The present application generally relates to intravascular electrode arrays for use in neuromodulation. More particularly, the application relates to electrode arrays and biasing supports used to position and bias the intravascular electrodes against the interior wall of a blood vessel.
Prior applications filed by an entity engaged in joint research with the owner of the present application decribe neuromodulation methods using electrodes positioned in a blood vessel. The electrodes disposed inside the blood vessel are energized to stimulate or otherwise modulate nerve fibers or other nervous system targets located outside the blood vessel. Those prior applications include U.S. Publication No. 2007/0255379, entitled Intravascular Device for Neuromodulation, U.S. 2010/0023088, entitled System and Method for Transvascularly Stimulating Contents of the Carotid Sheath, U.S. application Ser. No. 13/281,399, entitled Intravascular Electrodes and Anchoring Devices for Transvascular Stimulation, International Application PCT/US12/35712, entitled Neuromodulation Systems and Methods for Treating Acute Heart Failure Syndromes, and U.S. application Ser. No. 13/547,031 entitled System and Method for Acute Neuromodulation, filed Jul. 11, 2012 (Attorney Docket: IAC-1260). Each of these applications is fully incorporated herein by reference. The latter application describes a system which may be used for hemodynamic control in the acute hospital care setting, by transvascularly directing therapeutic stimulus to parasympathetic nerves and/or sympathetic cardiac nerves using an electrode array positioned in the superior vena cava (SVC).
Proper placement of intravascular electrodes is essential for neuromodulation. The electrodes must be positioned to capture the target nerve fibers, while avoiding collateral stimulation of non-target nerve fibers. Mapping procedures are typically performed at the time of electrode placement to identify the optimal electrode location. Mapping can be manually controlled by the clinician or automatically controlled by the neuromodulation system. During mapping, different electrodes, combinations of electrodes, or arrays can be independently energized while the target response to the stimulus is monitored. For stimulation relating to cardiac or hemodynamic function, parameters such as heart rate, blood pressure, ventricular inotropy and/or cardiac output might be monitored. In some cases mapping includes additional steps of repositioning the electrode carrying member so as to allow additional electrode sites to be sampled. The mapping process is performed until the optimal electrode or combination of electrodes for the desired therapy array is identified.
The present application describes electrode support configurations that may be used in chronically-implantable or acute neuromodulation systems, including, but not limited to, those described in the referenced applications.
This application describes intravascular electrode arrays and associated supports used to bias neuromodulation electrodes against the wall of a blood vessel. In general, the electrode arrays and associate supports may be elements of a catheter that includes a catheter body, the support structure on a distal portion of the catheter body, and the electrode array on the support structure. As disclosed in the prior applications, electrodes in the electrode array are electrically coupled to a neurostimulator that energizes the electrodes using stimulation parameters selected to capture the target nerve fibers and to achieve the desired patient effect.
The illustrated electrode supports are designed to bias arrays of multiple electrodes in contact with the surrounding vascular wall—such that when energy from an associated neuromodulation system energizes the electrodes, target nerve fibers outside the blood vessel are captured. The embodiments are designed to position the electrodes in positions suitable for delivering electrical therapy to the target fibers from the intended position of the array within the vasculature. The disclosed embodiments also give the user (or the automated mapping feature of a neuromodulation system) a variety of electrodes to select between when choosing the optimal electrode or electrode combination to deliver the intended therapy.
For convenience this description focuses on the use of the described electrodes and support structures in a system used to deliver electrical therapy to parasympathetic and sympathetic nerve fibers using electrodes on a single electrode carrying member positioned in the SVC, e.g. in accordance with systems and methods of the type disclosed in U.S. application Ser. No. 13/547,031 entitled System and Method for Acute Neuromodulation, filed Jul. 11, 2012. However, the disclosed concepts are equally suitable for use in other clinical applications, including those that deliver stimulus from electrodes disposed within other vessels and those where electrodes on the electrode carrying member deliver electrical therapy to only a single type of nerve fiber.
The exemplary electrode arrays may be positioned on the distal portion of an intravascular catheter (also referred to herein as a “neurocatheter”). For hemodynamic control of the type disclosed in U.S. application Ser. No. 13/547,031, an optimal electrode array places electrodes against the SVC wall in order to transvascularly stimulate parasympathetic and/or sympathetic cardiac nerves. Prior studies have identified areas on the posterior wall of the mid-to-cranial SVC, between the brachiocephalic junction and right atrium, where both parasympathetic and sympathetic nerves can be electrically stimulated. The use of an array of electrodes on the catheter allows general placement into a target region of the SVC without a requirement for precise placement. Once the electrode array is placed into this general SVC target region, mapping can be performed by the neuromodulation system or user to determine which electrodes in the array achieve optimal results. This target region can be defined by both a longitudinal range of the SVC, and by a circumferential range of the SVC (see
It is known that accessing the human SVC using the widely accepted, standard percutaneous procedure, especially from venous access sites such as the internal jugular, subclavian or femoral veins is a simple and straightforward technique, in which a variety of clinicians are proficient. In order to provide for both ease-of-use in the acute hospital setting and allow for positioning without the use of imaging, such as fluoroscopy, the NC contains an “array” of electrodes to provide a coverage area for capture of target cardiac nerves. All of the electrodes in the array can then be connected to the neuromodulation system, which can then “select” the desired anodes and cathodes by means of electronic switching circuitry in its response mapping function.
In a preferred arrangement, the electrode array includes a flexible substrate. The substrate is preferably formed of an insulating material, such as a polymer (including silicone, polyurethanes, polyimide, and copolymers) or a plastic. Thus electrode surfaces will be exposed on one side of the array (the side intended to be against the SVC wall) and insulated by the substrate on the other side of the array in order to capture target nerves through the SVC wall with efficient stimulation energies, and avoid collateral stimulation through the blood pool. Where the neurocatheter is to be used for acute use (typically 36-72 hours, but in general less than 7 days), the electrodes may be constructed of a variety of alloys, including stainless steel, titanium, cobalt chromium, and platinum alloys.
The electrodes are arranged on the substrate in a variety of geometries in order to provide the desired stimulation “coverage region” (both circumferentially and longitudinally).
Independent of geometric shape, each electrode in the array will be spaced from adjacent electrodes by a longitudinal distance, dL, and a circumferential distance, dC. The spacing between electrodes is chosen to optimize capture of target nerves, and may be from 1 to 10 mm, typically 5 mm, and the longitudinal and circumferential spacing may be equal or may differ.
In some embodiments, the array might include a greater circumferential expanse of electrodes in the distal electrodes (see, e.g.
The electrodes can be constructed on the substrate using a variety of manufacturing techniques, including subtractive manufacturing processes (such as mechanical removal by machining or laser cutting), additive processes (such as laser sintering, deposition processes, conductor overmolding), or combinations (such as printed circuit technology with additive plating). When assembled on the catheter, the electrodes and substrate (where used) will be attached to or manufactured on a mechanical support structure (described below) having features for biasing the electrodes against the vascular wall and, optionally, supporting the distal end of the neurocatheter against the vascular wall or spaced from the vascular wall.
In order to capture target nerves through the SVC wall with efficient stimulation energies, secure engagement of the electrodes against the SVC wall is desired. Therefore, the catheter includes a support structure or structures that provide mechanical force to press the electrode surfaces against the SVC wall once deployed. Additionally, the support structure securely but reversibly (at least in the case of an acute device) anchors the catheter to prevent its migration within the vasculature. The support structures are constructed of a variety of shape memory alloys, such as nickel-titanium, or other alloys that would be mechanically positioned by mechanisms in the catheter body. Where the substrate described above is used to form the array, the support structures may be integral with the substrate, or coupled to the substrate.
Preferred embodiments for the support structures include a full cylindrical configuration, shown in
In use, the support structure is radially expanded at the target electrode site within the vasculature using known means. For example, the support structure with the attached electrode array may be compressed within a deployment sheath for advancement through the vasculature, and then released from the deployment sheath at the target electrode site. The support structure self expands at the target site, or is actively expanded using a balloon or other expansion structure, positioning and biasing the electrodes against the vessel wall.
The full cylindrical support structure 12a (
In the
Another embodiment of a support structure is the fork support structure 12b shown in
The support structure 12c of the
As noted above, in some cases the neurocatheter may be used in patients having permanently implanted CRM devices and the chronic leads that are used with such devices. Such CRM leads typically run from the transvenous entry site of the subclavian vein through the SVC towards the heart. As a result, some patients will have leads existent in the SVC when the neurocatheter is deployed. Also, it is conceivable that one or more lead bodies will lie in the target region for parasympathetic and sympathetic nerve capture. The CRM lead bodies 34, which are covered with silicone or polyurethane insulation, may be free floating in the vessel or attached to the vessel wall and covered with fibrotic or scar tissue (either partially or fully covered), as shown in
Features of the disclosed electrode array allow target nerve capture despite the presence of CRM leads. In particular, the mechanical layout and design of the neurocatheter electrode array and support structure facilitate engagement in the presence of CRM lead bodies. A critical and common feature of both the fork and cylinder support structures is that they have parallel elements with openings where engaged to the target SVC vessel wall. These openings provide the most flexibility when engaging against the vessel wall in the presence of chronic CRM leads, by allowing the electrodes to engage against irregular surfaces presented by attached lead bodies and the ability to have the longitudinal electrodes engage the SVC wall by moving between or around free floating leads to engage active tissue.
It should be recognized that a number of variations of the above-identified embodiments will be obvious to one of ordinary skill in the art in view of the foregoing description. Moreover, it is contemplated that aspects of the various disclosed embodiments may be combined to produce further embodiments. Accordingly, the invention is not to be limited by those specific embodiments and methods of the present invention shown and described herein. Rather, the scope of the invention is to be defined by the following claims and their equivalents.
All prior patents and applications referred to herein, including for purposes of priority, are incorporated by reference for all purposes.
This application claims the benefit of U.S. Provisional Application No. 61/728,806, filed Nov. 20, 2012, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61728806 | Nov 2012 | US |