Intravascular heat exchange catheter with non-round coiled coolant path

Information

  • Patent Grant
  • 9717625
  • Patent Number
    9,717,625
  • Date Filed
    Wednesday, October 17, 2012
    12 years ago
  • Date Issued
    Tuesday, August 1, 2017
    7 years ago
Abstract
A catheter has a hollow conduit through which working fluid from a heat exchange system flows. The conduit in turn is configured to extend along a longitudinal central axis in a continuously varying non-constant azimuthal orientation so that it defines a non-round enclosed passageway through which blood can flow to exchange heat through a wall of the conduit with the working fluid flowing within the conduit.
Description
FIELD OF THE INVENTION

The present application relates generally to patient temperature control systems.


BACKGROUND OF THE INVENTION

It has been discovered that the medical outcome for a patient suffering from severe brain trauma or from ischemia caused by stroke or heart attack or cardiac arrest is improved if the patient is cooled below normal body temperature (37° C.). Furthermore, it is also accepted that for such patients, it is important to prevent hyperthermia (fever) even if it is decided not to induce hypothermia. Moreover, in certain applications such as post-CABG surgery, skin graft surgery, and the like, it might be desirable to rewarm a hypothermic patient.


As recognized by the present application, the above-mentioned advantages in regulating temperature can be realized by cooling or heating the patient's entire body using a closed loop heat exchange catheter placed in the patient's venous system and circulating a working fluid such as saline through the catheter, heating or cooling the working fluid as appropriate in an external heat exchanger that is connected to the catheter. The following U.S. patents, all of which are incorporated herein by reference, disclose various intravascular catheters/systems/methods for such purposes: U.S. Pat. Nos. 6,881,551 and 6,585,692 (tri-lobe catheter), U.S. Pat. Nos. 6,551,349 and 6,554,797 (metal catheter with bellows), U.S. Pat. Nos. 6,749,625 and 6,796,995 (catheters with non-straight, non-helical heat exchange elements), U.S. Pat. Nos. 6,126,684, 6,299,599, 6,368,304, and 6,338,727 (catheters with multiple heat exchange balloons), U.S. Pat. Nos. 6,146,411, 6,019,783, 6,581,403, 7,287,398, and 5,837,003 (heat exchange systems for catheter), U.S. Pat. No. 7,857,781 (various heat exchange catheters).


SUMMARY OF THE INVENTION

Accordingly, a catheter has a proximal segment configured to receive and return working fluid to a heat exchange system through supply and return lumens, respectively. The catheter also has a distal segment communicating with the proximal segment and configured to circulate working fluid therewith. The distal segment defines a supply conduit and a return conduit, with at least one of the conduits configured for conveying all fluid flowing therethrough along a non-round coiled path.


If desired, the supply conduit may be configured for conveying all fluid flowing therethrough along a non-round coiled path. In addition or alternatively, the return conduit can be configured for conveying all fluid flowing therethrough along a non-round coiled path.


In one example, the non-round path defines a rectangle when viewed in transverse. In another example, the non-round path defines a triangle when viewed in transverse. In either case, the non-round path can be established by intravascular balloon material or by flexible metal and can extend continuously along a longitudinal axis albeit with varying angles of extension.


In another aspect, a catheter includes a hollow conduit through which working fluid from a heat exchange system can flow. The conduit is configured to extend along a longitudinal central axis in a continuously varying non-constant azimuthal orientation so that it defines a non-round enclosed passageway through which blood can flow to exchange heat through a wall of the conduit with the working fluid flowing within the conduit.


In another aspect, a catheter includes a hollow heat exchange region through which working fluid can flow to exchange heat with blood flowing past the heat exchange region. The heat exchange region defines an elongated conduit extending along an axial axis of the catheter to define a central blood passageway bordered by the conduit, and blood can flow through the blood passageway when the catheter is positioned in a patient's blood vessel. Tangent lines at various points on the conduit do not establish a constant angle relative to a longitudinal axis defined by the conduit.


The details of the present invention, both as to its structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram showing an example catheter engaged with an example heat exchange system;



FIG. 2 shows an example heat exchange region which when viewed transversely appears to be rectangular;



FIG. 3 is a cross-section taken along the line 3-3 in FIG. 2 illustrating that the heat exchange region when viewed transversely appears to be rectangular, with only a portion of the region being cross-hatched since remaining portions extend proximally or distally away from the point of cross-section;



FIG. 4 shows a schematic diagram of another example heat exchange region which when viewed transversely appears to be triangular; and



FIG. 5 is a cross-section taken along the line 5-5 in FIG. 4 illustrating that the heat exchange region when viewed transversely appears to be triangular, with only a portion of the region being cross-hatched since remaining portions extend proximally or distally away from the point of cross-section.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring initially to FIG. 1, an intravascular temperature management catheter 10 is in fluid communication with a catheter temperature control system 12 that includes a processor executing logic that in some non-limiting examples is in accordance with disclosure in the above-referenced system patents to control the temperature of working fluid circulating through the catheter 10 in accordance with a treatment paradigm responsive to patient core temperature feedback signals. In accordance with present principles, the catheter 10 can be used to induce therapeutic hypothermia in a patient 14 using the catheter, in which coolant such as but not limited to saline circulates in a closed loop, such that no coolant enters the body. Such treatment may be indicated for stroke, cardiac arrest (post-resuscitation), acute myocardial infarction, spinal injury, and traumatic brain injury. The catheter 10 can also be used to warm a patient, e.g., after bypass surgery or burn treatment, and to combat hyperthermia in, e.g., patient suffering from sub-arachnoid hemorrhage or intracerebral hemorrhage.


As shown, working fluid such a refrigerant may be circulated between the heat exchange system 12 and catheter 10 through supply and return lines 16, 18 that connect to the proximal end of the catheter 10 as shown. Note that as used herein, “proximal” and “distal” in reference to the catheter are relative to the system 12. A patient temperature signal from a catheter-borne temperature sensor may be provided to the system 12 through an electrical line 20 or wirelessly if desired. Alternatively, a patient temperature signal may be provided to the system 12 from a separate esophageal probe or rectal probe or tympanic sensor or bladder probe or other temperature probe that measures the temperature of the patient 14.


The catheter 10, in addition to interior supply and return lumens through which the working fluid is circulated, may also have one or more infusion lumens connectable to an IV component 22 such as a syringe or IV bag for infusing medicaments into the patient, or an instrument such as an oxygen or pressure monitor for monitoring patient parameters, etc.


The catheter 10 can be positioned typically in the vasculature of the patient 14 and more preferably in the venous system of the patient 14 such as in the inferior vena cava through a groin insertion point or the superior vena cava through a neck (jugular or subclavian) insertion point.


Referring to FIG. 2, the present catheter 10 has a proximal segment 100 configured to receive working fluid from and return working fluid to the heat exchange system 12 through supply and return lumens, 102, 104, respectively. Connected in fluid communication with the proximal segment 100 is a distal segment 106 configured to circulate working fluid to and from the proximal segment (and, hence, the heat exchange system 12). As shown in FIG. 2, the distal segment 106 when inflated with working fluid defines a supply conduit 108 and a return conduit 110, and in the example shown in FIG. 2 the supply conduit 108 is configured for conveying all fluid flowing therethrough along a non-round coiled path, it being understood that the roles of the conduits may be reversed. The supply and return conduits 108, 110 join each other at a distal junction 111.


In the example of FIGS. 2 and 3, the non-round path of the supply conduit 108 defines a rectangle when viewed in transverse. In another example shown in FIGS. 4 and 5, the non-round path defines a triangle when viewed in transverse. In either case, the non-round path can be established by intravascular balloon material and can extend continuously along a longitudinal axis albeit with varying angles of extension.


Note that the tangent lines at various points on the conduit 108 do not establish a constant angle relative to the longitudinal axis defined by the conduit. In other words, the ratio of curvature of the conduit to torsion is not constant along the length of the conduit, but constantly varies along the length of the conduit.


Blood may flow through the non-round passageway 112 as well as around the periphery of the supply conduit 108 when the catheter 10 is advanced into a patient and working fluid from the heat exchange system 12 is circulated through the catheter 10. The blood exchanges heat through the wall of the catheter with the working fluid flowing in the non-round coiled path defined by the supply conduit 108.


While the particular INTRAVASCULAR HEAT EXCHANGE CATHETER WITH NON-ROUND COILED COOLANT PATH is herein shown and described in detail, it is to be understood that the subject matter which is encompassed by the present invention is limited only by the claims.

Claims
  • 1. A catheter, comprising: a proximal segment configured to receive and return working fluid to a heat exchange system through supply and return lumens, respectively; anda distal segment communicating with the proximal segment and configured to circulate working fluid therewith, the distal segment defining a supply conduit and a return conduit joining each other at distal junction, at least a first one of the conduits configured for conveying all fluid flowing therethrough along a non-round coiled path and a second one of the conduits being straight, wherein the non-round path defines a triangle when viewed in transverse.
  • 2. The catheter of claim 1, wherein the supply conduit is configured for conveying all fluid flowing therethrough along a non-round coiled path.
  • 3. The catheter of claim 1, wherein the return conduit is configured for conveying all fluid flowing therethrough along a non-round coiled path.
  • 4. The catheter of claim 1, wherein the non-round path is established by intravascular balloon material.
  • 5. The catheter of claim 1, wherein the coiled path extends continuously along a longitudinal axis albeit with varying angles of extension.
US Referenced Citations (168)
Number Name Date Kind
1459112 Mehl Jun 1923 A
1857031 Schaffer May 1932 A
2663030 Dahlberg Dec 1953 A
2673987 Upshaw et al. Apr 1954 A
3225191 Calhoun Dec 1965 A
3369549 Armao Feb 1968 A
3425419 Actis Dato Feb 1969 A
3504674 Swenson Apr 1970 A
3726269 Webster, Jr. Apr 1973 A
3744555 Fletcher et al. Jul 1973 A
3751077 Hiszpanski Aug 1973 A
3937224 Uecker Feb 1976 A
3945063 Matsuura Mar 1976 A
4038519 Foucras Jul 1977 A
4065264 Lewin Dec 1977 A
4103511 Kress et al. Aug 1978 A
4126132 Portner et al. Nov 1978 A
4153048 Magrini May 1979 A
4173228 Van Steenwyk et al. Nov 1979 A
4181132 Parks Jan 1980 A
4298006 Parks Nov 1981 A
4459468 Bailey Jul 1984 A
4532414 Shah et al. Jul 1985 A
4554793 Harding, Jr. Nov 1985 A
4581017 Sahota Apr 1986 A
4638436 Badger et al. Jan 1987 A
4653987 Tsuji et al. Mar 1987 A
4661094 Simpson Apr 1987 A
4665391 Spani May 1987 A
4672962 Hershenson Jun 1987 A
4754752 Ginsburg et al. Jul 1988 A
4787388 Hofmann Nov 1988 A
4813855 Leveen et al. Mar 1989 A
4849196 Yamada et al. Jul 1989 A
4852567 Sinofsky Aug 1989 A
4860744 Johnson et al. Aug 1989 A
4906237 Johansson et al. Mar 1990 A
4941475 Williams et al. Jul 1990 A
5092841 Spears Mar 1992 A
5103360 Maeda Apr 1992 A
5106360 Ishiwara et al. Apr 1992 A
5192274 Bierman Mar 1993 A
5195965 Shantha Mar 1993 A
5211631 Sheaff May 1993 A
5269758 Taheri Dec 1993 A
5281215 Milder Jan 1994 A
5304214 DeFord et al. Apr 1994 A
5342301 Saab Aug 1994 A
5344436 Fontenot et al. Sep 1994 A
5370675 Edwards et al. Dec 1994 A
5383856 Bersin Jan 1995 A
5403281 O'Neill et al. Apr 1995 A
5433740 Yamaguchi Jul 1995 A
5437673 Baust et al. Aug 1995 A
5458639 Tsukashima et al. Oct 1995 A
5486207 Mahawili Jan 1996 A
5486208 Ginsburg Jan 1996 A
5507792 Mason et al. Apr 1996 A
5531714 Dahn et al. Jul 1996 A
5531776 Ward et al. Jul 1996 A
5624392 Saab Apr 1997 A
5634907 Rani et al. Jun 1997 A
5676670 Kim Oct 1997 A
5701905 Esch Dec 1997 A
5709564 Yamada et al. Jan 1998 A
5709654 Klatz et al. Jan 1998 A
5716386 Ward et al. Feb 1998 A
5730720 Sites et al. Mar 1998 A
5733319 Neilson et al. Mar 1998 A
5737782 Matsuura et al. Apr 1998 A
5776079 Cope et al. Jul 1998 A
5788647 Eggers Aug 1998 A
5837003 Ginsburg Nov 1998 A
5862675 Scaringe et al. Jan 1999 A
5895418 Saringer Apr 1999 A
5908407 Frazee et al. Jun 1999 A
5957963 Dobak, III Sep 1999 A
5980561 Kolen et al. Nov 1999 A
6019783 Philips et al. Feb 2000 A
6042559 Dobak, III Mar 2000 A
6051019 Dobak, III Apr 2000 A
6059825 Hobbs et al. May 2000 A
6096068 Dobak, III et al. Aug 2000 A
6110139 Loubser Aug 2000 A
6117065 Hastings et al. Sep 2000 A
6117105 Bresnaham et al. Sep 2000 A
6124452 Di Magno Sep 2000 A
6126684 Gobin et al. Oct 2000 A
6146141 Schumann Nov 2000 A
6146411 Noda et al. Nov 2000 A
6148634 Sherwood Nov 2000 A
6149670 Worthen et al. Nov 2000 A
6149677 Dobak, III Nov 2000 A
6231594 Dae May 2001 B1
6261312 Dobak, III et al. Jul 2001 B1
6283940 Mulholland Sep 2001 B1
6287326 Pecor Sep 2001 B1
6299599 Pham et al. Oct 2001 B1
6338727 Noda et al. Jan 2002 B1
6383144 Mooney et al. May 2002 B1
6409747 Gobin et al. Jun 2002 B1
6416533 Gobin et al. Jul 2002 B1
6428563 Keller Aug 2002 B1
6450990 Walker et al. Sep 2002 B1
6464716 Dobak, III et al. Oct 2002 B1
6527798 Ginsburg et al. Mar 2003 B2
6530946 Noda et al. Mar 2003 B1
6544282 Dae et al. Apr 2003 B1
6551309 Le Pivert Apr 2003 B1
6554791 Cartledge et al. Apr 2003 B1
6589271 Tzeng et al. Jul 2003 B1
6605106 Schwartz Aug 2003 B2
6610083 Keller et al. Aug 2003 B2
6620187 Carson et al. Sep 2003 B2
6620188 Ginsburg et al. Sep 2003 B1
6624679 Tomaivolo et al. Sep 2003 B2
6635076 Ginsburg Oct 2003 B1
6635079 Unsworth et al. Oct 2003 B2
6679906 Hammack et al. Jan 2004 B2
6685733 Dae et al. Feb 2004 B1
6706060 Tzeng et al. Mar 2004 B2
6716188 Noda et al. Apr 2004 B2
6719723 Wemeth Apr 2004 B2
6719779 Daoud Apr 2004 B2
6726653 Noda et al. Apr 2004 B2
6740109 Dobak, III May 2004 B2
6749625 Pompa et al. Jun 2004 B2
6799342 Jarmon Oct 2004 B1
6843800 Dobak, III Jan 2005 B1
6887263 Bleam et al. May 2005 B2
6893419 Noda et al. May 2005 B2
6969399 Schock et al. Nov 2005 B2
7311724 Ginsburg Dec 2007 B1
7510569 Dae et al. Mar 2009 B2
7666215 Callister et al. Feb 2010 B2
7822485 Collins Oct 2010 B2
7846193 Dae et al. Dec 2010 B2
7857781 Noda et al. Dec 2010 B2
8105262 Noda et al. Jan 2012 B2
8105263 Noda et al. Jan 2012 B2
8105264 Noda et al. Jan 2012 B2
8109894 Noda et al. Feb 2012 B2
20010007951 Dobak, III Jul 2001 A1
20010031946 Walker et al. Oct 2001 A1
20010047196 Ginsburg et al. Nov 2001 A1
20020013569 Sterman et al. Jan 2002 A1
20020022823 Luo et al. Feb 2002 A1
20020095198 Whitebook et al. Jul 2002 A1
20020103519 Dobak et al. Aug 2002 A1
20020128698 Dobak et al. Sep 2002 A1
20020145525 Friedman et al. Oct 2002 A1
20020151942 Walker et al. Oct 2002 A1
20020177804 Saab Nov 2002 A1
20020183692 Callister Dec 2002 A1
20020198579 Khanna Dec 2002 A1
20030236496 Samson et al. Dec 2003 A1
20040044387 Pompa et al. Mar 2004 A1
20040089058 De Haan et al. May 2004 A1
20040102825 Daoud May 2004 A1
20040210231 Boucher et al. Oct 2004 A1
20050010272 Pham et al. Jan 2005 A1
20050010273 Walker et al. Jan 2005 A1
20050156744 Pires Jul 2005 A1
20070007640 Harnden et al. Jan 2007 A1
20070076401 Carrez et al. Apr 2007 A1
20080149100 Van Holst et al. Jun 2008 A1
20100228192 O'Dea et al. Sep 2010 A1
20110270368 Ginsburg et al. Nov 2011 A1
Foreign Referenced Citations (21)
Number Date Country
19531935 Feb 1997 DE
2040169 Aug 1980 GB
1183185 Feb 1985 GB
2212262 Jul 1989 GB
2383828 Jul 2003 GB
09-215754 Aug 1997 JP
10-0127777 May 1998 JP
10-305103 Nov 1998 JP
9001682 Feb 1990 WO
9304727 Mar 1993 WO
9400177 Jan 1994 WO
9401177 Jan 1994 WO
9725011 Jul 1997 WO
9824491 Jun 1998 WO
9840017 Sep 1998 WO
9966970 Dec 1999 WO
0010494 Mar 2000 WO
0113809 Mar 2001 WO
0164146 Sep 2001 WO
0176517 Oct 2001 WO
0183001 Nov 2001 WO
Non-Patent Literature Citations (4)
Entry
F.W. Behmann, E. Bontke, “Die Regelung der Wärmebildung bei künstlicher Hypothermie”, Pffügers Archiv, Bd. 266, S. 408-421 (1958).
F.W. Behmann, E. Bontke, “Intravasale Kühlung”, Pffügers Archie, Bd. 263, S. 145-165 (1956).
Wilhelm Behringer, Stephan Prueckner, Rainer Kenter, Samuel A. Tisherman, Ann Radovsky, Robert Clark, S. William Stezoski, Heremy Henchir, Edwin Klein, Peter Safar, “Rapid Hypothermic Aortic Flush Can Achieve Survival without Brain Damage after 30 Minutes Cardiac Arrest in Dogs”, anesthesiology, V. 93, No. 6, Dec. 2000.
Dorraine Day Watts, Arthur Trask, Karen Soeken, Philip Predue, Sheilah Dols, Christopher Kaufman; “Hypothermic Coagulopathy in trauma: Effect of Varying levels of Hypothermia on Enzyme Speed, Platelet Function, and Fibrinolytic Activity”. The Journal of Trauma: Injury, Infection, and Critical Care, Vo. 44, No. 5 (1998).
Related Publications (1)
Number Date Country
20140094882 A1 Apr 2014 US
Provisional Applications (1)
Number Date Country
61707130 Sep 2012 US