Intravascular catheter having an expandable portion

Information

  • Patent Grant
  • 11850376
  • Patent Number
    11,850,376
  • Date Filed
    Wednesday, May 12, 2021
    2 years ago
  • Date Issued
    Tuesday, December 26, 2023
    4 months ago
  • Inventors
  • Original Assignees
  • Examiners
    • Bouchelle; Laura A
    • Doubrava; John A
    Agents
    • Standley Law Group LLP
    • Smith; Adam J.
    • Standley; Jeffrey S.
Abstract
An apparatus and method for the treatment of intravascular medical conditions is provided. The device comprising a handle assembly, an expandable portion defined by a plurality of struts oriented along a longitudinal axis and a tip member affixed to a distal end of the struts. The struts are moveable between a collapsed and an expanded position. A catheter tube extends from the handle assembly to the expandable portion. An elongate member is disposed within the catheter tube and is in communication with the handle assembly and the tip member.
Description
TECHNICAL FIELD

Exemplary embodiments of the present invention relate generally to devices and methods for intravascular catheters.


BACKGROUND AND SUMMARY OF THE INVENTION

This invention relates in general to intravascular catheters, such as can be used during minimally invasive surgical procedures. In particular, this invention relates to an intravascular catheter having an expandable incising portion.


Atherosclerosis is a chronic condition in which atheromatous plaque accumulates on the inner walls of a blood vessel. As a result, the blood vessel walls can become inflamed and, over time, may harden to form atherosclerotic lesions that cause a narrowing of the vessel lumen. In severe cases, the atherosclerotic lesions can rupture and induce the formation of thrombus (i.e., blood clots), which can prevent blood flow through the narrowed vessel lumen.


There are known procedures and devices for treating or otherwise reducing the risks associated with atherosclerosis. For example, an angioplasty is a procedure in which a balloon catheter is inserted into a narrowed region of the vessel lumen via a delivery catheter. The balloon catheter includes a flexible tube having an inflatable balloon at an end thereof. Once positioned in the narrowed region, the balloon is inflated in order to dilate the narrowed vessel lumen. The pressure in the balloon is generally sufficient to compress the accumulated plaque. However, in some cases it would be desirable to fragment the atherosclerotic lesions. Thus, it would be desirable to provide an intravascular catheter having an expandable portion that can be selectively controlled by a user and adapted to create incisions in atherosclerotic material to facilitate fragmentation of the material during an angioplasty procedure.


Additionally, endovascular surgery is a form of minimally invasive surgery that is used to diagnose and treat many diseases. Endovascular surgery requires the deployment of catheter devices containing medical treatment tools. These catheters can be inserted intravenously and manipulated to specific sites for medical intervention. This form of minimally invasive surgery is becoming an ever more popular surgical technique due to reduced side effects such as scarring and infection. Examples of endovascular surgery include aneurysm repair, angioplasty, and carotid stenting. Endovascular surgical techniques are utilized by radiologists, neurologists, neurosurgeons, cardiologists, and vascular surgeons, among other medical professionals. Endovascular surgeons would benefit from a stable, maneuverable catheter platform device that can be used to deliver medical treatment.


This invention relates to an intravascular catheter device for use during a surgical procedure. The catheter device includes a catheter tube having an expandable portion with a plurality of struts each defining an outer surface. The expandable portion is operable between a closed position, wherein the expandable portion has a first diameter, and an opened position, wherein the expandable portion has a second diameter that is larger than the first diameter. An incising element is provided on the outer surface of at least one of the struts. The incising element has a blade that extends outwardly in a radial direction from the outer surface of the strut for creating an incision in atherosclerotic material located within a blood vessel when the expandable portion is in the opened position.


The present invention additionally relates to a catheter platform device for use during endovascular surgery. The expandable portion is configured to provide a stable, flexible platform for medical treatment. The distal end of the catheter, including the expandable portion and the surrounding non-expandable portion, is capable of receiving a plurality of various medical treatment tools.





BRIEF DESCRIPTION OF THE DRAWINGS

In addition to the features mentioned above, other aspects of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments, wherein like reference numerals across the several views refer to identical or equivalent features, and wherein:



FIG. 1 is a plan view of another exemplary embodiment of the catheter device;



FIG. 2 is a cross-section end view of the device of FIG. 1 taken along section line 1-1 with the sliding mechanism located in the forward position relative to the expandable portion;



FIG. 3 is a cross-section end view of the device of FIG. 1 taken along section line 11-11 with the sliding mechanism retracted to the read position relative to the expandable portion;



FIG. 4 is an enlarged side view of the distal end of the catheter, with the expandable portion in a closed position;



FIG. 5 is the device of FIG. 4 with the expandable portion expanded in an open position;



FIG. 6 is the device of FIG. 5 illustrated inside a blood vessel having atheromatous plaque accumulation;



FIG. 7 is a cross-section end view of the device of FIG. 5 taken along section line 2-2;



FIG. 8 is a cross-section end view of the device of FIG. 6 taken along section line 3-3;



FIG. 9 is another exemplary embodiment of the present invention illustrating a side view of the distal end of the catheter, expanded into an open position;



FIG. 10 contains a side view of the device of FIG. 9 with the expandable portion in a closed position;



FIG. 11 is an end view of the device of FIG. 9; and



FIG. 12 is a side view of another exemplary embodiment of the device of FIG. 4 with the expandable portion in a closed position and a sheath partially retracted.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Various embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the following description, specific details such as detailed configuration and components are merely provided to assist the overall understanding of these embodiments of the present invention. Therefore, it should be apparent to those skilled in the art that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the present invention. In addition, descriptions of well-known functions and constructions are omitted for clarity and conciseness.


Referring now to the drawings, there is illustrated in FIG. 1 a catheter device, indicated generally at 10, in accordance with the present invention. The illustrated catheter device 10 is configured to treat or reduce the risks associated with various medical ailments by providing a stable, expandable platform for the performance of endovascular surgery, which may include the introduction of medical treatment devices. In general, the catheter device 10 includes an expandable portion on the distal end of the catheter, indicated generally at 90, which can be inserted into a blood vessel and expanded to create a stable platform. This stable platform can be configured to receive a plurality of medical treatment devices that may be manipulated by operating the catheter device.


Although the present invention will be described in the context of a number of embodiments, some of which may have particular medical applications, it should be appreciated that the present invention can be used in any desired environment and for any desired purpose.


The illustrated catheter device 10 includes a handle assembly, indicated generally at 20. The illustrated handle assembly 20 includes an elongated, cylindrical handle body 21. The handle body 21 may alternatively have any other shape that is suitable for easy handling by a surgeon. Further, the handle body 21 can be made from any suitably rigid material including, but not limited to, stainless steel or polymers. The handle assembly 20 is configured to selectively control the expansion and contraction of the expandable portion 90 by operation of a control mechanism 25. In the present embodiment, the control mechanism is shown as a slide that operates in slot 24. The slide permits the surgeon to operate the control mechanism 25 along the slot 24 in the handle body 21. This mechanism will be described in greater detail in the proceeding sections.


Additionally, the handle body 21 contains an information display that indicates information about the expandable portion 90. In the present embodiment, the information display takes the form of graduated marks 24A on the handle body 21. In the present embodiment, the graduated marks correspond to and indicate the diametric expansion of the expandable portion 90. In the present embodiment, the slide is configured to be operated by the surgeon's thumb and may be any shape that is suitable for easy thumb operation by a surgeon.


Other embodiments of the control mechanism 25 may include, but are not limited to, a knob, lever, or electronically controlled motor, or any other known device configured to permit the surgeon to control the expansion and contraction of the expandable portion 90. Other embodiments of the display include, but are not limited to, numbers, other markings and digital displays. Other information that may be displayed includes, but is not limited to, the status and location information of any attached medical treatment devices and protective sheaths.


The catheter device 10 also contains a catheter tube 30. The catheter tube is attached to and is in communication with the interior cavity of the handle body 20 and extends to and is in communication with the interior cavity of the expandable portion 90. The catheter tube 30 may be secured to the handle body 20 using a flanged connection, a fused connection, an adhesive, a press fit connection, a threaded connection, or any other securing means. Alternatively, the catheter tube 30 may be secured to the handle body 20 using a connector or any other type of attachment device. The catheter tube 30 can have any outer diameter, length, or wall thickness. The catheter tube 30 may be secured to the expandable portion 90 using a flanged connection, a fused connection, an adhesive, a press fit connection, a threaded connection, or any other securing means. Alternatively, the catheter tube 30 may be secured to the expandable portion 90 using a connector or any other type of attachment device. The catheter tube 30 may further be configured to facilitate communication between the control mechanism 25 and the expandable portion 90 via an inner lumen that allows the passage of control and communication means, such as wire. The inner lumen of catheter tube 30 is further configured for sliding movement along an outer surface of a guide wire 52. This will be further explained in the proceeding sections.


The catheter tube 30 may extend through a protective sheath 42 that is configured for sliding movement along an outer surface of the catheter tube 60. The protective sheath 42 can be made from any biocompatible material including, but not limited to, polyvinyl, polyethylene, nitinol, or stainless steel. Further, the protective sheath 42 can have any outer diameter, length, or wall thickness suitably configured for sliding along an outer surface of the catheter tube 60.


The protective sheath 42 includes a flange 44 that facilitates sliding movement of the protective sheath 42 relative to the catheter tube 30. The flange 44 is an annular member located at the proximal end of the protective sheath 42 nearest the handle assembly 20. The flange 44 may be integrally formed with the protective sheath 42 or may otherwise be secured thereto in any manner, such as by an adhesive, threaded connection, or any other suitable attachment means. It should be appreciated that the flange 44 can have any shape or may alternatively be configured in any manner to accomplish the functions described herein and below.


The catheter device 10 may be guided into position by use of a guide wire 52. The guide wire 52 is inserted intravenously by the surgeon and manipulated through the blood vessels to a desired site. The catheter device 10 may then be inserted over the guide wire 52, specifically such that the inner lumen of catheter tube 30 surrounds the guide wire 52. The catheter device 10 may then be further inserted, following the guide wire 52, until the catheter device 10 is properly located intravenously at the desired site. The surgeon may further manipulate the position of the expandable portion 90 at any time by further retracting or extending the catheter tube 30, optionally including protective sheath 42, along guide wire 52. Alternatively, the surgeon may further manipulate the position of the expandable portion 90 by pulling on or further extending the handle assembly 20.


Referring now additionally to FIG. 2, the handle assembly 20 is enlarged and shown in a cross-sectional view along section line 1-1. The handle body 21 defines an interior chamber, indicated generally at 22. The control mechanism 25 is embodied in the present illustration as a slide mechanism. A portion of the slide mechanism 26 protrudes vertically into the interior chamber 22 and surrounds the guide wire 52, control member 40, and catheter tube 30. The portion of the slide mechanism 26 is configured to permit the guide wire 52 to pass through horizontally and slide along an outer surface thereof. The control member 25 passes into the slide mechanism portion 26 and is configured to terminate and be secured therein such that the slide mechanism portion 26 is in communication with the control member 25 and when the control member 25 is operated by the surgeon, the control member 26 is likewise manipulated. In the present embodiment, when the slide mechanism is advanced along slot 24, the control member 25 is likewise advanced relative to the handle 20.


The catheter tube 30 is terminated in the handle body 21 such that the catheter tube 30 is secured to and in communication with the handle body 21. The catheter tube 30 is secured such that manipulation of the handle body 21 results in the likewise manipulation of the catheter tube 30. The catheter tube 30 is configured such that it can slide along an outer surface of the inner tube 40 and guide wire 52.


The slide mechanism 30 can be temporarily secured into a number of positions by the use of locking devices 27. In the present embodiment, the locking devices 27 are located in the exterior wall of the handle body 21 in the slot 24 of the aperture configured for the control member 25 and the portion 26 to extend into the interior chamber 22. In the present embodiment, the locking mechanism 27 is illustrated as a series of protrusions that are spaced apart from one another along the inner surface of the slot 24. The control member 25 frictionally engages the protrusions 27 to temporarily secure the control member 25 in a desired position. Alternatively, the locking mechanism 27 may be a threaded fastener, a pivotal latch, a push-button release, or any other mechanism that is configured to temporarily secure the control member 25 in a desired position.


The optional protective sheath 42 surrounds the catheter tube 30 and includes annual member 44 configured to slide over the catheter tube 30.



FIG. 2 corresponds to the expandable portion 90 being operated in the closed position as the control member 25 is located proximally to the expandable portion 90. Correspondingly, the control member 25 is advanced proximally relative to the expandable portion 90. The operation of the control member 25 and the expandable portion 90 will be explained further in the proceeding sections.


The structure of the device pictured in FIG. 3 corresponds to that of the device pictured in FIG. 2, where FIG. 3 corresponds to the expandable portion 90 being operated in the open position. As indicated by the arrow in the present figure, the control member 25 and portion 26 are located distally relative to expandable portion 90. The operation of the control member 25 and the expandable portion 90 will be explained further in the proceeding sections.


Referring now to FIGS. 4 and 5, the expandable portion 90 may be defined by a plurality of outer struts, illustrated herein as 134A, 134B, 134C, and 134D, which may be separated by longitudinally extending slits 135A, 135B, 135C, and 135D (135C and 135D are illustrated in FIG. 7). In the present embodiment, the expandable portion is defined by four struts terminated in an end cap 138. The end cap 138 may be in communication with the control member 40. Alternative embodiments are contemplated that contain any number of a plurality of struts. As illustrated in the figure, the struts may contain an elongated depression, as can be seen at 160, near the midpoint of struts 134A and 1348. An elongated depression may be located on the other struts, but is not visible in the present figures. The elongated depressions 160 may be configured such the depressed area remains substantially parallel to guide wire 152 when the expandable portion is in the open position. The elongated depressions 160 may be configured to receive a medical treatment device 131. In other exemplary embodiments of the present invention, there may be no such depression or there may be an elevation.


The struts 134A, 134B, 134C, and 134D, may be configured to receive a plurality of medical treatment device attachments 131. An attachment device 132 may be located on at least one of the struts 134A, 134B, 134C, or 134D to facilitate the attachment of the medical treatment device 131. The attachment device 132 may be a clamp, magnet, clip, mated fastener, corresponding slot or groove, or any other attachment means for facilitating the attachment of the medical treatment device 131. In exemplary embodiments, the elongated depression 160 or the strut 134A, 1348, 134C, or 134D may also serve as the attachment device 132 or the attachment device 132 may be integrated with the strut 134A, 134B, 134C, or 134D. In still other exemplary embodiments, the attachment device 132 may not be required, as the medical treatment device 131 may be integrated with the strut 134A, 1348, 134C, or 134D.


In an exemplary embodiment, the medical treatment device may be an atherectomy tool, which may be attached to the outer strut 134A. The atherectomy tool may be a straight-line appendage. In other embodiments, the atherectomy tool may be an arcuate blade, or other shape configured for atherectomy. The atherectomy tool may be configured such that when the expandable portion 90 is in the closed position, the atherectomy tool lays substantially flush with the outer surface of the outer strut 134A. The medical treatment devices may include, but are not limited to, drug delivery devices including needles or targeted delivery systems, incising and scoring elements, heating and cooling elements such as cauterizing and ablation devices, diagnostic devices such as biopsy and imaging tools, and surgical devices such as cutting devices, clamps, and stitching tools. Skilled artisans will appreciate that this list is merely exemplary and that other medical device attachments may be utilized with the present invention and other embodiments of the present invention may be realized. In exemplary embodiments, the medical treatment device 131, such as but not limited to the atherectomy tool, may extend beyond the outer diameter of the expandable portion 90 when the expandable portion 90 is in the open position.


Referring to FIG. 6 and FIG. 8, the device is illustrated in the open position as located inside a blood vessel 270. The struts 134A, 1348, 134C, and 134D are illustrated as being located in contact with or near to the atheromatous plaque accumulation 260 along the blood vessel walls 270. The expandable portion 90 may be moved along the blood vessel 270 while in the open or closed position by further inserting or retracting the catheter tube 130 by inserting or retracting the handle 20 as manipulated by the user. In exemplary embodiments the medical treatment device 131, such as but not limited to the atherectomy tool, may protrude into the atheromatous plaque accumulation 260 along the blood vessel walls 270. The device may be further inserted or retracted along blood vessel 270 to facilitate the excise of the atheromatous plaque accumulation 260 by atherectomy tool. In other exemplary embodiments, the device 10 may otherwise treat the atheromatous plaque accumulation 260. In still other exemplary embodiments, the device 10 may otherwise treat the blood vessel 270 not necessarily containing the atheromatous plaque accumulation 260. As previously discussed, other medical tools are expressly contemplated.


Referring to FIG. 7 and FIG. 8, a cross section of the expandable portion 90 of the catheter device 10, is shown in the open position. The cross section is taken along section line 12-12 of FIG. 5. In FIG. 8, the device of FIG. 7 is illustrated as located inside a blood vessel 270. The struts 134A, 134B, 134C, and 134D, are illustrated as being located in contact with or near to the atheromatous plaque accumulation 260 along the blood vessel walls 270. Alternatively, the struts 134A, 1348, 134C, and 134D may be expanded in order to place a medical treatment device attachment 131 (not pictured in the present figures) in contact with or near to the blood vessel wall 270. The expandable portion 90 may be moved along the blood vessel 270 while in the open or closed position by further inserting or retracting the catheter tube 130 by inserting or retracting the handle as manipulated by the user.


Referring to FIG. 9 through FIG. 11, another exemplary embodiment of the present invention is illustrated. These figures illustrate the expandable portion 90 of the catheter device 10 with the struts 243A, 234B, 234C, and 234D embodied as flat, rigid surfaces. In the present embodiment, the struts 243A, 234B, 234C, and 234D make up two outer struts. The outer struts are each comprised of two beams; the beams 234D and 234A, comprising one strut, while the beams 234B and 234C comprise the other strut. The outer beams may be attached together and to the catheter tube 230 by a joining section 232. The joining section 232 may be attached to catheter tube 230 by a threaded fastener, adhesive, or be formed as one piece. The outer beams may be joined to the joining section 232 by the weakened regions or pivoting means 237A and 237B or alternatively be formed as one piece. Likewise, on the distal end of the expandable portion 90, the outer beams may be joined to the tip member 238 by the weakened regions or pivoting means 237A, 237B, 239A, and 239B or alternatively be formed as one piece.


It should be appreciated that any number of outer struts and corresponding beams may be utilized. Additionally, the struts are attached to the tip member 238 and may be attached by a threaded fastener, an adhesive, a press fit, or other attachment means.


Like the previous exemplary embodiments, the outer beams may be configured to receive and manipulate any medical treatment devices 131.


Referring now to FIG. 12, another exemplary embodiment of the present invention is illustrated. A protective sheath 231 surrounds the expandable portion 90 of the device 10. The protective sheath 231 may be of any thickness. The protective sheath 231 may surround the expandable portion 90 and the catheter tube 230 until the protective sheath 231 is withdrawn by the user. The protective sheath 231 may be withdrawn relative to the expandable portion 90 by operation of the handle 20. The protective sheath 231 may be operated via a linkage in communication with said handle 20 via the catheter tube 100. The linkage may be mechanical or electrical.


In certain embodiments of the present invention, the outer struts, referred to collectively here as 250, may contain no bias to expand or collapse, and their expansion and contraction is operated by the same mechanisms as previously described herein. In other exemplary embodiments, the outer struts 250 may be made of a suitable material, such as spring steel, such that they are biased in the expanded position.


In another exemplary embodiment, the outer struts 250 of the expandable portion 90 are biased in the expanded position. When the protective sheath 231 is retracted, as indicated by the arrow in the figure, the outer struts 250 are permitted to expand into an open position. Likewise, when the protective sheath 231 is extended relative to the expandable portion 90, in the opposite direction of the arrow indication, the outer struts 250 are forced into a collapsed position. The protective sheath 231 may also serve to enclose and protect the outer struts 250. Further, the protective sheath 320 may also be configured to enclosure and protect an attached medical device 131 if one is utilized with the present invention.


While the present embodiment is illustrated with the device of FIG. 4, it should be appreciated that the protective sheath 231 may be utilized with any of the embodiments disclosed herein.


Any embodiment of the present invention may include any of the optional or preferred features of the other embodiments of the present invention. The exemplary embodiments herein disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain the principles of the present invention so that others skilled in the art may practice the invention. Having shown and described exemplary embodiments of the present invention, those skilled in the art will realize that many variations and modifications may be made to the described invention. Many of those variations and modifications will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.

Claims
  • 1. A method for providing intravascular medical treatment comprising the steps of: selecting one of a number of medical tools for attachment to an attachment device located on a strut of an expandable portion and configured to selectively receive any of the number of medical tools, wherein the medical tool is selected to provide a particular therapeutic or diagnostic effect when utilized at a zone of treatment;attaching the selected one of the number of medical tools to the expandable portion by way of the attachment device;manipulating the expandable portion to the zone of treatment within the vascular system;placing the expandable portion into an expanded position; andutilizing the selected one of the number of medical tools at the zone of treatment to provide the particular therapeutic or diagnostic effect.
  • 2. The method of claim 1 wherein: said expandable portion is mechanically connected to a handle assembly to permit said manipulation of the expandable portion by an operator.
  • 3. The method of claim 1 further comprising: retracting a sheath disposed about the expandable portion to expose said selected one of the number of medical tools; andextending said sheath about said expandable portion to cover said selected one of the number of medical tools.
  • 4. The method of claim 1 further comprising the steps of: removing said selected one of said number of medical tools; andattaching a different one of said number of medical tools.
  • 5. The method of claim 1 wherein: at least one of said number of medical tools comprises a diagnostic device.
  • 6. The method of claim 1 wherein: at least one of said number of medical tools comprises a drug delivery device.
  • 7. The method of claim 1 wherein: at least one of said number of medical tools comprises an atherectomy device.
  • 8. The method of claim 1 wherein: at least one of said number of medical tools comprises an incising element.
  • 9. The method of claim 1 wherein: at least one of said number of medical tools comprises a heating element.
  • 10. The method of claim 1 wherein: at least one of said number of medical tools comprises a cooling element.
  • 11. The method of claim 1 wherein: at least one of said number of medical tools comprises a surgical device.
  • 12. The method of claim 1 wherein: each of said number of medical tools is different from one another; andsaid attachment device is configured to interchangeably accept any one of the number of medical tools.
  • 13. The method of claim 1 further comprising the steps of: manipulating a guide wire to the zone of treatment, wherein the expandable portion is configured to accommodate the guide wire.
  • 14. The method of claim 2 wherein: said handle assembly comprises a control member;said control member is connected to an inner tube;said inner tube is connected to a tip member; andsaid tip member is connected to said strut such that movement of said control member is configured to move said expandable portion between said expanded position and a contracted position.
  • 15. The method of claim 6 wherein: said drug delivery device comprises a needle.
  • 16. An apparatus for providing intravascular medical treatment comprising: an inner tube;an expandable portion comprising struts positioned about said inner tube, wherein said expandable portion is configured for movement between a collapsed position where said struts extend along said inner tube and an expanded position where at least a portion of each of said struts is elevated from said inner tube; andan attachment device located on one of the struts and configured to selectively receive, in an interchangeable fashion, one of a number of medical tools, wherein each of said number of medical tools are configured to provide a different medical effect at a zone of attention within a person's vascular system;wherein said inner tube is connected to said struts for effectuating movement of the expandable portion between the collapsed and expanded positions upon sliding movement of said inner tube.
  • 17. The apparatus of claim 16 further comprising: a handle assembly comprising a control member;a catheter tube extending from said handle assembly, wherein said catheter tube is attached to said expandable portion, and wherein said inner tube is disposed within said catheter tube and attached to said control member.
  • 18. The apparatus of claim 16 further comprising: a tip member located at a distal end of said inner tube, connected to a distal end of each of said struts, and configured to force each of said struts to bow outward due to compressive forces when said inner tube is retracted.
  • 19. The apparatus of claim 16 further comprising: a recessed portion on the one of the struts associated with the attachment device, wherein said recess portion is configured to provide a flat surface when said expandable portion is placed in said expanded position.
  • 20. A method for providing intravascular medical treatment comprising the steps of: selecting one of a number of medical tools for attachment to an attachment device located on a strut of an expandable portion and configured to selectively, removably, and interchangeably receive any of the number of medical tools, wherein the medical tool is selected to provide a particular therapeutic or diagnostic effect when utilized at a zone of treatment;attaching the selected one of the number of medical tools to the expandable portion by way of the attachment device;manipulating the expandable portion to the zone of treatment within the vascular system;placing the expandable portion into an expanded position; andutilizing the selected one of the number of medical tools at the zone of treatment to provide the particular therapeutic or diagnostic effect;wherein the number of medical tools comprise at least two of: diagnostic device, a drug delivery device, an atherectomy device, an incising element, a heating element, a cooling element, and a surgical device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/993,478 filed Jan. 12, 2016, which claims the benefit of U.S. Provisional Application No. 62/102,747, filed Jan. 13, 2015, the disclosure of which is incorporated herein by reference.

US Referenced Citations (154)
Number Name Date Kind
2655154 Richter Oct 1953 A
3557794 Van Patten Jan 1971 A
3685050 Cartwright et al. Aug 1972 A
3704711 Park Dec 1972 A
4273128 Ary Jun 1981 A
4292974 Fogarty et al. Oct 1981 A
4654027 Dragan et al. Mar 1987 A
5030201 Palestrant Jul 1991 A
5074871 Groshong Dec 1991 A
5100425 Fischell et al. Mar 1992 A
5154724 Andrews Oct 1992 A
5156610 Reger Oct 1992 A
5178625 Groshong Jan 1993 A
5211651 Reger et al. May 1993 A
5224945 Pannek, Jr. Jul 1993 A
5244619 Burnham Sep 1993 A
5246421 Saab Sep 1993 A
5250060 Carbo et al. Oct 1993 A
5282484 Reger Feb 1994 A
5312427 Shturman May 1994 A
5318576 Plassche, Jr. et al. Jun 1994 A
5514093 Ellis et al. May 1996 A
5591194 Berthiaume Jan 1997 A
5658309 Berthiaume et al. Aug 1997 A
5665098 Kelly et al. Sep 1997 A
5676654 Ellis et al. Oct 1997 A
5697944 Lary Dec 1997 A
5697948 Marin et al. Dec 1997 A
5728067 Enger Mar 1998 A
5728123 Emelson et al. Mar 1998 A
5733296 Rogers et al. Mar 1998 A
5766192 Zacca Jun 1998 A
5792158 Lary Aug 1998 A
5800450 Lary et al. Sep 1998 A
5836868 Ressemann et al. Nov 1998 A
5876448 Thompson et al. Mar 1999 A
5961536 Mickley et al. Oct 1999 A
5968064 Selmon et al. Oct 1999 A
6071287 Verbeek Jun 2000 A
6120515 Rogers et al. Sep 2000 A
6129708 Enger Oct 2000 A
6165187 Reger Dec 2000 A
6217549 Selmon et al. Apr 2001 B1
6258108 Lary Jul 2001 B1
6270489 Wise et al. Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6527740 Jackson et al. Mar 2003 B1
6599267 Ray et al. Jul 2003 B1
6692466 Chow et al. Feb 2004 B1
6695863 Ramzipoor et al. Feb 2004 B1
6719773 Boucher et al. Apr 2004 B1
6884257 Cox Apr 2005 B1
7108704 Trerotola Sep 2006 B2
7131981 Appling et al. Nov 2006 B2
7279002 Shaw et al. Oct 2007 B2
7303572 Melsheimer et al. Dec 2007 B2
7329267 Weber Feb 2008 B2
7517352 Evans et al. Apr 2009 B2
7686824 Konstantino et al. Mar 2010 B2
7691086 Tkebuchava Apr 2010 B2
7708753 Hardert May 2010 B2
7850685 Kunis et al. Dec 2010 B2
7850710 Huss Dec 2010 B2
7887557 Kelley et al. Feb 2011 B2
7955350 Konstantino et al. Jun 2011 B2
8323307 Hardert Dec 2012 B2
8328829 Olson Dec 2012 B2
8348987 Eaton Jan 2013 B2
8366661 Weber et al. Feb 2013 B2
8398662 Granada et al. Mar 2013 B2
8454636 Konstantino et al. Jun 2013 B2
8500789 Wuebbeling et al. Aug 2013 B2
8685049 Schur et al. Apr 2014 B2
8702736 Schur et al. Apr 2014 B2
8740849 Fischell et al. Jun 2014 B1
8870816 Chambers et al. Oct 2014 B2
9079000 Hanson et al. Jul 2015 B2
9192747 Hardert Nov 2015 B2
9282991 Schur et al. Mar 2016 B2
9314329 Dickinson et al. Apr 2016 B2
9364255 Weber Jun 2016 B2
9364284 Groff et al. Jun 2016 B2
9510901 Steinke et al. Dec 2016 B2
9532798 Schur et al. Jan 2017 B2
9545263 Lenihan et al. Jan 2017 B2
9592386 Mathur et al. Mar 2017 B2
9604036 Burton et al. Mar 2017 B2
10842971 Iwano et al. Nov 2020 B2
10874837 Iwano et al. Dec 2020 B2
11033712 Pigott Jun 2021 B2
20010007059 Mirzaee Jul 2001 A1
20020010489 Grayzel et al. Jan 2002 A1
20020143350 Heitzmann et al. Oct 2002 A1
20030069547 Gonon Apr 2003 A1
20030125756 Shturman et al. Jul 2003 A1
20030144677 Lary Jul 2003 A1
20030208215 Uflacker Nov 2003 A1
20040034384 Fukaya Feb 2004 A1
20040098014 Flugelman et al. May 2004 A1
20040122457 Weber Jun 2004 A1
20040204738 Weber et al. Oct 2004 A1
20040267345 Lorenzo et al. Dec 2004 A1
20050055077 Marco et al. Mar 2005 A1
20050149102 Radisch et al. Jul 2005 A1
20050149159 Andreas et al. Jul 2005 A1
20050151304 Boelens et al. Jul 2005 A1
20050240176 Oral et al. Oct 2005 A1
20060089637 Werneth et al. Apr 2006 A1
20060111736 Kelley May 2006 A1
20060116701 Crow Jun 2006 A1
20060184191 O'Brien Aug 2006 A1
20070005093 Cox Jan 2007 A1
20070060863 Goeken et al. Mar 2007 A1
20070106215 Olsen et al. May 2007 A1
20070156225 George et al. Jul 2007 A1
20070181157 Dadourian Aug 2007 A1
20080140051 Bei et al. Jun 2008 A1
20080294116 Wolter et al. Nov 2008 A1
20080300594 Goto Dec 2008 A1
20080300610 Chambers Dec 2008 A1
20090099583 Butterfield et al. Apr 2009 A1
20090105686 Snow et al. Apr 2009 A1
20090192508 Laufer et al. Jul 2009 A1
20090204068 Nguyen et al. Aug 2009 A1
20090306690 Rivers et al. Dec 2009 A1
20090312807 Boudreault et al. Dec 2009 A1
20100010521 Kurrus Jan 2010 A1
20100023035 Kontos Jan 2010 A1
20100121270 Gunday et al. May 2010 A1
20100168737 Grunewald Jul 2010 A1
20100168778 Braido Jul 2010 A1
20100330147 Hossainy et al. Dec 2010 A1
20110060182 Kassab et al. Mar 2011 A1
20110152683 Gerrans et al. Jun 2011 A1
20110160645 Sutermeister et al. Jun 2011 A1
20110184447 Leibowitz Jul 2011 A1
20110288479 Burton Nov 2011 A1
20120053485 Bloom Mar 2012 A1
20120143054 Eaton et al. Jun 2012 A1
20120150142 Weber et al. Jun 2012 A1
20120157988 Stone et al. Jun 2012 A1
20120172901 Manderfeld et al. Jul 2012 A1
20130066346 Pigott Mar 2013 A1
20130131594 Bonnette et al. May 2013 A1
20130150874 Kassab Jun 2013 A1
20130237950 Gianotti et al. Sep 2013 A1
20130253467 Gianotti et al. Sep 2013 A1
20140277002 Grace Sep 2014 A1
20140364896 Consigny Dec 2014 A1
20150133978 Paul, Jr. May 2015 A1
20170056048 Erpen Mar 2017 A1
20170238960 Hatta et al. Aug 2017 A1
20180177985 Nakagawa et al. Jun 2018 A1
20210023347 Iwano et al. Jan 2021 A1
Foreign Referenced Citations (14)
Number Date Country
0727194 Aug 1996 EP
8102109 Aug 1981 WO
9502370 Jan 1995 WO
1996039997 Dec 1996 WO
9918862 Apr 1999 WO
02078511 Oct 2002 WO
02078511 Oct 2002 WO
2007095125 Aug 2007 WO
2013159066 Oct 2013 WO
2014106226 Jul 2014 WO
2014142801 Sep 2014 WO
2015190578 Dec 2015 WO
2015195606 Dec 2015 WO
2016210167 Dec 2016 WO
Non-Patent Literature Citations (8)
Entry
Cardiovascular Systems Inc., Diamondback 360 Coronary Orbital Atherectomy System, http://www.csi360.com/products/coronary-diamondback-360-coronary-orbital-atherectomy system-crowns/, 2016.
Boston Scientific, Rotablator Rotational Atherectomy System, http://www.bostonscientific.com/en-US/products/plaque-modification/rotablator-rotational-atherectomy-system.html, 2017.
International Search Report, Application No. PCT/US2012/055079, dated Jan. 31, 2013.
Boston Scientific Corporation, FilterWire EZ, Embolic Protection System for Carotid Arteries, Sep. 2015, http://www.bostonscientific.com/en-US/products/embolic-protection/filterwire-ez-embolic-protection-system.html.
Covidien, SpiderFX Embolic Protection Device, 2015, https://www.ev3.net/peripheral/us/embolic-protection/spiderfxtrade-embolic-protection-device.htm.
Boston Scientific, Sterling 0.018″ Balloon Catheter, Jun. 2015.
Ham, S. et al., Safety of Carbon Dioxide Digital Subtraction Angiography, Archives of Surgery, Dec. 2011.
Alexander, J., CO2 Angiography in Lower Extremity Arterial Disease, Endovascular Today, Sep. 2011, pp. 27-34.
Related Publications (1)
Number Date Country
20210260336 A1 Aug 2021 US
Provisional Applications (1)
Number Date Country
62102747 Jan 2015 US
Continuations (1)
Number Date Country
Parent 14993478 Jan 2016 US
Child 17317999 US