Exemplary embodiments relate generally to intravascular catheters devices, such as can be used during minimally invasive surgical procedures. In particular, Exemplary embodiments relate generally to an intravascular catheter device which facilitates improved angioplasty.
Atherosclerosis is a chronic condition in which atheromatous plaque accumulates on the inner walls of a blood vessel. As a result, the blood vessel walls can become inflamed and, over time, may harden to form atherosclerotic lesions that cause a narrowing of the vessel lumen. In severe cases, the atherosclerotic lesions can rupture and induce the formation of thrombus (i.e., blood clots), which can prevent blood flow through the narrowed vessel lumen.
There are known procedures and devices for treating or otherwise reducing the risks associated with atherosclerosis. For example, an angioplasty is a procedure in which a balloon catheter is inserted into a narrowed region of the vessel lumen via a delivery catheter. The balloon catheter includes a flexible tube having an inflatable balloon at an end thereof. Once positioned in the narrowed region, the balloon is inflated in order to dilate the narrowed vessel lumen. The pressure in the balloon is generally sufficient to compress the accumulated plaque. However, compressing the atherosclerotic material requires the use of relatively high inflation pressures. Such angioplasty procedures are typically performed by inflating a balloon to a pressure in the range of 10-20 atmospheres. These high inflation pressures place a strain on the blood vessel walls and potentially on the tissue surrounding the blood vessel, which can result in damage.
In some cases, it would be desirable to score the atherosclerotic material so as to break the surface tension and permit compression to be performed at lower pressures. In some cases, it would be desirable to score the atherosclerotic material so as to fragment the atherosclerotic lesions or permit fragmentation of the same during subsequent angioplasty. Thus, it would be desirable to provide an intravascular catheter having an expandable portion that can be selectively controlled by a user and adapted to create incisions in atherosclerotic material to facilitate the compression or fragmentation of the atherosclerotic material during a subsequent angioplasty procedure.
This invention relates to an intravascular catheter device for use during a surgical procedure. The catheter device includes a catheter tube having an expandable portion with a plurality of struts each defining an outer surface. The expandable portion is operable between a closed position, wherein the expandable portion has a first diameter, and an opened position, wherein the expandable portion has a second diameter that is larger than the first diameter. An incising element is provided on the outer surface of at least one of the struts. The incising element has a sharpened edge that extends outwardly in a radial direction from the outer surface of the strut for creating an incision in atherosclerotic material located within a blood vessel when the expandable portion is in the opened position.
The expandable portion, particularly the incising element and sharpened edge, may be configured to prepare the blood vessel for subsequent angioplasty. The intravascular catheter device may be configured to facilitate the scoring of the atherosclerotic material, which may break the surface tension in the atherosclerotic material and provide for subsequent the compression thereof by angioplasty at reduced pressures relative to traditional procedures. After scoring the atherosclerotic material with the intravascular catheter device, equivalent or improved compression may be achieved at balloon inflation pressures of 1 to 5 atmospheres in exemplary embodiments. Other pressure ranges up to 10 atmospheres are included in the present invention. For example, without limitation, 5 to 10 atmospheres remains below 10 atmospheres and is included in the present invention. 0.1 to 1 atmospheres also remains below 10 atmospheres and is also included in the present invention. Scoring the atherosclerotic material with the intravascular catheter device may also facilitate the fragmentation of the atherosclerotic material when scoring or during subsequent angioplasty.
Various aspects of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiments, when read in light of the accompanying drawings.
Referring now to the drawings, there is illustrated in
Referring now to
As shown in
The illustrated handle assembly 20 also includes a control member 25 that is supported on the handle body 21 for sliding movement within the slot 24. For example, the control member 25 is movable between a forward position (shown in
The illustrated handle assembly 20 also includes a locking mechanism 27 that is configured to temporarily secure the control member 25 in a desired position, although such is not required. As shown in
Referring now to
As shown in
As shown in
The illustrated expandable portion 32 has a pair of struts 34A and 34B. The illustrated struts 34A and 34B are separated by a pair of longitudinally extending slits 35A and 35B that extend through side walls of the expandable portion 32. As shown in
As shown in
The expandable portion 32, particularly (without limitation) the incising elements 36 and the sharpened edges, may be configured to prepare the atherosclerotic material 54 located in the blood vessel 50 for subsequent angioplasty. The catheter device 10 may be configured to facilitate the scoring of the atherosclerotic material 54 and the subsequent the compression thereof by angioplasty at reduced pressures relative to traditional procedures. After scoring the atherosclerotic material 54 with the intravascular catheter device 10, equivalent or improved compression may be achieved at balloon 73 inflation pressures of 1 to 5 atmospheres. Other pressure ranges up to 10 atmospheres are included in the present invention. For example, without limitation, 5 to 10 atmospheres remains below 10 atmospheres and is included in the present invention. 0.1 to 1 atmospheres also remains below 10 atmospheres and is also included in the present invention. More specifically, the expandable portion 32, particularly (without limitation) the incising elements 36 and the sharpened edges, may be configured to break the surface tension in the atherosclerotic material 54 which may facilitate adequate compression at the reduced inflation pressures. Scoring the atherosclerotic material 54 with the catheter device 10 may also facilitate the fragmentation of the atherosclerotic material 54 during the scoring or during subsequent angioplasty.
The distal end of the expandable portion 32 may optionally include a tip member 38. The illustrated tip member 38 has a generally conical shape that facilitates insertion of the catheter tube 30 within a blood vessel 50 (see
As shown in
As shown in
As shown in
Referring back to
The illustrated protective sheath 42 includes a flange 44 that facilitates sliding movement of the protective sheath 42 relative to the catheter tube 30. The illustrated flange 44 is an annular member that is located at an end of the protective sheath 42 nearest the handle assembly 20. The flange 44 can be integrally formed with the protective sheath 42 or may otherwise be secured thereto in any manner, such as with an adhesive or the like. It should be appreciated that the flange 44 can have any shape or may alternatively be configured in any manner to accomplish the functions described herein and below.
The operation of the catheter device 10 will now be described with reference to
When the catheter device 10 is in the first operating mode, the distal end of the catheter tube 30 can be percutaneously inserted into a blood vessel 50, as shown in
Once the expandable portion 32 is positioned in the narrowed region of the blood vessel 50, the incising elements 36 can be exposed by sliding the protective sheath 42 back from the distal end of the catheter tube 30, as indicated by the direction arrows in
Referring now to
During operation of the catheter device 10, the second diameter D2 can be increased or decreased by selective movement of the control member 25 between the forward and rearward positions. For example, a larger second diameter D2 can be achieved by moving the control member 25 further towards the rearward position. Conversely, a smaller second diameter D2 can be achieved by moving the control member 25 further towards the forward position. The visual indicator 24A can be used to identify the instantaneous second diameter D2 of the expandable portion 32. Alternatively (or in addition), the struts 34A and 34B may be biased in the opened position so as to automatically expand outwardly to the second diameter D2 when the protective sheath 42 is slid back from the expandable portion 32. As such, sliding movement of the protective sheath 42 relative to the struts 34A and 34B can be used to selectively control the second diameter D2. In this configuration, the inner sleeve 40 and the movable components of the handle assembly 20 may not be necessary.
When the catheter device 10 is in the second operating mode, the expandable portion 32 can be pulled along the guide wire 52 through the narrowed region of the blood vessel 50. This can be accomplished by pulling on the handle assembly 20. In doing so, the incising elements 36 engage the atherosclerotic material 54 and create longitudinal incisions 56 therein. As shown in
Alternatively, the catheter device 10 can be used to create additional incisions 56 in the atherosclerotic material 54. For example, after the catheter device 10 has been returned to the first operating mode, the expandable portion 32 can be relocated within the narrowed region of the blood vessel 50. The catheter tube 30 can then be rotated within the blood vessel 50 by rotating the handle assembly 20 so as to align the incising elements 36 with other portions of the atherosclerotic material 54. The previous steps can then be repeated any number of times to make multiple passes through the narrowed region of the blood vessel 50 and create additional incisions in the atherosclerotic material 54.
Thus, it should be appreciated that the illustrated catheter device 10 is advantageous in many respects. In one example, the second diameter D2 of the expandable portion 32 can be selectively controlled by operation of the handle assembly 20 or by sliding movement of the protective sheath 42. This enables the catheter device 10 to be adapted for use in blood vessels 50 of different sizes or varying diameters. In another example, the illustrated catheter device 10 can apply varying magnitudes of radial forces to the atherosclerotic material 54 by controlling the amount of force being applied to the control member 25 on the handle assembly 20. This enables the catheter device 10 to generate sufficient radial force to create incisions 56 in atherosclerotic material 54 while reducing the potential for tearing the walls of the blood vessel 50. In yet another example, the catheter device 10 can be used to make any number of passes during a single procedure to make multiple incisions 56 in atherosclerotic material 54 of varying lengths and shapes.
Referring now to
For example, the catheter tube 130 may extend from a handle assembly (not shown) as described above in the first embodiment. The expandable portion 132 is provided on a distal end of the catheter tube 130 and may include a tip member 138. The catheter tube 130 may also include an inner sleeve 140 and a protective sheath (not shown), which is also described above in the first embodiment.
In the illustrated embodiment, however, the expandable portion 132 includes four struts 134A, 1348, 134C, and 134D that are respectively separated by four longitudinally extending slits 135A, 135B, 135C, and 135D. The illustrated struts 134A, 134B, 134C, and 134D each include an incising element 136, although such is not required. It should be appreciated that the expandable portion 132 may have any number or configuration of struts and incising elements as desired.
As shown in
The expandable portion 132 can be operated between a closed position (shown in
Referring now to
For example, the catheter tube 230 may extend from a handle assembly (not shown) as described above in the first embodiment. The expandable portion 232 is provided on a distal end of the catheter tube 230 and includes a pair of struts 234A and 234B that are separated by a pair of longitudinally extending slits 235A and 235B. The catheter tube 230 may also include a tip member 238, an inner sleeve 240, and a protective sheath (not shown), which is described above in the first embodiment. The guide wire 252 may extend through the entire device.
In the illustrated embodiment, however, the expandable portion 232 includes a first pair of weakened regions 237A, 237B and a second pair of weakened regions 239A, 239B that are respectively located at opposite ends of the struts 234A and 234B. The illustrated weakened regions 237A, 237B and 239A, 239B are formed by enlarged apertures that extend through side walls of the expandable portion 232 that function as hinges. The weakened regions 237A, 237B and 239A, 239B may help reduce the amount of bending stress in the side walls of the expandable portion 232 when the struts 234A and 234B are moved to an opened position. The struts 234A and 234B may include any number or configuration of weakened regions. Further, it should be appreciated that any of the other embodiments in this disclosure may also include weakened regions 237A, 237B and 239A, 239B.
The illustrated struts 234A and 234B remain generally flat along respective lengths thereof in both a closed position (shown in
As shown in
The expandable portion 232 can be operated between the closed position and the opened position by selective movement of the inner sleeve 240 relative to the catheter tube 230, as described above in the first embodiment. Alternatively (or in addition), the struts 234A and 234B can be biased in the opened position. In such an embodiment, the protective sheath (not shown) can be used to effect movement of the expandable portion 232 between the closed position and the opened position.
Referring now to
For example, the catheter tube 330 may extend from a handle assembly (not shown) as described above in the first embodiment. The expandable portion 332 is provided on a distal end of the catheter tube 330 and may include a tip member 338. The catheter tube 330 may also include an inner sleeve 340 that is attached to the tip member 338 and a protective sheath (not shown), which is also described above in the first embodiment. The guide wire 352 may extend through the entire device.
In the illustrated embodiment, however, the expandable portion 332 includes a pair of struts 334A and 334B that are supported thereon in a cantilevered manner (i.e., not attached to one another or to the tip member 338 at their distal ends), the purpose of which will be explained below. The struts 334A and 334B are separated by a pair of longitudinally extending slits 335A and 335B that extend from the end of the expandable portion 332. A pair of incising elements 336 is respectively provided along outer surfaces of the struts 334A and 334B. It should be appreciated, however, that the expandable portion 332 may have any number or configuration of struts and incising elements as desired.
As shown in
The struts 334A and 334B remain generally flat along their respective lengths in both a closed position (shown in
As shown in
The principle and mode of operation of this invention have been explained and illustrated in its preferred embodiments. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
This application is a continuation of application Ser. No. 15/861,969 filed Jan. 4, 2018, which is a continuation-in-part of application Ser. No. 15/481,552 filed Apr. 7, 2017, which is a continuation of application Ser. No. 13/613,914, filed Sep. 13, 2012 and now issued as U.S. Pat. No. 9,615,848, which claims the benefit of U.S. Provisional Application No. 61/534,018 filed Sep. 13, 2011, the disclosures of all of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2655154 | Richter | Nov 1951 | A |
3557794 | Van Patten | Jan 1971 | A |
3704711 | Park | Dec 1972 | A |
4273128 | Banning | Jun 1981 | A |
4292974 | Fogarty et al. | Oct 1981 | A |
4654027 | Dragan et al. | Mar 1987 | A |
5030201 | Palestrant | Jul 1991 | A |
5074871 | Groshong | Dec 1991 | A |
5100425 | Fischell et al. | Mar 1992 | A |
5154724 | Andrews | Oct 1992 | A |
5156610 | Reger | Oct 1992 | A |
5178625 | Groshong | Jan 1993 | A |
5211651 | Reger et al. | May 1993 | A |
5224945 | Pannek, Jr. | Jul 1993 | A |
5244619 | Bumham | Sep 1993 | A |
5246421 | Saab | Sep 1993 | A |
5250060 | Carbo et al. | Oct 1993 | A |
5282484 | Reger | Feb 1994 | A |
5312427 | Shturman | May 1994 | A |
5318576 | Plassche, Jr. et al. | Jun 1994 | A |
5514093 | Ellis et al. | May 1996 | A |
5591194 | Berthiaume | Jan 1997 | A |
5658309 | Berthiaume et al. | Aug 1997 | A |
5665098 | Kelly et al. | Sep 1997 | A |
5676654 | Ellis et al. | Oct 1997 | A |
5697944 | Lary | Dec 1997 | A |
5697948 | Marin et al. | Dec 1997 | A |
5728067 | Enger | Mar 1998 | A |
5728123 | Lemelson et al. | Mar 1998 | A |
5733296 | Rogers et al. | Mar 1998 | A |
5766192 | Zacca | Jun 1998 | A |
5792158 | Lary | Aug 1998 | A |
5800450 | Lary et al. | Sep 1998 | A |
5836868 | Ressemann et al. | Nov 1998 | A |
5876448 | Thompson | Mar 1999 | A |
5961536 | Mickley et al. | Oct 1999 | A |
5968064 | Selmon et al. | Oct 1999 | A |
6071287 | Verbeek | Jun 2000 | A |
6120515 | Rogers et al. | Sep 2000 | A |
6129708 | Enger | Oct 2000 | A |
6165187 | Reger | Dec 2000 | A |
6217549 | Selmon et al. | Apr 2001 | B1 |
6258108 | Lary | Jul 2001 | B1 |
6270489 | Wise et al. | Aug 2001 | B1 |
6283947 | Mirzaee | Sep 2001 | B1 |
6527740 | Jackson et al. | Mar 2003 | B1 |
6599267 | Ray et al. | Jul 2003 | B1 |
6692466 | Chow et al. | Feb 2004 | B1 |
6695863 | Ramzipoor et al. | Feb 2004 | B1 |
6719773 | Boucher et al. | Apr 2004 | B1 |
6884257 | Cox | Apr 2005 | B1 |
7108704 | Trerotola | Sep 2006 | B2 |
7131981 | Appling et al. | Nov 2006 | B2 |
7279002 | Shaw et al. | Oct 2007 | B2 |
7303572 | Melsheimer et al. | Dec 2007 | B2 |
7517352 | Evans et al. | Apr 2009 | B2 |
7686824 | Konstantino et al. | Mar 2010 | B2 |
7691086 | Tkebuchava | Apr 2010 | B2 |
7708753 | Hardert | May 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
7850710 | Huss | Dec 2010 | B2 |
7887557 | Kelley et al. | Feb 2011 | B2 |
7955350 | Konstantino et al. | Jun 2011 | B2 |
8323307 | Hardert | Dec 2012 | B2 |
8328829 | Olson | Dec 2012 | B2 |
8348987 | Eaton | Jan 2013 | B2 |
8366661 | Weber et al. | Feb 2013 | B2 |
8398662 | Granada et al. | Mar 2013 | B2 |
8454636 | Konstantino et al. | Jun 2013 | B2 |
8500789 | Wuebbeling et al. | Aug 2013 | B2 |
8685049 | Schur et al. | Apr 2014 | B2 |
8685050 | Schur et al. | Apr 2014 | B2 |
8702736 | Schur et al. | Apr 2014 | B2 |
8740849 | Fischell et al. | Jun 2014 | B1 |
8870816 | Chambers et al. | Oct 2014 | B2 |
9079000 | Hanson et al. | Jul 2015 | B2 |
9192747 | Hardert | Nov 2015 | B2 |
9282991 | Schur et al. | Mar 2016 | B2 |
9314329 | Dickinson et al. | Apr 2016 | B2 |
9364255 | Weber | Jun 2016 | B2 |
9364284 | Groff et al. | Jun 2016 | B2 |
9510901 | Steinke et al. | Dec 2016 | B2 |
9532798 | Schur et al. | Jan 2017 | B2 |
9545263 | Lenihan et al. | Jan 2017 | B2 |
9592386 | Mathur et al. | Mar 2017 | B2 |
9604036 | Burton et al. | Mar 2017 | B2 |
9615848 | Pigott | Apr 2017 | B2 |
10463387 | Pigott | Nov 2019 | B2 |
10485572 | Pigott | Nov 2019 | B2 |
20010007059 | Mirzaee | Jul 2001 | A1 |
20020010489 | Grayzel et al. | Jan 2002 | A1 |
20020143350 | Heitzmann et al. | Oct 2002 | A1 |
20030069547 | Gonon | Apr 2003 | A1 |
20030125756 | Shturman et al. | Jul 2003 | A1 |
20030144677 | Lary | Jul 2003 | A1 |
20030208215 | Uflacker | Nov 2003 | A1 |
20040034384 | Fukaya | Feb 2004 | A1 |
20040098014 | Flugelman | May 2004 | A1 |
20040122457 | Weber | Jun 2004 | A1 |
20040204738 | Weber et al. | Oct 2004 | A1 |
20040267345 | Lorenzo et al. | Dec 2004 | A1 |
20050055077 | Marco et al. | Mar 2005 | A1 |
20050149102 | Radisch, Jr. et al. | Jul 2005 | A1 |
20050149159 | Andreas et al. | Jul 2005 | A1 |
20050151304 | Boelens et al. | Jul 2005 | A1 |
20050240176 | Oral et al. | Oct 2005 | A1 |
20060089637 | Werneth et al. | Apr 2006 | A1 |
20060111736 | Kelley | May 2006 | A1 |
20060116701 | Crow | Jun 2006 | A1 |
20060184191 | O'Brien | Aug 2006 | A1 |
20070005093 | Cox | Jan 2007 | A1 |
20070060863 | Goeken et al. | Mar 2007 | A1 |
20070106215 | Olsen et al. | May 2007 | A1 |
20070156225 | George et al. | Jul 2007 | A1 |
20070181157 | Dadourian | Aug 2007 | A1 |
20080140051 | Bei et al. | Jun 2008 | A1 |
20080294116 | Wolter et al. | Nov 2008 | A1 |
20080300594 | Goto | Dec 2008 | A1 |
20080300610 | Chambers | Dec 2008 | A1 |
20090099583 | Butterfield et al. | Apr 2009 | A1 |
20090105686 | Snow et al. | Apr 2009 | A1 |
20090192508 | Laufer et al. | Jul 2009 | A1 |
20090204068 | Nguyen et al. | Aug 2009 | A1 |
20090306690 | Rivers et al. | Dec 2009 | A1 |
20090312807 | Boudreault et al. | Dec 2009 | A1 |
20100010521 | Kurrus | Jan 2010 | A1 |
20100023035 | Kontos | Jan 2010 | A1 |
20100121270 | Gunday et al. | May 2010 | A1 |
20100168737 | Grunewald | Jul 2010 | A1 |
20100168778 | Braido | Jul 2010 | A1 |
20100330147 | Hossainy et al. | Dec 2010 | A1 |
20110060182 | Kassab et al. | Mar 2011 | A1 |
20110152683 | Gerrans et al. | Jun 2011 | A1 |
20110160645 | Sutermeister et al. | Jun 2011 | A1 |
20110184447 | Leibowitz et al. | Jul 2011 | A1 |
20110288479 | Burton | Nov 2011 | A1 |
20120053485 | Bloom | Mar 2012 | A1 |
20120143054 | Eaton et al. | Jun 2012 | A1 |
20120150142 | Weber et al. | Jun 2012 | A1 |
20120157988 | Stone et al. | Jun 2012 | A1 |
20120172901 | Manderfeld et al. | Jul 2012 | A1 |
20130066346 | Pigott | Mar 2013 | A1 |
20130131594 | Bonnette et al. | May 2013 | A1 |
20130150874 | Kassab | Jun 2013 | A1 |
20130237950 | Gianotti et al. | Sep 2013 | A1 |
20130253467 | Gianotti et al. | Sep 2013 | A1 |
20140277002 | Grace | Sep 2014 | A1 |
20140364896 | Consigny | Dec 2014 | A1 |
20150133978 | Paul, Jr. | May 2015 | A1 |
20170056048 | Erpen | Mar 2017 | A1 |
20170238960 | Hatta et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
0727194 | Aug 1996 | EP |
8102109 | Aug 1981 | WO |
9502370 | Jan 1995 | WO |
1996039997 | Dec 1996 | WO |
9918862 | Apr 1999 | WO |
02078511 | Oct 2002 | WO |
02078511 | Oct 2002 | WO |
2007095125 | Aug 2007 | WO |
2013159066 | Oct 2013 | WO |
2014106226 | Jul 2014 | WO |
2014142801 | Sep 2014 | WO |
2015190578 | Dec 2015 | WO |
2015195606 | Dec 2015 | WO |
2016210167 | Dec 2016 | WO |
Entry |
---|
Cardiovascular Systems Inc., Diamondback 360 Coronary Orbital Atherectomy System, http://www.csi360.com/products/coronary-diamondback-360-coronary-orbital-atherectomy-system-crowns/, 2016. |
Boston Scientific Corporation, FilterWire EZ, Embolic Protection System for Carotid Arteries, Sep. 2015, http://www.bostonscientific.com/en-US/products/embolic-protection/filterwire-ez-embolic-protection-system.html. |
International Search Report, Application No. PCT/US2012/055079, dated Jan. 31, 2013. |
Boston Scientific, Rotablator Rotational Atherectomy System, http://www.bostonscientific.com/en-US/products/plaque-modification/rotablator-rotational-atherectomy-system.html, 2017. |
Covidien, SpiderFX Embolic Protection Device, 2015, https://www.ev3.net/peripheral/us/embolic-protection/spiderfxtrade-embolic-protection-device.htm. |
Boston Scientific, Sterling 0.018″ Balloon Catheter, Jun. 2015. |
Ham, S. et al., Safety of Carbon Dioxide Digital Subtraction Angiography, Archives of Surgery, Dec. 2011. |
Alexander, J., CO2 Angiography in Lower Extremity Arterial Disease, Endovascular Today, Sep. 2011, pp. 27-34. |
Number | Date | Country | |
---|---|---|---|
20200060717 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
61534018 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15861969 | Jan 2018 | US |
Child | 16673338 | US | |
Parent | 13613914 | Sep 2012 | US |
Child | 15481552 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15481552 | Apr 2017 | US |
Child | 15861969 | US |