Intravascular filter with centering member

Information

  • Patent Grant
  • 7998164
  • Patent Number
    7,998,164
  • Date Filed
    Friday, March 11, 2005
    19 years ago
  • Date Issued
    Tuesday, August 16, 2011
    13 years ago
Abstract
Devices and methods for centering an intravascular filter within a blood vessel are disclosed. A filter system in accordance with an exemplary embodiment of the present invention may include an intravascular filter, a filter sheath adapted to contain the intravascular filter, and a centering member adapted to assume a preset shape when deployed within a blood vessel. The centering member may comprise an elongated wire having a hoop section adapted to radially expand against the inner wall of the blood vessel when deployed. In some embodiments, multiple centering members can be employed to facilitate centering of both the intravascular filter and the filter sheath within the blood vessel, if desired.
Description
TECHNICAL FIELD

The present invention relates generally to the field of medical devices. More specifically, the present invention pertains to systems and methods for centering intravascular filters within the body.


BACKGROUND

Intravascular filters are typically used in combination with other thrombolytic agents to treat pulmonary embolism occurring within a patient. Such devices are generally implanted within a vessel such as the inferior or superior vena cava, and function by capturing blood clots (emboli) contained in the blood stream before they can reach the lungs and cause permanent damage to the body. To trap emboli contained within the blood, many conventional filters include an apical head operatively coupled to a plurality of elongated filter legs that can be expanded within the body to form a conical-shaped surface that captures blood clots without disturbing the flow of blood. Once collected, a natural clot lysing process occurs within the body to dissolve the blood clots collected by the filter.


Delivery of the intravascular filter within the body is generally accomplished via an introducer sheath percutaneously inserted through the femoral (groin) or jugular (neck) veins. Such introducer sheaths are typically tubular in shape, and include an interior lumen configured to transport the filter in a collapsed position through the body. Once transported to a desired location in the body, the filter can then be removed from within the introducer sheath, allowing the filter legs to spring open and engage the vessel wall. A needle, hook, barb, prong, wedge or other attachment means disposed on the free end of each filter leg can be used to secure the filter to the vessel wall.


The efficacy of the intravascular filter to capture blood clots is dependent in part on the ability of the filter to center when deployed within the blood vessel. Tilting of the filter may result if the apical head is not aligned centrally within the vessel, causing the filter legs to asymmetrically engage the vessel wall. Tilting of the filter may also result if the introducer sheath used to deploy the filter is off-centered within the blood vessel. In certain circumstances, tilting of the filter may affect the ability of the device to efficiently capture blood clots contained in the blood.


SUMMARY

The present invention pertains to systems and methods for centering intravascular filters within the body. A filter system in accordance with an illustrative embodiment of the present invention may include an intravascular filter, a filter sheath having an interior lumen adapted to contain the intravascular filter, and a centering member adapted to radially expand when deployed within a blood vessel. The centering member may comprise an elongated wire that, when unconstrained radially, assumes a preset shape having a radial section and a hoop section. The radial section may comprise a portion of the elongated wire extending outwardly in a direction substantially orthogonal to the interior wall of the blood vessel. The hoop section, in turn, may comprise a portion of the elongated wire that radially expands against the inner wall of the blood vessel. In some embodiments, a tubular member having an interior lumen can be configured to radially constrain the centering member in a substantially straight position to facilitate delivery and/or retrieval of the filter assembly through the body.


In certain embodiments, the filter system may include multiple centering members that can be used in centering the intravascular filter and/or filter sheath at multiple locations within the blood vessel. In one illustrative embodiment, for example, a second centering member may be provided at or near the distal end of the filter sheath to center the filter sheath within the blood vessel, if necessary. The second centering member may similarly comprise an elongated wire that, when unconstrained radially within a second interior lumen of the filter sheath, can be configured to assume a preset shape within the blood vessel. As with the other embodiments described herein, the second centering member may include a radial section adapted to extend outwardly in a direction substantially orthogonal to the interior wall of the blood vessel, and a hoop section adapted to radially expand against the inner wall of the blood vessel.


An illustrative method of centering an intravascular filter within a patient's blood vessel may include the steps of providing an intravascular filter and centering member within an interior lumen of a filter sheath, inserting the filter sheath into the patient and advancing the filter sheath to a desired location within the blood vessel, deploying the centering member within the blood vessel, and then deploying the intravascular filter within the blood vessel. Other methods and techniques are also described herein. As used herein proximal end distal refer to the orientation of the system as delivered by a femoral approach to the vena cava. It is understood that the system could be use in other vessels, and from other approaches.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is perspective view of a filter system in accordance with an illustrative embodiment of the present invention employing a single centering member;



FIG. 2 is a partial cross-sectional view showing the centering member disposed through the apical head of the intravascular filter of FIG. 1;



FIG. 3 is a partial cross-sectional view showing an alternative embodiment employing a tubular member movably disposed relative to the intravascular filter;



FIG. 4 is a perspective view of a filter system in accordance with an illustrative embodiment of the present invention employing multiple centering members;



FIG. 5 is a transverse cross-sectional view of the filter sheath along line 5-5 in FIG. 4;



FIG. 6 is a partial cross-sectional view showing the illustrative filter system of FIG. 1 in a first position within a blood vessel;



FIG. 7 is a partial cross-sectional view showing the illustrative filter system of FIG. 1 in a second position within the blood vessel, wherein the centering member is shown engaged against the vessel wall;



FIG. 8 is a partial cross-sectional view showing the illustrative filter system of FIG. 1 in a third position within the blood vessel, wherein the intravascular filter is shown deployed within the blood vessel;



FIG. 9 is a partial cross-sectional view showing the illustrative filter system of FIG. 1 in a fourth position within the blood vessel, wherein the centering member and delivery catheter are shown removed from the blood vessel;



FIG. 10 is a partial cross-sectional view showing the illustrative filter system of FIG. 4 in a first position within a blood vessel;



FIG. 11 is a partial cross-sectional view showing the illustrative filter system of FIG. 4 in a second position within the blood vessel, wherein the second centering member is shown engaged against the vessel wall;



FIG. 12 is a partial cross-sectional view showing the illustrative filter system of FIG. 4 in a third position within the blood vessel, wherein the first and second centering members are shown engaged against the vessel wall; and



FIG. 13 is a partial cross-sectional view showing the illustrative filter system of FIG. 4 in a fourth position within the blood vessel, wherein the intravascular filter is shown deployed within the blood vessel.





DETAILED DESCRIPTION

The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Although examples of construction, dimensions, and materials are illustrated for the various elements, those skilled in the art will recognize that many of the examples provided have suitable alternatives that may be utilized.



FIG. 1 is perspective view of a filter system 10 in accordance with an illustrative embodiment of the present invention. Filter system 10, illustratively a filter system for use in the inferior and/or superior vena cava, can include an intravascular filter 12 having an apical head 14 and a plurality of elongated filter legs 16 adapted to expand and secure the intravascular filter 12 to the inner wall of a blood vessel. The free end 18 of each filter leg 16 may include a needle, hook, barb, prong, wedge or other suitable attachment means for securing the intravascular filter 12 to the inner wall of the blood vessel. A number of bend regions 20 located along the length of one or more of the filter legs 16 can also be provided to increase the surface area of the intravascular filter 12, if desired.


The filter legs 16 can be configured to radially collapse within an interior lumen 22 of a filter sheath 24 to delivery and/or receive the intravascular filter 12 through the patient's body. The filter sheath 24 may comprise a tubular member having a distal end 26 and a proximal end (not shown). For sake of clarity in FIG. 1, the intravascular filter 12 is shown withdrawn at least in part from within the interior lumen 22 of the filter sheath 24, exposing all but the free end 18 of each filter leg 16. It should be understood, however, that all or a portion of the intravascular filter 12 can be loaded within the interior lumen 22 of the filter sheath 24, if desired.


As can be further seen in FIG. 1, the filter system 10 may also include a centering member 28 that can be used to aid in centering the intravascular filter 12 within the interior of the blood vessel. The centering member 28 may comprise an elongated wire 30 having a distal end 32, a proximal end (not shown), and a distal section 34 adapted to assume a preset shape when deployed within the blood vessel. Prior to insertion within the patient's body, the elongated wire 30 can be inserted through an interior lumen 36 formed through the apical head 14 and through the interior lumen 22 of the filter sheath 24.


The distal section 34 may comprise a portion of the elongated wire 30 extending distally from a first bend region 40 of the elongated wire 30 to the distal end 32 thereof. A radial section 42 of the elongated wire 30 extending distally from the first bend region 40 can be adapted to extend outwardly in a direction substantially orthogonal to the interior wall of the blood vessel, when deployed. The length L1 in which the radial section 42 extends outwardly may vary depending on the particular vessel the intravascular filter 12 is to be inserted into. In applications involving the superior or inferior vena cava, for example, the length L1 of the radial section 42 may be in the range of about 6 mm to 15 mm, which is sufficient for blood vessels having a diameter of about 12 mm to 30 mm. It should be understood, however, that the length L1 of the radial section 42 may vary to permit the centering member 28 to be used in other regions of the body and/or to accommodate for anatomical differences among patients.


At a second bend region 44 of the distal section 34, the radial section 42 may transition to a hoop section 46 of the elongated wire 30 extending circumferentially about a general longitudinal axis L of the intravascular filter 12 and filter sheath 24. The shape 6f the hoop section 46 can be selected to approximate the general shape of the blood vessel, allowing the hoop section 46 to radially expand and fully appose the inner wall of the blood vessel. In certain embodiments, for example, the hoop section 46 of the elongated wire 30 may have a substantially elliptical shape to facilitate centering of the intravascular filter 12 in blood vessels having an oblique or non-symmetrical shape. In other embodiments, the hoop section 46 may have a substantially circular shape to facilitate centering of the intravascular filter 12 in blood vessels having a substantially symmetrical shape.


In the illustrative embodiment of FIG. 1, the hoop section 46 is configured to lie in a single plane that is oriented substantially orthogonal to the length of the blood vessel. In an alternative embodiment, the hoop section 46 can be configured to spiral in multiple planes along the longitudinal axis L. In the latter case, for example, the hoop section 46 may have the general shape of a helix that tapers distally towards the distal end 32. The hoop section 46 may assume other desired shapes, however, to facilitate centering of the intravascular filter 12 at other locations within the body such as at a branching vessel.


At a third bend region 48 of the distal section 34, the distal end 32 of the elongated wire 30 may curl inwardly towards the longitudinal axis L. In use, the third bend region 48 orients the distal end 32 away from the inner wall of the blood vessel, preventing the distal end 32 from contacting the blood vessel. If desired, an overlapping portion 50 of the hoop section 46 wherein the elongated wire 30 is wound adjacent itself can be used to space the distal end 32 away from the second bend region 44. In some embodiments, the distal end 32 may also be rounded to further prevent trauma to the vessel wall. Also, the bend region 48 may be diametrically tapered to further prevent trauma to the vessel wall.



FIG. 2 is a partial cross-sectional view showing the centering member 28 disposed through the apical head 14 of the intravascular filter 12 of FIG. 1. As shown in FIG. 2, the apical head 14 may include a tubular member 52 having a distal end 54 and a proximal end 56. The tubular member 52 may comprise a member separate from the apical head 14 (e.g. a hypotube) that is then subsequently attached to the apical head 14, or, in the alternative, may be formed integral with the apical head 14. In certain embodiments, for example, the tubular member 52 and joined end 58 of each filter leg 16 can be soldered together using a solder bead, forming an apical head 14 having a generally bulbous shape. In an alternative technique, the tubular member 52, filter legs 16, and apical head 14 may each be formed as a single piece using a suitable process such as insert molding.


The length of the tubular member 52 can be made sufficient to permit the distal section 34 of the elongated wire 30 to be loaded into the interior lumen 36. The inner diameter of the tubular member 52, in turn, can be made slightly larger than the outer diameter of the elongated wire 30, allowing the elongated wire 30 to move within the interior lumen 36. In use, the tubular member 52 acts to maintain the elongated wire 30 in a substantially straight position within the interior lumen 36 prior to deployment within the blood vessel. The tubular member 52 also acts to straighten the elongated wire 30 when it is pulled back into the filter sheath 24 for subsequent removal from the body.


The elongated wire 30 may be formed from a flexible material that permits it to maintain its preset shape when disposed within the interior lumen 36 of the tubular member 52. Examples of suitable flexible materials may include certain metals, polymers, or metal-polymer compounds. In some embodiments, the elongated wire 30 may include a layer or coating of lubricious material such as HYRDOPASS to facilitate movement of the elongated wire 30 through the tubular member 52 and filter sheath 24, and to reduce trauma to the body caused during deployment of the centering member 28 within the blood vessel. The elongated wire 30 as well as other portions of the filter system 10 may also include an anti-thrombogenic coating such as herapin (or its derivatives), urokinase, or PPack (dextrophenylalanine proline arginine chloromethylketone) to prevent insertion site thrombosis from occurring. An anti-inflammatory agent such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, mesalamine, or any suitable combination or mixture thereof may also be applied to the elongated wire 30, intravascular filter 12 as well as other components of the filter system 10 to prevent inflammation within the blood vessel.


In some embodiments, the elongated wire 30 may be formed from a linear elastic material such as a nickel-titanium alloy, which exhibits the ability to undergo significant bending or flexion without imparting a residual stress to the material. Examples of other suitable linear elastic materials may include, but are not limited to, silver-cadmium (Ag—Cd), gold-cadmium (Au—Cd), gold-copper-zinc (Au—Cu—Zn), copper-aluminum-nickel (Cu—Al—Ni), copper-gold-zinc (Cu—Au—Zn), copper-zinc (Cu—Zn), copper-zinc-aluminum (Cu—Zn—Al), copper-zinc-tin (Cu—Zn—Sn), copper-zinc-silicon (Cu—Zn—Si), iron-beryllium (Fe—Be), iron-nickel-titanium-cobalt (Fe—Ni—Ti—Co), iron-platinum (Fe—Pt), indium-thallium (In—TI), iron-manganese (Fe—Mn), nickel-titanium-cobalt (Ni—Ti—Co), and copper-tin (Cu—Sn). In certain embodiments, the elongated wire 30 may be combined with other materials such as stainless steel, platinum, titanium, etc. to form a composite material exhibiting certain desirable characteristics within the body. In certain applications, for example, the linear elastic material may be joined together with a relatively radiopaque material such as platinum (Pt) to increase the radiopacity of the composite member, allowing the centering member 28 to be viewed radiographically with the aid of a fluoroscope.


In another aspect of the present invention, the elongated wire 30 may be formed from a shape-memory material that has been heat treated to impart a shape memory effect to distal section 34, allowing the centering member 28 to be transformed from a substantially straight position to an expanded (i.e. Centering) position when withdrawn from within the tubular member 52. In certain embodiments, for example, the elongated wire 30 may be formed of or otherwise include a shape-memory alloy such as a nickel-titanium alloy (Nitinol) configured to transform from a martensite state to an austenite state at or about body temperature, allowing the centering member 28 to assume a preset shape when exposed to blood within the blood vessel.



FIG. 3 is a partial cross-sectional view showing an alternative embodiment employing a tubular member 60 movably disposed relative to the intravascular filter 12. As shown in FIG. 3, the tubular member 60 has a distal end 62, a proximal end (not shown), and an interior lumen 64 therethrough adapted slidably receive the distal section 34 of centering member 28 in a manner similar to that described above with respect to FIG. 2. As indicated by the arrow 66, however, the tubular member 60 can be configured to move independently of the intravascular filter 12, allowing the physician to further remove the tubular member 60 from the body once the intravascular filter 12 has been deployed within the blood vessel. The tubular member 60 can be either connected to the filter sheath 24, or can be configured to independently move within the interior lumen 22 of the filter sheath 24.


The interior lumen 36 of the apical head 14 can be sized to slidably receive the tubular member 60 to facilitate advancement of the centering member 28 distally beyond the distal end 68 of the apical head 14. If desired, a tapered inner portion 70 of the apical head 14 extending inwardly into the interior lumen 36 can be configured to prevent the physician from overextending the distal end 62 of the tubular member 60 beyond the distal end 68 of the apical head 14. In use, the tapered inner portion 70 acts as a distal stop as the physician advances the tubular member 60 through the interior lumen 36, preventing the tubular member 60 from being advanced distally beyond the distal end 68 of the apical head 14. In some cases, the tapered inner portion 70 may also provide the physician with tactile feedback that the centering member 28 is in the proper position within the interior lumen 36 for deployment.



FIG. 4 is a perspective view of a filter system 72 in accordance with another illustrative embodiment of the present invention employing two centering members. Filter system 72 may be configured similar to filter system 10 described above with respect to FIGS. 1-2, with like elements being labeled in like fashion. In the illustrative embodiment of FIG. 4, however, the filter system 72 may further include a second centering member 74 that can be used to aid in centering the base of the intravascular filter 12 within the blood vessel.


The second centering member 74 may comprise an elongated wire 76 having a distal end 78, a proximal end (not shown), and a distal section 80 adapted to assume a preset shape when deployed within the blood vessel. In a generally deployed position illustrated in FIG. 4, the distal section 80 may comprise a portion of the elongated wire 76 extending distally from a first bend region 82 to the distal end 78 thereof. A radial section 84 of the elongated wire 76 extending distally from the first bend region 82 can be adapted to extend outwardly in a direction substantially orthogonal to the interior wall of the blood vessel, when deployed. As with the first centering member 28, the length L2 of the radial section 84 may vary depending on the size of the blood vessel. The length L2 of the radial section 84 may be made similar to the length L1 of radial section 42, or may be made grater or lesser than length L1.


At a second bend region 86 of the distal section 80, the elongated wire 76 may transition to a hoop section 88 of the elongated wire 76 extending circumferentially about the longitudinal axis L. The shape of the hoop section 88 can be selected to approximate the general shape of the blood vessel, similar to that described above with respect to the other centering member 28. Other features such as a third bend region 90 forming a curled (i.e. atraumatic) distal end 78 may also be provided, if desired.


The filter system 72 may further include a filter sheath 92 having a distal end 94, a proximal end (not shown), and an interior lumen 96 therethrough adapted to slidably receive the intravascular filter 12 and a portion of the elongated wire 30. A second interior lumen 98 of the filter sheath 92, in turn, can be adapted to slidably receive the second elongated wire 76, allowing the physician to deploy the second centering member 74 within the blood vessel at a location at or near the distal end 94 of the filter sheath 92. As can be seen in further detail in FIG. 5, a lumen opening 100 provided in the wall 102 of the filter sheath 92 may form an exit port, allowing the physician to advance the second elongated wire 76 distally out from within the second interior lumen 98 to deploy the second centering member 74 within the blood vessel.


Referring now to FIGS. 6-9, an illustrative method of centering an intravascular filter in accordance with the present invention will now be described with respect to filter system 10 described above. In a first position illustrated in FIG. 6, the intravascular filter 12 and centering member 28 are shown loaded into the interior lumen 22 of the filter sheath 24 and advanced to a desired location within a blood vessel V (e.g. the superior or inferior vena cava). As shown in FIG. 6, the centering member 28 can be configured to maintain a substantially straight shape when radially constrained within the interior lumen 36 of the tubular member 52. Such straight shape permits the filter system 10 to assume a relatively small profile when transported through the vasculature, allowing the physician to employ a smaller sized filter sheath 24.


Once the filter system 10 is advanced to a desired location within the blood vessel V, the physician may next advance the elongated wire 30 distally out from within the interior lumen 36, causing the distal section 34 of the elongated wire 30 to assume its preset shape within the blood vessel V. The elongated wire 30 can be deployed within the blood vessel V by holding the filter sheath 24 and intravascular filter 12 stationary while advancing the elongated wire 30 distally, or, in the alternative, by holding the elongated wire 30 stationary and retracting the filter sheath 24 and intravascular filter 12 proximally. A combination of the two techniques may also be performed to deploy the centering member 28, if desired.


Once the centering member 28 is withdrawn from the tubular member 52, the hoop section 46 can be configured to radially expand and fully appose the vessel wall, as shown, for example, in FIG. 7. When this occurs, a centering force is exerted against the apical head 14 by the elongated wire 30, causing the intravascular filer 12 to align centrally within the blood vessel V. If, for example, the filter system 10 is off-centered within the blood vessel V (see FIG. 6), the general alignment of the elongated wire 30 centrally within the blood vessel V produces a centering force that re-aligns the intravascular filter 12 within the blood vessel V.


To deploy the intravascular filter 12 within the blood vessel V, the physician, while holding the elongated wire 30 stationary, may next retract the filter sheath 24 in the proximal direction to expose the filter legs 16, as shown, for example, in FIG. 8. If desired, a pusher tube 104 can be provided within the interior lumen 22 of the filter sheath 24 to hold the intravascular filter 12 stationary as the filter sheath 24 is being retracted proximally. Once the intravascular filter 12 is deployed within the blood vessel V, the physician may next pull the elongated wire 30 proximally through the tubular member 52 and out of the body, if desired. As shown in a subsequent view in FIG. 9, the filter sheath 24 and centering member 28 can then be removed from the body, leaving the centered intravascular filter 12 within the blood vessel V.


Turning now to FIGS. 10-14, another illustrative method of centering an intravascular filter in accordance with the present invention will now be described with respect to filter system 72 described above. In a first position illustrated in FIG. 10, the intravascular filter 12, first centering member 28, and second centering member 74 are shown loaded into the filter sheath 92 and advanced to a desired location within a blood vessel V (e.g. the inferior vena cava).


Once the filter system 72 is advanced to a desired location within the blood vessel V, the physician may next advance the second elongated wire 76 distally out from the second interior lumen 98 through the lumen opening 100. Once the centering member 74 is deployed within the blood vessel V, the hoop section 88 can be configured to radially expand and fully appose the vessel wall, as shown, for example, in FIG. 11. When this occurs, the centering force of the elongated wire 76 exerted against the filter sheath 92 causes the filter sheath 92 to align centrally within the blood vessel V.


In addition to deploying the second centering member 74 within the blood vessel V, the physician may further advance the first elongated wire 30 distally out from within the interior lumen 36, causing the distal section 34 of the elongated wire 30 to assume its preset shape within the blood vessel V, as shown, for example, in FIG. 12.


To deploy the intravascular filter 12 within the blood vessel V, the physician may next retract the second elongated wire 76 proximally within the filter sheath 92, causing the distal section 80 to straighten within the second interior lumen 98. The physician, while holding the first elongated wire 30 stationary, may also retract the filter sheath 92 proximally to expose the filter legs 16, as shown, for example, in FIG. 13. If desired, a pusher tube 104 can be provided within the interior lumen 96 of the filter sheath 92 to hold the intravascular filter 12 stationary as the filter sheath 92 is being retracted. Once the intravascular filter 12 is deployed within the blood vessel V, the physician may next pull the elongated wire 30 proximally through the tubular member 52. The filter sheath 92 and centering members 28,74 can then be removed from the body, leaving the centered intravascular filter 12 within the blood vessel V.


While the illustrative steps depicted in FIGS. 11-12 show the deployment of the second centering member 74 prior to the first centering member 28, other embodiments have been envisioned wherein the first centering member 28 is deployed prior to the second centering member 74, or wherein both centering members 28,74 are deployed at or about the same time.


Having thus described the several embodiments of the present invention, those of skill in the art will readily appreciate that other embodiments may be made and used which fall within the scope of the claims attached hereto. Numerous advantages of the invention covered by this document have been set forth in the foregoing description. It will be understood that this disclosure is, in many respects, only illustrative. Changes can be made with respect to various elements described herein without exceeding the scope of the invention.

Claims
  • 1. A filter system, comprising: an intravascular filter including a plurality of elongated filter legs operatively coupled to an apical head;wherein the apical head has a proximal end and a distal end;wherein the elongated filter legs extend proximally of the proximal end of the apical head when the filter is deployed within a blood vessel;a filter sheath having a first end, a proximal end, and an interior lumen adapted to contain the intravascular filter; anda centering hoop including an elongated wire adapted to assume a preset shape when deployed within a blood vessel, wherein the centering hoop is disposed distally of the distal end of the apical head and radially expands against the inner wall of the blood vessel when the filter is deployed;wherein the centering hoop is slidably disposed within an interior lumen of the apical head;wherein the elongated wire includes a first end and a proximal end;wherein the preset shape of the elongated wire includes a radial section and a hoop section, the hoop section extending circumferentially at least one full revolution about a generally longitudinal axis of the intravascular filter and filter sheath.
  • 2. The filter system of claim 1, wherein, during deployment, the radial section of the elongated wire is adapted to extend outwardly in a direction substantially orthogonal to the interior wall of the blood vessel.
  • 3. The filter system of claim 1, wherein the hoop section of the elongated wire has a circular shape.
  • 4. The filter system of claim 1, wherein the hoop section of the elongated wire has an elliptical shape.
  • 5. The filter system of claim 1, wherein the first end of the elongated wire is curled.
  • 6. The filter system of claim 1, further comprising a tubular member having an interior lumen adapted to contain the centering hoop in a substantially straight position.
  • 7. The filter system of claim 6, wherein the tubular member is coupled to the apical head.
  • 8. The filter system of claim 6, wherein the tubular member is movably disposed relative to the intravascular filter.
  • 9. The filter system of claim 8, wherein the tubular member is coupled to the filter sheath.
  • 10. The filter system of claim 6, wherein the tubular member comprises a hypotube.
  • 11. The filter system of claim 1, wherein the centering hoop is formed from a flexible material.
  • 12. The filter system of claim 11, wherein said flexible material is a linear elastic material.
  • 13. The filter system of claim 11, wherein said flexible material is a shape-memory material.
  • 14. The filter system of claim 1, further comprising a second centering hoop including a second elongated wire adapted to assume a preset shape when deployed within the blood vessel, said second elongated wire having a first end and a proximal end.
  • 15. The filter system of claim 14, wherein the preset shape of the second elongated wire includes a radial section and the hoop section.
  • 16. A filter system, comprising: an intravascular filter including a plurality of elongated filter legs operatively coupled to an apical head;wherein the apical head has a proximal end and a distal end;wherein the elongated filter legs extend proximally from the proximal end of the apical head when the filter is deployed within a blood vessel;a filter sheath having a first end, a proximal end, and an interior lumen adapted to contain the intravascular filter; andan elongated wire slidably disposed within an interior lumen of the apical head and including a first end, a proximal end, and a first section adapted to assume a preset shape when deployed within a blood vessel, said preset shape including a radial section and a hoop section, wherein the hoop section is disposed distally of the distal end of the apical head and radially expands against the inner wall of the blood vessel when the filter is deployed and the hoop section extends circumferentially at least one full revolution about a generally longitudinal axis of the intravascular filter and filter sheath.
  • 17. The filter system of claim 16, wherein, during deployment, the radial section of the elongated wire is adapted to extend outwardly in a direction substantially orthogonal to the interior wall of the blood vessel.
  • 18. The filter system of claim 16, wherein the hoop section of the elongated wire has a circular shape.
  • 19. The filter system of claim 16, wherein the hoop section of the elongated wire has an elliptical shape.
  • 20. The filter system of claim 16, wherein the distal end of the elongated wire is curled.
  • 21. The filter system of claim 16, further comprising a tubular member having an interior lumen adapted to contain the centering member in a substantially straight position.
US Referenced Citations (165)
Number Name Date Kind
3952747 Kimmell, Jr. Apr 1976 A
3996938 Clark, III Dec 1976 A
4425908 Simon Jan 1984 A
4494531 Gianturco Jan 1985 A
4512338 Balko et al. Apr 1985 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4643184 Mobin-Uddin Feb 1987 A
4650466 Luther Mar 1987 A
4688553 Metals Aug 1987 A
4727873 Mobin-Uddin Mar 1988 A
4781177 Lebigot Nov 1988 A
4793348 Palmaz Dec 1988 A
4817600 Herms et al. Apr 1989 A
4832055 Palestrant May 1989 A
4926858 Gifford, III et al. May 1990 A
4957501 Lahille et al. Sep 1990 A
4991602 Amplatz et al. Feb 1991 A
4994069 Ritchart et al. Feb 1991 A
5053008 Bajaj Oct 1991 A
5059205 El-Nounou et al. Oct 1991 A
5067489 Lind Nov 1991 A
5108419 Reger et al. Apr 1992 A
5152777 Goldberg et al. Oct 1992 A
5160342 Reger et al. Nov 1992 A
5256146 Ensminger et al. Oct 1993 A
5324304 Rasmussen Jun 1994 A
5329942 Gunther et al. Jul 1994 A
5350398 Pavenik et al. Sep 1994 A
5354310 Garnic et al. Oct 1994 A
5375612 Cottenceau et al. Dec 1994 A
5490859 Mische et al. Feb 1996 A
5531788 Dible et al. Jul 1996 A
5591197 Orth et al. Jan 1997 A
5626605 Irie et al. May 1997 A
5634942 Chevillon et al. Jun 1997 A
5669933 Simon et al. Sep 1997 A
5681347 Cathcart et al. Oct 1997 A
5683411 Kavteladze et al. Nov 1997 A
5690671 McGurk et al. Nov 1997 A
5695519 Summers et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5725552 Kotula et al. Mar 1998 A
5733294 Forber et al. Mar 1998 A
5733329 Wallace et al. Mar 1998 A
5746767 Smith May 1998 A
5755779 Horiguchi May 1998 A
5755790 Chevillon et al. May 1998 A
5769816 Barbut et al. Jun 1998 A
5776162 Kleshinski Jul 1998 A
5795322 Boudewijn Aug 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5827324 Cassell et al. Oct 1998 A
5836868 Ressemann et al. Nov 1998 A
5836968 Simon et al. Nov 1998 A
5853420 Chevillon et al. Dec 1998 A
5893869 Barnhart et al. Apr 1999 A
5895398 Wensel et al. Apr 1999 A
5895410 Forber et al. Apr 1999 A
5897567 Ressemann et al. Apr 1999 A
5910154 Tsugita et al. Jun 1999 A
5911717 Jacobsen et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5935139 Bates Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5941896 Kerr Aug 1999 A
5951585 Cathcart et al. Sep 1999 A
5957949 Leonardt et al. Sep 1999 A
5968071 Chevillon et al. Oct 1999 A
5976172 Homsma et al. Nov 1999 A
5980555 Barbut et al. Nov 1999 A
5984947 Smith Nov 1999 A
5989281 Barbut et al. Nov 1999 A
6001118 Daniel et al. Dec 1999 A
6007558 Ravenscroft et al. Dec 1999 A
6013093 Nott et al. Jan 2000 A
6027520 Tsugita et al. Feb 2000 A
6042598 Tsugita et al. Mar 2000 A
6053932 Daniel et al. Apr 2000 A
6059814 Ladd May 2000 A
6059825 Hobbs et al. May 2000 A
6063113 Kavteladze et al. May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson et al. May 2000 A
6068645 Tu May 2000 A
6074357 Kaganov et al. Jun 2000 A
6080178 Meglin Jun 2000 A
6086605 Barbut et al. Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096052 Callister et al. Aug 2000 A
6096053 Bates Aug 2000 A
6099549 Bosma et al. Aug 2000 A
6117154 Barbut et al. Sep 2000 A
6123715 Amplatz Sep 2000 A
6125946 Chen Oct 2000 A
6126673 Kim et al. Oct 2000 A
6129739 Khosravi Oct 2000 A
6136016 Barbut et al. Oct 2000 A
6142987 Tsugita Nov 2000 A
6146396 Konya et al. Nov 2000 A
6152947 Ambrisco et al. Nov 2000 A
6165179 Cathcart et al. Dec 2000 A
6165198 McGurk et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6168603 Leslie et al. Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171328 Addis Jan 2001 B1
6179851 Barbut et al. Jan 2001 B1
8179859 Batas at al. Jan 2001
6187025 Machek Feb 2001 B1
6193739 Chevillon et al. Feb 2001 B1
6214025 Thistle et al. Apr 2001 B1
8217600 DiMatteo Apr 2001
6231581 Shank et al. May 2001 B1
6231589 Wessman et al. May 2001 B1
6235044 Root et al. May 2001 B1
6235045 Barbut et al. May 2001 B1
6241746 Bosma et al. Jun 2001 B1
6245012 Kleshinski Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6258026 Ravenscroft et al. Jul 2001 B1
6267776 O'Connell Jul 2001 B1
6273901 Whitcher et al. Aug 2001 B1
6280451 Bates et al. Aug 2001 B1
6280457 Wallace et al. Aug 2001 B1
6290721 Heath Sep 2001 B1
6331184 Abrams Dec 2001 B1
6342063 DeVries et al. Jan 2002 B1
6342064 Koike et al. Jan 2002 B1
6344041 Kupiecki et al. Feb 2002 B1
6368338 Konya et al. Apr 2002 B1
6402771 Palmer et al. Jun 2002 B1
6436121 Blom Aug 2002 B1
6443971 Boylan et al. Sep 2002 B1
6443972 Bosma et al. Sep 2002 B1
6447530 Ostrovsky et al. Sep 2002 B1
6447531 Amplatz Sep 2002 B1
6458139 Palmer et al. Oct 2002 B1
6468290 Weldon et al. Oct 2002 B1
6482222 Bruckheimer et al. Nov 2002 B1
6506205 Goldberg et al. Jan 2003 B2
6517559 O'Connell Feb 2003 B1
6527962 Nadal Mar 2003 B1
6537294 Boyle et al. Mar 2003 B1
6540767 Walak et al. Apr 2003 B1
6551342 Shen et al. Apr 2003 B1
6562031 Chandrasekaran et al. May 2003 B2
6562058 Seguin et al. May 2003 B2
6652558 Patel et al. Nov 2003 B2
6660021 Palmer et al. Dec 2003 B1
6755847 Eskuri Jun 2004 B2
6783538 McGuckin, Jr. et al. Aug 2004 B2
6793665 McGuckin, Jr. et al. Sep 2004 B2
6878153 Linder et al. Apr 2005 B2
6918921 Brady et al. Jul 2005 B2
6951570 Linder et al. Oct 2005 B2
20020072764 Sepetka et al. Jun 2002 A1
20020099437 Anson et al. Jul 2002 A1
20020116024 Goldberg et al. Aug 2002 A1
20020123761 Barbut et al. Sep 2002 A1
20020161393 Demond et al. Oct 2002 A1
20030208227 Thomas Nov 2003 A1
20030208253 Beyer et al. Nov 2003 A1
20040133269 Bruckheimer et al. Jul 2004 A1
20040225354 Allen et al. Nov 2004 A1
Related Publications (1)
Number Date Country
20060203769 A1 Sep 2006 US