162 can be moved from the first inflated state to the second inflated state and vice versa by sliding the central tube 102 distally and proximally in relation to the shaft 130. The second volume can be about equal to the first volume. A distal cone has an apex at a distal end 188 of the balloon 162 and extends radially and proximally to a second maximum circumference C2 of the balloon 162. A proximal cone has an apex at the proximal end 186 of the balloon 162 and extends radially and distally to meet the distal cone at the second circumference C2. The balloon 162 has a second height H2 measured from the proximal end 186 of the balloon 162 to the distal plug 106. The second height H2 is greater than the first height H1 because the central tube 102 is extended distally from the shaft 130 compared to as illustrated in FIGS. 1A and 2A. The second circumference C2 is about equal to or less than the first circumference C1.



FIG. 1C illustrates the balloon 162 in a deflated state deflated to a third volume so that the balloon 162 can be repositioned and/or retracted into a catheter. The third volume is significantly less than both the first and second volumes. The balloon 162 is extended to a third height H3, measured from the proximal end 186 of the balloon 162 to the distal plug 106, that is equal to or greater than the second height H2 illustrated in FIGS. 1B and 2B, preferably greater than the second height H2. When the third height H3 is greater than the second height H2, the central tube 102 is extended distally from the shaft when the balloon is moved from the second inflated state to the deflated state. The balloon 162 has a third maximum circumference C3 that is less than the first circumference C1 and the second circumference C2. To deflate the balloon 162, fluid can be extracted from the interior volume of the balloon 162 into the inflation ports 104, through the central lumen 103 of the central tube 102, and into the shaft 130 to be pumped out of the catheter 100 with a pump or other such apparatus.


In some examples, the maximum height H3 (FIG. 1C) can measure about 45 mm and the minimum height H1 (FIG. 1A) can measure about 38 mm. Heights of about 45 mm to about 38 mm can be useful when performing procedures as illustrated and described in relation to FIG. 8, for instance. The heights H1, H2, H3 can otherwise be dimensioned to meet the needs of an intravascular procedure as understood by a person skilled in the pertinent art according to the teachings herein.



FIGS. 2A and 2B illustrates a TAS 112 positioned within the central tube 102 distal to the inflation ports 104 and a sensor wire 114 connected to the TAS 112 and extending through the central lumen 103.



FIG. 3 is an isometric view of the catheter 100 where the balloon 162 is in the first inflated state with a cross-sectional view of the shaft 130 as indicated in FIG. 1A.


Referring collectively to FIGS. 2A, 2B, and 3, the catheter 100 includes an interim inflation tube 116 that is stepped into the central tube 102. This stepping can be redesigned so that the inflation tube 116 is an extension of the central tube 102; and/or a lumen of the shaft 130 (e.g. lumen 118 in which the inflation tube 116 is positioned as illustrated) provides functionality of the inflation tube 116. Such alternative designs may further simplify design and construction and improve catheter back pressure.


As illustrated in FIG. 3, the shaft 130 can include multiple lumens 118, 120, 122, 124 to provide several purposes. A first lumen 118 can provide fluid to the balloon as discussed above. Second and third lumens 120, 122 can house pull wires to deflect the balloon 162 away from the longitudinal axis L-L defined by the shaft 130. A fourth lumen 124 can provide a path for wires and cables such as the TAS wire 114, wires to ablation and/or mapping electrodes, etc. The shaft 130 can be modified to include fewer or additional lumens to accommodate alternative structures and functionality as understood by a person skilled in the pertinent art.



FIGS. 4A and 4B illustrate the catheter 100 including an optional outer membrane 128. FIG. 4B is an exploded view of FIG. 4A. Electrodes (not illustrated) can be mounted over the balloon membrane 162, and wires (not illustrated) to the electrodes can be positioned between the balloon membrane 162 and outer membrane 128 similar to configurations of corresponding structures in U.S. 2020/0155266. The catheter 100 can further include a third membrane configured similarly to corresponding structures in U.S. 2020/0155266.


The catheter 100 can include a navigation sensor 132 positioned in the shaft 130, for instance in the fourth lumen 124 (FIG. 3). The catheter 100 can include an inner ring 110 coupling the central tube 102 to the distal plug 106. The distal end 188 of the balloon 162 can be affixed to the inner ring 110, thereby fixing the distal end of the balloon 162 in relation to the central tube 102. The catheter 100 can include a coupler 108 coupling the proximal end 186 of the balloon 162 to the shaft 130.


The catheter 100 can include a fluid impermeable coupler or seal 134 between the central tube 102 and the shaft 130 so that the fluid impermeable seal 134 is over the central tube and within the shaft. As illustrated, the seal 134 couples the central tube 102 to the inflation tube 116. Alternatively, the shaft 130 can include an inflation lumen sealed to the seal 134 (or similar seal 134 with appropriate configuration) to the central tube 102 so that the inflatable balloon 162 can be inflated directly through the inflation lumen without requiring the inflation tube 116.



FIGS. 5A and 5B illustrate an alternative catheter 200 having an irrigation balloon 264 over an inflation balloon 262 and a central tube 202 providing structural support for the balloons 262, 264 and a flow path to inflate the inflation balloon 262. The central tube includes inflation ports 204. The central tube 202 can be configured to inflate and/or deflate the inflation balloon 262 similarly to the central tube 102 illustrated in FIGS. 1A through 4B. The central tube 102 can slide longitudinally in relation to a shaft 230 to adjust a longitudinal dimension, height H1, H3 of the balloons 262, 264. The central tube 202 can be obstructed by a distal plug 106 (FIGS. 1A through 4D) or other obstruction to inhibit fluid from exiting the distal end 226 of the catheter 200.


The irrigation balloon 264 and inner inflation balloon 262 are affixed to each other at a distal balloon end 288 and a proximal balloon end 286 fixed in relation to a catheter shaft 230. An irrigation lumen 266 provides a conduit for irrigation fluid to the irrigation balloon 264. The irrigation balloon 264 includes pores 272 sized and positioned to allow irrigation fluid to exit the interior of the irrigation balloon 264. The non-irrigating inner inflation balloon 262 is impermeable to the irrigation fluid such that no significant amount of irrigation fluid passes from the outer balloon 264 into the inner balloon 262 when negative pressure is applied to deflate the inner balloon 262, meaning any amount of irrigation fluid that may enter the inner balloon 262 during deflation does not significantly affect the resulting volume of the inner balloon 262.


An inflation lumen 216 is fluidically coupled to the central tube 202. The irrigation lumen 266 and inflation lumen 216 are positioned in the shaft 230. The shaft 230, irrigation lumen 266, and inflation lumen 216 can have sufficient length to extend from the treatment site, through vasculature, and outside the patient. The distal portion of the catheter 200 can be placed by manipulation of a proximal portion of the shaft 230. Fluids can be injected into respective proximal openings of the irrigation lumen 266 and inflation lumen 268. The catheter 200 can include an inflation tube similar to the inflation tube 116 illustrated in FIG. 4D. The catheter 200 can include a seal between the central tube 202 and shaft 230 to the irrigation lumen 266 similar to the seal 134 illustrated in FIG. 4D.


Configured as such, the volume of the inner balloon 262 can be deflated more rapidly than an equivalent volume of an irrigation balloon lacking the inner balloon structure 262. This is because, generally, an irrigation balloon includes pores that allow backflow of fluids into the volume of the irrigation balloon when negative pressure is applied to deflate the irrigation balloon.


The catheter 200 can otherwise be manipulated and constructed similar to corresponding catheters in U.S. 2020/0147295.


The irrigation balloon 264 can expand and contract through a range of circumferences during inflation and deflation. The irrigation balloon 264 can have a small circumference C7 when in the deflated state (FIG. 5B) sized so that the irrigation balloon 264 can be retracted into a sheath. The irrigation balloon 264 can have a maximum circumference C5 when in the inflated state (FIG. 5A).


The inner balloon 262 can expand and contract through a range of circumferences during inflation and deflation. The inner balloon 262 can have a small circumference C6 when the catheter 200 is in the deflated state (FIG. 5B) and a larger circumference C4 when the catheter 200 is in an inflated state (FIG. 5A). The circumference C4 of the inner inflation balloon 262 in the inflated state can be sized in relation to the circumference C5 of the irrigation balloon 264 in the inflated state (FIG. 5A) to allow irrigation fluids to pass between the outer surface of the inner balloon 262 and the inner surface of the outer balloon 264 and through the pores 272 at a desired flow rate.


When the balloons 262, 264 are in the inflated state as illustrated in FIG. 5A, the balloons can respectively have circular cross-sectional shapes in plane P. The circular cross-sectional shapes of the balloons 262, 264 can be concentric. The central tube 202 can be concentric with the balloons 262, 264 in the plane P. The balloons 262, 264 can be substantially spherical as illustrated in FIG. 5A or can form inflated shapes similar to those illustrated in FIGS. 1A and 1B.


The central tube 202 can telescope to allow the irrigation balloon 264 and inner balloon 262 to contract and elongate during inflation and deflation. The balloons 262, 264 can have a maximum height H3 when in the deflated state (FIG. 5B) and a minimum height H1 when in the inflated state (FIG. 5A) similar to the example catheter 100 illustrated in FIGS. 1A and 1C.



FIG. 6 is an illustration of a distal portion of another example balloon catheter 300 having an expanding set of splines 356 and a collapsing set of splines 358. The balloon catheter 300 is illustrated in an inflated state. The catheter 300 includes a central tube 302 having inflation ports 304 configured to inflate a balloon 354 similar to the central tube 102 illustrated in FIGS. 1A through 4B. The central tube 302 can slide longitudinally in relation to a shaft 330 to adjust a longitudinal dimension, height H1, H2, H3 of a balloon 354 similar to as illustrated in FIGS. 1A through 1C. The central tube 302 can be obstructed by a distal plug 106 (FIGS. 1A through 4D) or other obstruction to inhibit fluid from exiting the distal end of the catheter 300.


The catheter 300 includes a balloon assembly 340 including the expanding set of splines 356, the collapsing set of splines 358, the balloon 354, and the central tube 302. The splines can be made at least partially from shape-memory material. The splines 356, 358 are preferably positioned inside the balloon 354, although they can be positioned outside the balloon 354. The splines 356, 358 can be configured to be heated using electrical current provided via suitable wires that run through the catheter's shaft 330. A physician may operate (e.g., activate and deactivate) each of the two sets of splines 356, 358 independently. The splines 356, 358 can be configured similarly to corresponding structures in U.S. 2019/0059818. The catheter 300 can include additional compatible functionality and structures as presented in U.S. 2019/0059818.


The balloon 354 can be expanded by heating of the expanding set of splines 356, and the expanding set of splines 356 can be forced to collapse upon removal of heat. The balloon 354 can be collapsed by heating the collapsing set of splines 358, and the collapsing set of splines 358 can be forced to expand upon removal of the heat. As the balloon 354 expands and collapses, the central tube 302 can slide longitudinally in relation to the shaft to longitudinally elongate and foreshorten the balloon 354. The splines 356, 358 can be affixed so that distal ends of the splines are fixed in relation to the central tube 302 and proximal ends of the splines are fixed in relation to the shaft 330. As the balloon 354 reshapes in response to expansion and/or collapse of the splines 356, 358, the central tube 302 can slide in relation to the shaft 330.


The splines 356, 358 are distributed circumferentially around the inside of the balloon 354. The splines 356, 358 may be assembled in an alternating fashion, e.g., expanding splines 356 placed between two collapsing splines 358, and vice versa. This configuration balances the splines 356 that expand the balloon 354 the splines 358 that collapse and have it back mechanically ready to be easily pulled back into a sheath.


The balloon assembly 340 can include a suitable number of splines, in various suitable arrangements. For example, the number of expanding splines 356 can be different than the number of collapsing splines 358. The balloon assembly 340 can include one or more additional splines that are not made of a shape-memory material. More than two sets of splines can be used. In some examples, the expanding set of splines 356 can be omitted, and pressure from inflation fluid within the balloon 354 can be sufficient to expand the balloon 354. The collapsing set of splines 358 can be activated to collapse the balloon 354 for re-sheathing.



FIGS. 7A and 7B are illustrations of a distal portion of another example irrigation balloon catheter 400 having a self-expandable spring 451. FIG. 7A illustrates the distal portion in a radially contracted, longitudinally extended state. FIG. 7B illustrates the distal portion in a radially expanded, longitudinally retracted state. The catheter 400 includes a central tube 402 having inflation ports 404 configured to inflate a balloon 462 similar to the central tube 102 illustrated in FIGS. 1A through 4B. The central tube 402 can slide longitudinally in relation to a shaft 430 to adjust a longitudinal dimension, height H1, H2, H3 of a balloon 462 similar to as illustrated in FIGS. 1A through 1C. The central tube 402 can be obstructed by a distal plug 106 (FIGS. 1A through 4D) or other obstruction to inhibit fluid from exiting the distal end of the catheter 400.



FIG. 7A illustrates a telescopic balloon assembly 440 of the catheter 400 in an elongated state fitted at the distal end of a shaft 430. A proximal section 448 and the central tube 402 are assembled into a two-part structure of the telescopic assembly 440. The proximal section 448 is tubular and shaped to receive the central tube 402. The proximal section 448 is coupled to the catheter shaft 430. The central tube 402 can move telescopically inside the proximal section 448, i.e., its motion is either proximally or distally along the longitudinal axis L-L. The balloon 462 is coupled at its distal end the central tube 402 by a distal anchor 456 and is coupled at its proximal end to the proximal section 448 by a proximal anchor 458.


A puller-wire 452 runs through the shaft 430 and within the two-part telescopic assembly 440 and is connected to the central tube 402. The puller-wire 452 can be operated (e.g., pulled or relaxed) from a handle (not illustrated). The puller-wire 452 can be pulled to cause the central tube 402 to move into the proximal section 448, thereby foreshortening a longitudinal dimension (i.e. height) of the balloon 462 to move the telescopic assembly 440 from the longitudinally extended height illustrated in FIG. 7A to the longitudinally retracted state illustrated in FIG. 7B. A stopper 459 positioned on the central tube 402 can limit the motion of central tube 402 in the proximal direction when the stopper 459 contacts the proximal section 448. The balloon 462 can then be inflated as illustrated in FIG. 7B. The spring 451 can provide a force to cause the telescopic assembly 440 to move from the longitudinally retracted state illustrated in FIG. 7B to the longitudinally extended state illustrated in FIG. 7A when tension on the puller-wire 452 is relaxed.


The catheter 400 can include an inflation tube or inflation lumen similar to the inflation tube 116 and alternative inflation lumens described in relation to the catheter 100 illustrated in FIGS. 1A through 4B. The catheter 400 can include additional compatible functionality and structures as presented in U.S. 2019/0217065.



FIG. 8 is an illustration of a system 10 for diagnosis and/or treatment of a heart 12 of a living patient 36. One commercial product embodying elements of system 10 is available as the CARTO® 3 System, available from Biosense Webster, Inc. located in California, U.S.A.


A balloon catheter 14 can be constructed and function similar to example catheters 100, 200, 300, 400 illustrated and described herein including those described in references incorporated by reference herein, variations thereof, and alternatives thereto as understood by a person skilled in the pertinent art according to the teachings herein. The balloon catheter 14 can further include compatible features of the various catheters 100, 200, 300, 400 illustrated and described herein including those described in the references incorporated by reference herein.


The balloon catheter 14 can be percutaneously inserted by an operator 16 through the patient's vascular system and a shaft 30 of the catheter 14 can be manipulated to position a balloon 2 near a distal end of the balloon catheter 14 in a chamber or vascular structure of the heart 12. The operator 16, who is typically a physician, can inflate the balloon 2 and bring electrodes 42 on the balloon surface into contact with the heart wall, for example, at an ablation target site. The balloon can irrigate through pores 72. The balloon 2 can be configured to inflate via a central tube configured similarly to any of the central tubes 102, 202, 302, 402 illustrated herein, variations thereof, and alternatives thereto as understood by a person skilled in the pertinent art according to the teachings herein. The central tube can telescope to allow the height of the balloon 2 to foreshorten as the balloon 2 is inflated and/or elongate as the balloon 2 is deflated.


Electrical signals measured by the electrodes 42 can be used to prepare electrical activation maps. Electrical activation maps can be prepared, according to methods disclosed in U.S. Pat. Nos. 6,226,542, 6,301,496, and 6,892,091, each incorporated herein by reference.


Areas determined to be abnormal, for example by evaluation of the electrical activation maps, can be ablated by application of thermal energy, e.g., by passage of radiofrequency electrical current through wires in the balloon catheter 14 to one or more electrodes 42 positioned on the balloon 2, which apply the radiofrequency energy to target tissue. The electrodes 42 can be used both for measure electrical signals and apply radiofrequency ablation; alternatively, each process can be performed by different electrodes, potentially on different catheters.


During ablation, energy from the electrical current (alternating in the form of radiofrequency or direct current in bipolar pulse) is absorbed in the tissue, to cause a permanent loss of its electrical excitability. This procedure is typically intended to create non-conducting lesions in the cardiac tissue, which disrupt the abnormal electrical pathway causing the arrhythmia. Such principles can be applied to different heart chambers to diagnose and treat many different types of cardiac arrhythmias.


The catheter 14 can include a handle 20, having suitable controls on the handle to enable the operator 16 to steer, position and orient the distal end of the catheter as desired for ablation and/or diagnosis. To aid the operator 16, the balloon catheter 14 can include position sensors positioned near the distal end of the balloon catheter 14 (e.g. under or near to the balloon 2) that provide signals to a processor 22, located in a console 24. The console 24 can include memory 58 in communication with the processor 22 that when executed by the processor 22 cause the console 24 to perform various functions during treatment. The console 24 can further include an ablation module 74, irrigation module 76, and inflation module 78 that can each respectively include hardware and software (e.g. in memory 58) to execute various functions related to the respective module. The modules 74, 76, 78 can include common hardware and/or software and are included to illustrate various functionality of the console 24. The console 24 can include additional modules not illustrated. The irrigation module 76 and inflation module 78 can be one in the same or separate (e.g. when the catheter 14 includes separate irrigation and inflation balloons).


Ablation energy and electrical signals can be conveyed to and from the heart 12 through the electrodes 42 on the balloon 2 via a cable 38 to the console 24. Pacing signals and other control signals may be conveyed from the console 24 through the cable 38 and the electrodes 42 to the heart 12. This functionality can be controlled by the ablation module 74.


Wire connections 35 link the console 24 with body surface electrodes 40 and other components of a positioning sub-system for measuring location and orientation coordinates of the catheter 14. The processor 22 or another processor may be an element of the positioning subsystem. The electrodes 42 on the balloon 2 and the body surface electrodes 40 may be used to measure tissue impedance at the ablation site as taught in U.S. Pat. No. 7,536,218, incorporated herein by reference.


A temperature sensor, typically a thermocouple or thermistor, may be mounted on or near each of the electrodes 42. An example of the temperature sensor as used in conjunction with the ablation electrode is shown and described in U.S. Patent Publication 2019/0298441 incorporated herein by reference.


The catheter 14 can include a force sensor configured to provide a signal indicative of a magnitude and direction of force applied by a balloon on tissue such as described in U.S. patent application Ser. No. 16/863,815 filed Apr. 30, 2020, titled “Balloon Catheter with Force Sensor”, incorporated by reference herein.


The console 24 can include one or more ablation power generators 25 included in, or at least controlled by the ablation module 74. The catheter 14 can be configured to conduct ablative energy to the heart using any known ablation energies or modalities, e.g., radiofrequency energy, electroporation, ultrasound energy, cryogenic energy, and laser-produced light energy. Such methods are disclosed in commonly assigned U.S. Pat. Nos. 6,814,733, 6,997,924, and 7,156,816, and “Theoretical Considerations of Tissue Electroporation With High-Frequency Bipolar Pulses” by Christopher B. Arena, Michael B. Sano, Marissa Nichole Rylander, and Rafael V. Davalos (May 2011), and “Ablative therapies: Advantages and disadvantages of radiofrequency, cryotherapy, microwave and electroporation methods, or how to choose the right method for an individual patient?” by O. Seror (April 2015), each incorporated herein by reference.


The positioning subsystem can include a magnetic position tracking arrangement that determines the position and orientation of the catheter 14 by generating magnetic fields, using magnetic field generators 28, in a predefined working volume and sensing these fields at the catheter, using coils or traces disposed within the catheter, typically proximate to the tip. A positioning subsystem is described in U.S. Pat. Nos. 7,756,576 and 7,536,218, each incorporated herein in their entireties.


The operator 16 may observe and regulate the functions of the catheter 14 via the console 24. The processor 22 can drive a display 29. The processor 22 and associated circuitry of the console 24 can be configured to receive, amplify, filter and digitize signals from the catheter 14, including signals generated by sensors such as electrical, temperature and contact force sensors, and a plurality of location sensing coils or traces located distally in the catheter 14. The digitized signals are received and used by the console 24 and the positioning subsystem to compute the position and orientation of the catheter 14, and to analyze the electrical signals from the electrodes and sensors.


In order to generate electroanatomic maps, the processor 22 can include an electroanatomic map generator, an image registration program, an image or data analysis program and a graphical user interface configured to present graphical information on the display 29.


The system 10 can include other elements, which are not shown in the figures for the sake of simplicity. For example, the system 10 can include an electrocardiogram (ECG) monitor, coupled to receive signals from one or more body surface electrodes, in order to provide an ECG synchronization signal to the console 24. The system 10 can include a reference position sensor, either on an externally applied reference patch attached to the exterior of the subject's body, or on an internally placed catheter, which is inserted into the heart 12 maintained in a fixed position relative to the heart 12. The system 10 can further include pumps and lines for circulating liquids through the catheter 14 for irrigating the treatment site. The system 10 can be configured to receive image data from an external imaging modality, such as an MRI unit, CT, or the like and includes image processors that can be incorporated in or invoked by the processor 22 for generating and displaying images.

Claims
  • 1. A balloon catheter comprising: an elongated shaft extending along a longitudinal axis of the balloon catheter;an inflatable balloon disposed approximate a distal end of the elongated shaft and comprising an interior configured to receive an inflation medium to inflate the inflatable balloon;a central tube extending along the longitudinal axis, at least a portion of the central tube being positioned within the inflatable balloon, providing structural support for the inflatable balloon, comprising inflation ports, and comprising a central lumen in fluidic communication with the inflation ports,the central lumen and inflation ports providing a flow path between the inflatable balloon interior and the elongated shaft to allow the inflation medium to pass from the elongated shaft into the interior of the inflatable balloon,the central tube being coupled to the distal end of the elongated shaft so that the central tube is movable to extend and/or contract the inflatable balloon in length in relation to the longitudinal axis, anda distal end of the inflatable balloon being affixed to the central tube and a proximal end of the inflatable balloon being affixed to the elongated shaft;an elastic element, coupled to the central tube and shaft and configured to self-elongate thereby sliding the central tube in relation to the shaft and extending the inflatable balloon in length in relation to the longitudinal axis;a puller-wire connected to the central tube, extending through the shaft, and configured to be accessible for retraction during treatment so that retraction of the puller-wire compresses the elastic element in along the longitudinal axis thereby sliding the central tube in relation to the shaft and contracting the inflatable balloon in length in relation to the longitudinal axis; andan end plug disposed approximate a distal end of the central tube and configured to prevent loss of fluid through the distal end of the central tube.
  • 2. The balloon catheter of claim 1, further comprising: a collapsing set of splines made at least partially from a shape-memory material having a collapsed pre-formed shape that collapses the inflatable balloon; anda membrane affixed to the splines.
  • 3. The balloon catheter of claim 1, the central lumen comprising an obstruction at a position distal to the inflation ports so that inflation medium is inhibited from moving through the central lumen distal of the obstruction,the central lumen comprising an opening positioned in a proximal direction in relation to the inflation ports and in fluidic communication with the shaft to allow the inflation medium to travel from the shaft into the central lumen.
  • 4. The balloon catheter of claim 1, further comprising: a navigation sensor disposed within the central lumen, the navigation sensor being a three axis inductive sensor, and the navigation sensor being positioned in a distal direction in relation to the inflation ports.
  • 5. The balloon catheter of claim 1, further comprising: irrigation ports positioned on the inflatable balloon so that the flow path extends from the shaft, through the central lumen, through the inflation ports, through the interior of the inflatable balloon, and through the irrigation ports;a plurality of electrodes disposed on an outer surface of the inflatable balloon; andone or more wires connected to each of the plurality of electrodes, each wire extending through the shaft.
  • 6. The balloon catheter of claim 1, further comprising: an irrigation balloon comprising irrigation ports and being disposed over the inflatable balloon so that inflation of the inflatable balloon at least partially inflates the irrigation balloon and so that the balloon catheter is configured to irrigate via the irrigation ports; anda chamber between the irrigation balloon and the inflatable balloon that is fluidically separate from the interior of the inflatable balloon and in fluidic communication with the irrigation ports;a plurality of electrodes disposed on an outer surface of the irrigation balloon; andone or more wires connected to each of the plurality of electrodes, each wire extending through the shaft.
  • 7. A catheter comprising: an elongated shaft extending along a longitudinal axis of the catheter;an inflatable balloon disposed approximate a distal end of the elongated shaft and comprising an interior configured to receive an inflation medium to inflate the inflatable balloon to a first expanded volume defined by a truncated cone having its base connected to a semi-toroid;a central tube extending along the longitudinal axis, at least a portion of the central tube being positioned within the inflatable balloon, providing structural support for the inflatable balloon, comprising inflation ports, and comprising a central lumen in fluidic communication with the inflation ports,the central lumen and inflation ports providing a flow path between the inflatable balloon interior and the elongated shaft to allow the inflation medium to pass from the elongated shaft into the interior of the inflatable balloon,the central tube being configured to move distally along the longitudinal axis to change the first expanded volume to a second expanded volume defined substantially by two truncated cones connected at their respective bases;an elastic element, coupled to the central tube and shaft and configured to self-elongate thereby sliding the central tube in relation to the shaft and extending the inflatable balloon in length in relation to the longitudinal axis;a puller-wire connected to the central tube, extending through the shaft, and configured to be accessible for retraction during treatment so that retraction of the puller-wire compresses the elastic element along the longitudinal axis thereby sliding the central tube in relation to the shaft and contracting the inflatable balloon in length in relation to the longitudinal axis; anda distal plug positioned to prevent loss of fluid through a distal end of the central tube.
  • 8. The catheter of claim 7, a distal end of the inflatable balloon being affixed to the central tube and a proximal end of the inflatable balloon being affixed to the shaft.
  • 9. The catheter of claim 7, further comprising: a collapsing set of splines made at least partially from a shape-memory material having a collapsed pre-formed shape that collapses the inflatable balloon; anda membrane affixed to the splines.
  • 10. The catheter of claim 7, the central lumen comprising an opening positioned in a proximal direction in relation to the inflation ports and in fluidic communication with the shaft to allow the inflation medium to travel from the shaft into the central lumen.
  • 11. The catheter of claim 7, further comprising: irrigation ports disposed on the inflatable balloon so that the flow path extends from the shaft, through the central lumen, through the inflation ports, through the interior of the inflatable balloon, and through the irrigation ports, the catheter being configured to irrigate via the irrigation ports;a plurality of electrodes disposed on an outer surface of the inflatable balloon; andone or more wires connected to each of the plurality of electrodes, each wire extending through the shaft.
  • 12. The catheter of claim 7, further comprising: an irrigation balloon comprising irrigation ports and being disposed over the inflatable balloon so that inflation of the inflatable balloon at least partially inflates the irrigation balloon, the catheter being configured to irrigate via the irrigation ports;a chamber between the irrigation balloon and the inflatable balloon that is fluidically separate from the interior of the inflatable balloon and in fluidic communication with the irrigation ports;a plurality of electrodes disposed on an outer surface of the irrigation balloon; andone or more wires connected to each of the plurality of electrodes, each wire extending through the shaft.
  • 13. A method comprising: inflating an inflatable balloon of a balloon catheter through a flow path that traverses an elongated shaft of the balloon catheter, a central lumen of a central tube positioned within the inflatable balloon, inflation ports of the central tube, and an interior of the inflatable balloon;structurally supporting the inflatable balloon along a longitudinal axis of the balloon catheter with the central tube, the central tube being aligned with the longitudinal axis so that at least a portion of the central tube is positioned within the inflatable balloon;extending the inflatable balloon in length in relation to the longitudinal axis by allowing an elastic element coupled to the central tube and shaft to self-elongate thereby sliding the central tube longitudinally in relation to the shaft; andcontracting the inflatable balloon in length in relation to the longitudinal axis by retracting a puller-wire connected to the central tube and extending through the shaft thereby compressing the elastic element along the longitudinal axis and sliding the central tube longitudinally in relation to the shaft.
  • 14. The method of claim 13, further comprising: collapsing a set of splines made at least partially from a shape-memory material having a collapsed pre-formed shape that collapses the inflatable balloon.
  • 15. A method of claim 13, further comprising: inflating an inflatable balloon of a balloon catheter through a flow path that traverses an elongated shaft of the balloon catheter, a central lumen of a central tube positioned within the inflatable balloon, an opening in the central tube and inflation ports of the central tube, and an interior of the inflatable balloon, the opening in the central tube being in fluidic communication with the central lumen, in fluidic communication with the elongated shaft, and positioned in a proximal direction from the inflation ports;structurally supporting the inflatable balloon along a longitudinal axis of the balloon catheter with the central tube, the central tube being aligned with the longitudinal axis so that at least a portion of the central tube is positioned within the inflatable balloon; andinhibiting inflation medium traversing the flow path from moving through the central lumen distal of the central tube.
  • 16. The method of claim 15, further comprising: extending the inflatable balloon in length in relation to the longitudinal axis by allowing an elastic element coupled to the central tube and shaft to self-elongate thereby sliding the central tube longitudinally in relation to the shaft; andcontracting the inflatable balloon in length in relation to the longitudinal axis by retracting a puller-wire connected to the central tube and extending through the shaft thereby compressing the elastic element along the longitudinal axis and sliding the central tube longitudinally in relation to the shaft.
  • 17. The method of claim 15, further comprising: sliding the central tube in relation to the elongated shaft to thereby extend and/or contract the inflatable balloon in length in relation to the longitudinal axis.
  • 18. The method of claim 15, further comprising: collapsing a set of splines made at least partially from a shape-memory material having a collapsed pre-formed shape that collapses the inflatable balloon.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority to prior filed U.S. Provisional Application No. 63/137,270 filed on Jan. 14, 2021 which is hereby incorporated by reference as set forth in full herein.

US Referenced Citations (258)
Number Name Date Kind
D123782 Paul Dec 1940 S
3316896 Louis May 1967 A
4276874 Wolvek et al. Jul 1981 A
4299227 Lincoff Nov 1981 A
4587975 Salo et al. May 1986 A
4709698 Johnston et al. Dec 1987 A
4805621 Heinze et al. Feb 1989 A
5178957 Kolpe et al. Jan 1993 A
5429617 Hammersmark et al. Jul 1995 A
5582609 Swanson et al. Dec 1996 A
5584830 Ladd et al. Dec 1996 A
5702386 Stern et al. Dec 1997 A
5718241 Ben-Haim et al. Feb 1998 A
5797903 Swanson et al. Aug 1998 A
5860974 Abele Jan 1999 A
5971983 Lesh Oct 1999 A
6012457 Lesh Jan 2000 A
6024740 Lesh et al. Feb 2000 A
6042580 Simpson Mar 2000 A
6123718 Tu et al. Sep 2000 A
6164283 Lesh Dec 2000 A
6171275 Webster, Jr. Jan 2001 B1
6176832 Habu et al. Jan 2001 B1
6198974 Webster, Jr. Mar 2001 B1
6226542 Reisfeld May 2001 B1
6301496 Reisfeld Oct 2001 B1
6322558 Taylor et al. Nov 2001 B1
6380957 Banning Apr 2002 B1
6402740 Ellis et al. Jun 2002 B1
D462389 Provence et al. Sep 2002 S
6471693 Carroll et al. Oct 2002 B1
6522930 Schaer et al. Feb 2003 B1
6656174 Hegde et al. Dec 2003 B1
6814733 Schwartz et al. Nov 2004 B2
6892091 Ben-Haim et al. May 2005 B1
6893433 Lentz May 2005 B2
6986744 Krivitski Jan 2006 B1
6987995 Drysen Jan 2006 B2
6997924 Schwartz et al. Feb 2006 B2
7142903 Rodriguez et al. Nov 2006 B2
7156816 Schwartz et al. Jan 2007 B2
7274957 Drysen Sep 2007 B2
7410486 Fuimaono et al. Feb 2008 B2
7340307 Maguire et al. Mar 2008 B2
7377906 Selkee May 2008 B2
7410483 Fuimaono et al. Aug 2008 B2
7442190 Abbound et al. Oct 2008 B2
7536218 Govari et al. May 2009 B2
7591799 Selkee Sep 2009 B2
7593760 Rodriguez et al. Sep 2009 B2
7720517 Drysen May 2010 B2
7756576 Levin Jul 2010 B2
7842031 Abboud et al. Nov 2010 B2
7853302 Rodriguez et al. Dec 2010 B2
8000765 Rodriguez et al. Aug 2011 B2
8021327 Selkee Sep 2011 B2
8048032 Root et al. Nov 2011 B2
8231617 Satake Jul 2012 B2
8267932 Baxter et al. Sep 2012 B2
8275440 Rodriguez et al. Sep 2012 B2
8348888 Selkee Jan 2013 B2
8357152 Govari et al. Jan 2013 B2
D682289 DiJulio et al. May 2013 S
D682291 Baek et al. May 2013 S
D690318 Kluttz et al. Sep 2013 S
D694652 Tompkin Dec 2013 S
8641709 Sauvageau et al. Feb 2014 B2
8721590 Seward et al. May 2014 B2
8777161 Pollock et al. Jul 2014 B2
D716340 Bresin et al. Oct 2014 S
8852181 Malecki et al. Oct 2014 B2
D720766 Mandal et al. Jan 2015 S
D721379 Moon et al. Jan 2015 S
D724618 Shin Mar 2015 S
8998893 Avitall Apr 2015 B2
D729263 Ahn et al. May 2015 S
9089350 Willard Jul 2015 B2
D736780 Wang Aug 2015 S
9126023 Sahatjian et al. Sep 2015 B1
D740308 Kim et al. Oct 2015 S
D743424 Danielyan et al. Nov 2015 S
D744000 Villamor et al. Nov 2015 S
9173758 Brister et al. Nov 2015 B2
D747742 Fan et al. Jan 2016 S
D750644 Bhutani et al. Mar 2016 S
9283034 Katoh et al. Mar 2016 B2
9289141 Lowery et al. Mar 2016 B2
D753690 Vazquez et al. Apr 2016 S
9320631 Moore et al. Apr 2016 B2
9345540 Mallin et al. May 2016 B2
D759673 Looney et al. Jun 2016 S
D759675 Looney et al. Jun 2016 S
D764500 Wang Aug 2016 S
D765709 Gagnier Sep 2016 S
D767616 Jones et al. Sep 2016 S
D768696 Gagnier Oct 2016 S
D783037 Hariharan et al. Apr 2017 S
9655677 Salahieh et al. May 2017 B2
D791805 Segars Jul 2017 S
9795442 Salahieh et al. Oct 2017 B2
9907610 Beeckler et al. Mar 2018 B2
9956035 Govari et al. May 2018 B2
D861717 Brekke et al. Oct 2019 S
10688278 Beeckler et al. Jun 2020 B2
20010031961 Hooven Oct 2001 A1
20020002369 Hood Jan 2002 A1
20020065455 Ben-Haim et al. May 2002 A1
20020068931 Wong et al. Jun 2002 A1
20020077627 Johnson et al. Jun 2002 A1
20020160134 Ogushi et al. Oct 2002 A1
20030018327 Truckai et al. Jan 2003 A1
20030028183 Sanchez et al. Feb 2003 A1
20030050637 Maguire et al. Mar 2003 A1
20030060820 Maguire et al. Mar 2003 A1
20030144658 Schwartz et al. Jul 2003 A1
20040122445 Butler et al. Jun 2004 A1
20040147920 Keidar Jul 2004 A1
20040225285 Gibson Nov 2004 A1
20050070887 Taimisto et al. Mar 2005 A1
20050119686 Clubb Jun 2005 A1
20060013595 Trezza et al. Jan 2006 A1
20060106375 Werneth et al. May 2006 A1
20060135953 Kania et al. Jun 2006 A1
20070071792 Varner et al. Mar 2007 A1
20070080322 Walba Apr 2007 A1
20070083194 Kunis et al. Apr 2007 A1
20070287994 Patel Dec 2007 A1
20080018891 Hell et al. Jan 2008 A1
20080021313 Eidenschink et al. Jan 2008 A1
20080051707 Phan et al. Feb 2008 A1
20080140072 Stangenes et al. Jun 2008 A1
20080183132 Davies et al. Jul 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080202637 Hector et al. Aug 2008 A1
20080208186 Slater Aug 2008 A1
20080249463 Pappone et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080281312 Werneth et al. Nov 2008 A1
20090163890 Clifford et al. Jun 2009 A1
20090182318 Abboud et al. Jul 2009 A1
20090270850 Zhou et al. Oct 2009 A1
20090299401 Tilson Dec 2009 A1
20100069836 Satake Mar 2010 A1
20100114269 Wittenberger et al. May 2010 A1
20100204560 Salahieh et al. Aug 2010 A1
20100256629 Wylie et al. Oct 2010 A1
20100324552 Kauphusman et al. Dec 2010 A1
20110118632 Sinelnikov et al. May 2011 A1
20110130648 Beeckler et al. Jun 2011 A1
20110282338 Fojtik Nov 2011 A1
20110295248 Wallace et al. Dec 2011 A1
20110301587 Deem et al. Dec 2011 A1
20110313286 Whayne et al. Dec 2011 A1
20120019107 Gabl et al. Jan 2012 A1
20120029511 Smith et al. Feb 2012 A1
20120065503 Rogers et al. Mar 2012 A1
20120071870 Salahieh et al. Mar 2012 A1
20120079427 Carmichael et al. Mar 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120101538 Ballakur et al. Apr 2012 A1
20120143177 Avitall Jun 2012 A1
20120143293 Mauch et al. Jun 2012 A1
20120165732 Muller Jun 2012 A1
20120191079 Moll et al. Jul 2012 A1
20120209260 Lambert et al. Aug 2012 A1
20130085360 Grunewald Apr 2013 A1
20130090649 Smith et al. Apr 2013 A1
20130109982 Sato et al. May 2013 A1
20130150693 D'Angelo et al. Jun 2013 A1
20130165916 Mathur et al. Jun 2013 A1
20130165941 Murphy Jun 2013 A1
20130165990 Mathur et al. Jun 2013 A1
20130169624 Bourier et al. Jul 2013 A1
20130261692 Cardinal et al. Oct 2013 A1
20130274562 Ghaffari et al. Oct 2013 A1
20130274658 Steinke et al. Oct 2013 A1
20130282084 Mathur et al. Oct 2013 A1
20130318439 Landis et al. Nov 2013 A1
20140012242 Lee et al. Jan 2014 A1
20140018788 Engelman et al. Jan 2014 A1
20140031813 Tellio et al. Jan 2014 A1
20140058197 Salahieh et al. Feb 2014 A1
20140121470 Scharf et al. May 2014 A1
20140148805 Stewart et al. May 2014 A1
20140227437 DeBoer et al. Aug 2014 A1
20140243821 Salahieh et al. Aug 2014 A1
20140275993 Ballakur Sep 2014 A1
20140276756 Hill Sep 2014 A1
20140276811 Koblish et al. Sep 2014 A1
20140288546 Sherman et al. Sep 2014 A1
20140330266 Thompson et al. Nov 2014 A1
20140357956 Salahieh et al. Dec 2014 A1
20150005799 Lindquist et al. Jan 2015 A1
20150025532 Hanson et al. Jan 2015 A1
20150025533 Groff et al. Jan 2015 A1
20150057655 Osypka Feb 2015 A1
20150067512 Roswell Mar 2015 A1
20150080883 Haverkost et al. Mar 2015 A1
20150105774 Lindquist et al. Apr 2015 A1
20150112256 Byrne et al. Apr 2015 A1
20150112321 Cadouri Apr 2015 A1
20150119875 Fischell et al. Apr 2015 A1
20150141982 Lee May 2015 A1
20150157382 Avitall et al. Jun 2015 A1
20150216591 Cao et al. Aug 2015 A1
20150216650 Shaltis Aug 2015 A1
20150265329 Lalonde et al. Sep 2015 A1
20150265339 Lindquist et al. Sep 2015 A1
20150265812 Lalonde Sep 2015 A1
20150272667 Govari et al. Oct 2015 A1
20150327805 Ben-Haim Nov 2015 A1
20150341752 Flynn Nov 2015 A1
20160000499 Lennox et al. Jan 2016 A1
20160051321 Salahieh et al. Feb 2016 A1
20160085431 Kim et al. Mar 2016 A1
20160106499 Ogata et al. Apr 2016 A1
20160166306 Pageard Jun 2016 A1
20160175041 Govari et al. Jun 2016 A1
20160196635 Cho et al. Jul 2016 A1
20160250455 Ahn Sep 2016 A1
20160256305 Longo et al. Sep 2016 A1
20160374748 Salahieh et al. Dec 2016 A9
20170042614 Salahieh et al. Feb 2017 A1
20170042615 Salahieh et al. Feb 2017 A1
20170080192 Giasolli et al. Mar 2017 A1
20170143359 Nguyen et al. May 2017 A1
20170164464 Weinkam et al. Jun 2017 A1
20170311829 Beeckler et al. Nov 2017 A1
20170311893 Beeckler et al. Nov 2017 A1
20170312022 Beeckler et al. Nov 2017 A1
20170347896 Keyes et al. Dec 2017 A1
20180074693 Jones et al. Mar 2018 A1
20180110562 Govari et al. Apr 2018 A1
20180125575 Schwartz et al. May 2018 A1
20180140807 Herrera May 2018 A1
20180161093 Basu et al. Jun 2018 A1
20180256247 Govari et al. Sep 2018 A1
20180280080 Govari et al. Oct 2018 A1
20180333162 Saab Nov 2018 A1
20180368927 Lyons et al. Dec 2018 A1
20190059818 Herrera Feb 2019 A1
20190060622 Beeckler Feb 2019 A1
20190143079 Beeckler et al. May 2019 A1
20190175262 Govari et al. Jun 2019 A1
20190175263 Altmann et al. Jun 2019 A1
20190183567 Govari et al. Jun 2019 A1
20190201669 Govari et al. Jul 2019 A1
20190217065 Govari et al. Jul 2019 A1
20190297441 Dehe et al. Sep 2019 A1
20190298441 Clark et al. Oct 2019 A1
20190365451 Jung, Jr. Dec 2019 A1
20200001054 Jimenez et al. Jan 2020 A1
20200015693 Beeckler et al. Jan 2020 A1
20200085497 Zhang et al. Mar 2020 A1
20200147295 Van Niekerk et al. May 2020 A1
20200155226 Valls et al. May 2020 A1
20210077180 Govari et al. Mar 2021 A1
20210169567 Govari et al. Jun 2021 A1
Foreign Referenced Citations (60)
Number Date Country
101422637 May 2009 CN
102271607 Dec 2011 CN
102458566 May 2012 CN
203539434 Apr 2014 CN
104244856 Dec 2014 CN
104546117 Apr 2015 CN
105105844 Dec 2015 CN
105473091 Apr 2016 CN
105473093 Apr 2016 CN
0779059 Jun 1997 EP
1790304 May 2007 EP
2749214 Jul 2014 EP
2865350 Apr 2015 EP
2875790 May 2015 EP
3238646 Nov 2017 EP
3238648 Nov 2017 EP
3251622 Dec 2017 EP
3300680 Apr 2018 EP
3315087 May 2018 EP
3332727 Jun 2018 EP
3571983 Nov 2019 EP
3586778 Jan 2020 EP
3593853 Jan 2020 EP
3653153 May 2020 EP
H06261951 Sep 1994 JP
H1176233 Mar 1999 JP
2000504242 Apr 2000 JP
2005052424 Mar 2005 JP
2010507404 Mar 2010 JP
2012024156 Feb 2012 JP
2013013726 Jan 2013 JP
2013078587 May 2013 JP
2013529109 Jul 2013 JP
2014529419 Nov 2014 JP
2015503365 Feb 2015 JP
2015100706 Jun 2015 JP
2015112113 Jun 2015 JP
2015112114 Jun 2015 JP
2015518776 Jul 2015 JP
2016515442 May 2016 JP
2016116863 Jun 2016 JP
1988009682 Dec 1988 WO
0056237 Sep 2000 WO
02102231 Dec 2002 WO
2005041748 May 2005 WO
2008049087 Apr 2008 WO
2011143468 Nov 2011 WO
2013049601 Apr 2013 WO
2013052919 Apr 2013 WO
2013154776 Oct 2013 WO
2014168987 Oct 2014 WO
2015049784 Apr 2015 WO
2016183337 Nov 2016 WO
2016210437 Dec 2016 WO
2017024306 Feb 2017 WO
2017087549 May 2017 WO
2018106569 Jun 2018 WO
2018129133 Jul 2018 WO
2019095020 May 2019 WO
2019138321 Jul 2019 WO
Non-Patent Literature Citations (35)
Entry
Arena, C. B., “Theoretical Considerations of Tissue Electroporation With High-Frequency Bipolar Pulses” IEEE Transactions on Biomedical Engineering 58(5):1474-1482 (May 2011).
Seror, O., “Ablative therapies: Advantages and disadvantages of radiofrequency, cryotherapy, microwave and electroporation methods, or how to choose the right method for an individual patient?” Diagnostic and Interventional Imaging 96:617-624 (Apr. 2015).
Angela O., “AF Symposium 2017: First-in-Man Study Shows Promising Results with a Multi-Electrode Radiofrequency Balloon for Paroxysmal AF Treatment,” Cardiac Rhythm News, Jan. 20, 2017, 2 Pages, [Retrieved on Dec. 16, 2020] Retrieved from URL: https://cardiacrhythmnews.com/fist-in-man-study-shows-promising-results-with-a-multi-electrode-radiofrequency-balloon-for-paroxysmal-af-treatment/.
Casella M., et al., “Ablation Index as a Predictor of Long-Term Efficacy in Premature Ventricular Complex Ablation: A Regional Target Value Analysis,” Heart Rhythm Society, Jun. 2019, vol. 16, No. 6, pp. 888-895.
Co-Pending U.S. Appl. No. 14/578,807, filed Dec. 22, 2014, 21 pages.
Das M., et al., “Ablation Index, a Novel Marker of Ablation Lesion Quality: Prediction of Pulmonary Vein Reconnection at Repeat Electrophysiology Study and Regional Differences in Target Values,” Europace, 2017, Published Online May 31, 2016, vol. 19, pp. 775-783.
Dorobantu M., et al., “Oral Anticoagulation During Atrial Fibrillation Ablation: Facts and Controversies,” Cor et Vasa, 2013, Accepted on Dec. 3, 2012, vol. 55, No. 2, pp. e101-e106, Retrieved from URL: https://www.sciencedirect.com/science/article/pii/S0010865012001415.
Extended European Search Report for Application No. EP17168513.4 dated Sep. 18, 2017, 11 pages.
Extended European Search Report for European Application No. 15201723.2, dated May 11, 2016, 07 Pages.
Extended European Search Report for European Application No. 17168393.1 dated Dec. 15, 2017, 12 Pages.
Extended European Search Report for European Application No. 17168518.3, dated Sep. 20, 2017, 9 Pages.
Extended European Search Report for European Application No. 17173893.3, dated Nov. 6, 2017, 8 Pages.
Extended European Search Report for European Application No. 17201434.2, dated Feb. 1, 2018, 10 Pages.
Extended European Search Report for European Application No. 17205876.0, dated Jun. 1, 2018, 13 Pages.
Extended European Search Report for European Application No. 19177365.4, dated Nov. 8, 2019, 07 Pages.
Extended European Search Report for European Application No. 19183327.6, dated Nov. 21, 2019, 8 Pages.
Extended European Search Report for European Application No. 20153872.5, dated May 7, 2020, 9 Pages.
Extended European Search Report for European Application No. 20195648.9, dated Feb. 12, 2021, 8 Pages.
Fornell D., “Multi-Electrode RF Balloon Efficient for Acute Pulmonary Vein Isolation,” Diagnostic and Interventional Cardiology, May 17, 2017, 3 Pages, [Retrieved on Dec. 16, 2020] Retrieved from URL: www.dicardiology.com/article/multi-electrode-rf-balloon-efficient-acute-pulmonary-vein-isolation.
Haines D.E., et al., “The Promise of Pulsed Field Ablation,” Dec. 2019, vol. 19, No. 12, 10 pages.
Honarbakhsh S., et al., “Radiofrequency Balloon Catheter Ablation for Paroxysmal Atrial Fibrillation, Radiance Study—a UK experience,” EP Europace, Oct. 2017, vol. 19, No. 1, p. i21, 3 Pages.
International Search Report and Written Opinion for International Application No. PCT/IB2019/052313, dated Jul. 22, 2019, 8 Pages.
International Search Report and Written Opinion for International Application No. PCT/IB2019/056381, dated Dec. 17, 2019, 10 pages.
International Search Report and Written Opinion for International Application No. PCT/IB2019/057743, dated Dec. 6, 2019, 16 Pages.
International Search Report and Written Opinion issued in corresponding International Application No. PCT/IB2019/057742, dated Nov. 28, 2019, 18 Pages.
Nagashima K., et al., “Hot Balloon Versus Cryoballoon Ablation for Atrial Fibrillation,” Circulation: Arrhythmia and Electrophysiology, May 2018, vol. 11, No. 5, e005861, 9 Pages.
Napoli N., et al., “For Atrial Fibrillation Ablation, Newer Anticoagulant Reduces Major Bleeds,” American College of Cardiology, Mar. 19, 2017, 4 Pages, [Retrieved on Jan. 21, 2022] Retrieved from URL: https://www.acc.org/about-acc/press-releases/2017/03/18/08/47/sun-1045am-for-atrial-fibrillation-ablation-newer-anticoagulant-reduces-major-bleeds.
Okano T., et al., “Wire Perforation Causing Cardiopulmonary Arrest During Radiofrequency Hot Balloon Ablation for Pulmonary Vein Isolation,” Journal of Cardiology Cases, Feb. 15, 2019, vol. 19, No. 5, pp. 169-172.
Partial European Search Report for European Application No. 17168393.1 dated Sep. 13, 2017, 13 Pages.
Partial European Search Report for European Application No. 17205876.0, dated Feb. 22, 2018, 10 Pages.
Reddy V.Y., et al., “Balloon Catheter Ablation to Treat Paroxysmal Atrial Fibrillation: What is the Level of Pulmonary Venous Isolation?,” Heart Rhythm, Mar. 2008, vol. 5, No. 3, pp. 353-360, 3 Pages.
Winkle R.A., et al., “Atrial Fibrillation Ablation Using Open-Irrigated Tip Radiofrequency: Experience with Intraprocedural Activated Clotting Times ≤ 210 Seconds,” Heart Rhythm, Jun. 2014, Epub Mar. 27, 2014, vol. 11, No. 6, pp. 963-968.
Youtube:, “Intensity™ CX4 Professional E-Stim/ Ultrasound Combo,” Dec. 22, 2015, 1 Page, [Retrieved on Nov. 19, 2020], Retrieved from URL: https://www.youtube.com/watch?v=76s1QKMWJME].
Youtube: “New Interface TactiCath Contact Force Ablation Catheter,” Nov. 26, 2013, 1 Pages, [Retrieved on Nov. 19, 2020], Retrieved from URL: https: /Avww.youtube.com/watch?v=aYvYO8Hpylg].
Extended European Search Report dated Sep. 30, 2022, from corresponding European Application No. 22151293.2.
Related Publications (1)
Number Date Country
20220218959 A1 Jul 2022 US
Provisional Applications (1)
Number Date Country
63137270 Jan 2021 US