Although the present invention is being described in the context of implanted components of a cardiac pacing system, it can be used in the implanted components for other types of medical devices in an animal's body. Furthermore, the present apparatus and method are not limited to implanted items in a therapy providing system, but can be employed to implanted elements for other purposes in the animal as described in subsequent paragraphs.
Initially referring to
The power source 14 may be the same type as described in U.S. Pat. Nos. 6,445,953 and 6,907,285 and includes a radio frequency transmitter that is powered by a battery. The transmitter periodically emits a signal at a predefined radio frequency that is applied to a transmitter antenna in the form of a coil of wire within an adhesive patch 22 that is placed on the patient's upper arm 23. In a basic version of the cardiac pacing system 10, the radio frequency signal merely conveys energy for powering the medical device 15 implanted in the patient. In other systems, the transmitter modulates the radio frequency signal with commands received from optional circuits that configure or control the operation of the medical device 15.
Referring to
Because the stimulator 16 of the medical device 15 is near the heart and relatively deep in the chest of the human medical patient, a receiver antenna 24 for the RF signal is implanted in a vein or artery 26 of the patient's upper right arm 23 at a location surrounded by the transmitter antenna within the arm patch 22. That arm vein or artery 26 is significantly closer to the skin and thus receiver antenna 24 picks up a greater amount of the energy of the radio frequency signal emitted by the power source 14, than if the receiver antenna was located on the stimulator 16. Alternatively, another limb, neck or other area of the body with an adequately sized blood vessel close to the skin surface of the patient can be used. The receiver antenna 24 is connected to the stimulator 16 by a micro coaxial cable 34.
As illustrated in
The body 30 has a stimulation circuit 32 mounted thereon and, depending upon its proximity to the heart 12, may hold a first electrode 20 in the form of a ring that encircles the body. Alternatively, when the stimulator 16 is relatively far from the heart 12, the first electrode 20 can be remotely located in a small cardiac blood vessel much the same as a second electrode 21. The stimulation circuit 32, which may be the same type as described in the aforementioned U.S. patents, includes a power supply to which the micro coaxial cable 34 from the receiver antenna 24 is connected. The power supply utilizes electricity from that antenna to charge a storage capacitor that provides electrical power to the stimulation circuit. A conventional control circuit within the stimulation circuit 32 detects the electrical activity of the heart and determines when electrical pulses need to be applied so that the heart 12 contracts at the proper rate. When stimulation is desired, the stimulation circuit 32 applies electrical voltage from its internal storage capacitor across the electrodes 20 and 21. The second electrode 21 and the first electrode when located remotely from the stimulator 16, can be mounted on a collapsible body of the same type as the stimulator body 30. In all the examples cited with regard to the
Battery 105 is rechargeable allowing for patient mobility with periodic recharge cycles. With battery volume, the time between recharge cycles can be proportioned to cover days, months or years. Power transmitter 110 is a modulated transmitter proportioned to provide maximum power with an adjustable duty cycle to meet the power demands. Power feedback module 115 is part of closed loop system composed of power transmitter, implanted component 150 comprising of an RF receiver coil and an electronics capsule and a feedback algorithm to supply a required amount of power. The control loop converts the receiver voltage into a frequency shift of the secondary re-transmitter. Consequently, a drop in received voltage would cause an increase in the retransmitted frequency. (E.g. on a 100 MHz signal, this would be a 10 to 50 kHz shift per 100 mV). Since the power consumption is a function of the number of pacing events, the power level itself could vary. By maintaining a constant voltage, it is ensured that only the needed amount of power is transmitted.
Communication module 120 receives logged data collected from the implant device. This data can be physiological data and a set of trending logs indicating patient and/or device condition over time. Trending logs can be accumulated continuously by the receiver CPU by keeping the highest time resolution for the most recent events in minutes, the mid-range events hours, and long range events in days etc. Alternatively, the logged data can have a fixed size, wherein the actual storage of data can be done externally. Internally, since the CPU has a limited space, one may choose to maintain the most recent data at a higher time resolution. As another alternative, the data from the implant can be streamed in real-time to an external storage and the externally stored data can be analyzed for the trends. In one embodiment, for reporting purposes, one could extract data around events, e.g. time prior to the detection of arrhythmias, and time after pacing attempts to restore the rhythm. For the purposes of patient management, for instance, the data from the implant could alert the physician when conditions requiring quick follow up such as atrial fibrillation requiring anticoagulation occurred. Other physiological parameters such as change in blood volumes, heart rate variability, pressure changes, and blood sugar can be used for short and long term trending for internal monitoring and alerting.
The communication module 120 also provides an access point into the system to communicate to the caregiver or to alert a caregiver remotely by means of auto-dialup, for example, in case an alerting condition presents itself. Monitor 125 monitors the received data.
Again referring back to
The generalized form of the wireless intravascular platform described above is summarized in
The core of the platform consists of a power source 179 that is extravascularly located and employs wireless transmission of power to operate the intravascular platform. It has a computer 181 that is used to perform a number of functions including overall control logic, processing algorithms, data and power encoding and determination of optimal response based on the feedback. A signal generator 177 is associated when needed with the extravascular part of the platform to send data to the intravascular component 173 via a wireless power-data transmitter/receiver 171.
A discriminator circuit may be used to separate power and data components transmitted from extravascular component. The received power can be used for the intravascular operation by rectifying the power signal into DC by a rectification circuit and used to power the internal control and other electrical/electronic circuitry. Alternatively, the received power can be used to charge a rechargeable battery based on the need and used to meet the energy demands of the intravascular platform. In some embodiments, a combination of the above may be used for meeting the energy demands. In some embodiments, the extravascular component may have a non-rechargeable battery that powers the intravascular component. In some embodiments, the extravascular component may have a rechargeable power supply that may be charged by resonant, near-field inductive coupling, which is described below.
The main aspect of the power supply is an implanted resonant receiver coil which is inductively coupled to the input power source. A resonant receiver coil permits a higher collected energy density for a given receiver coil volume. In a resonant receiver coil, the induced voltages and currents are much higher than in a non resonant coil. As a result, a resonant coil with a given dimension and a high quality resonant circuit can collect more energy from a surrounding near-field than a non-resonant coil. A coil can be made resonant by adding a capacitor in parallel to create a parallel resonant circuit, or in series to create a series resonant circuit. The apparent impedance of the resonant circuit depends on the resistive loading on that tank circuit. The loading may be direct or indirect. In the case of a direct load, the load is placed directly across the resonant circuit. If the load is a linear resistor, it will have a dampening effect to lower the Q-value of the tank circuit and potentially nullify the benefit from the resonance. In the case of an indirect load, the load can be inductively or capacitively coupled externally. A load of this type is body tissue or blood pool.
Second, special precautions are taken to extract energy from the resonant circuit without excessive damping. For example, lowering the Q from 40 to 20 may be acceptable. However lowering the Q from 40 to less than 5 may not be. By using a capacitively coupled rectifier and using the rectifier to charge a buffer capacitor, the load is only presented to the resonant circuit when the rectifier is conducting. The time constant of the buffer capacitor and the load is chosen to allow, for example, a 1% droop in voltage between charge pulses. This effectively makes the load to appear only during the top 1% of the cycle. After initial charge-up, all that needs to be supplemented by the resonant circuit is at nearly full amplitude within the 1% mentioned in the exemplary case. The supplemented power is provided by a power feedback as previously described.
By combining these two aspects described above, an efficient energy source can be created. One additional aspect to consider is the transfer efficiency factor. Note that direct short wiring is the most efficient energy transfer with lowest resistance. For the wireless circuits, resonant coupled circuits are the most efficient with a high coupling factor when the primary (source) and the secondary (load) are next to each other with minimal space as in a near field scenario. In this case, the captured flux increases in a non-linear fashion. The resonant aspect focuses on a narrow band of the energy spectrum. The resonant energy has alternating electric fields coexistent with alternating magnetic fields. The energy may be derived from either one, as the fields are just a description of the two measurable aspects of the electromagnetic field transfer. However, the power dissipation in biological tissue is determined by the square of the electric field times the conductivity of the tissue divided by the density of the tissue for the computation of specific absorption rate (SAR). Therefore, the preferred energy transfer mechanism is via the B field. Antennas are designed such that E field is minimized. It should be noted that there are two types of electric fields: one is caused by varying magnetic field as described by Maxwell's equations, and will always be there. The other is caused by voltage sources. It is the latter aspect of the electric field that is minimized by the choice of magnetic field antennas. Hence these antennas are loops that carry current and generate magnetic field.
The extravascular component 175 communicates via a link 183 with an external device 185.
A controller 163 controls the stimulation signal with a digital output delivered to the stimulation site. The control circuit stores the operational parameters for use in controlling operation of a stimulator that applies tissue stimulating segmented voltages pulses across a plurality of electrode pairs. Preferably, the control circuit comprises a conventional microcomputer that has analog and digital input/output circuits and an internal memory that stores a software control program and data gathered and used by that program. The controller also controls an electrical sensing device that does not have external grounding or referencing. The sensing device and the controller are connected to the tissue through a lead assembly with a plurality of dynamically programmable electrodes, which may or may not be shared with the pacing electrodes. Purpose specific segmented waveforms are delivered to the electrodes by the controller. The controller may be located at an intravascular location or located at a suitable subcutaneous location. The controller generates desired digital stimulation waveform.
A signal receiver/transmitter 167, when needed, may also function as a stimulator as in the exemplary embodiment described previously in
As mentioned before, the controller has multiple roles. In this section, the role of controller in synthesizing waveforms for stimulation is described. The
The output derived from two such output voltages now gives a differential output, or a difference between these two outputs. The output voltage relative to common level (Vcm) is not relevant since it may be subtracted out as shown below:
V
01
=Vcm+V
0−A
V
02
=Vcm+V
0−B
V
0
=V
01
−V
02
=V
0−A
−V
0−B
If V0−A and V0−B can only be “0” or “V
A conventional analog output which is shown in
The envelope of the synthesized waveform may be determined or selected as a function of measurement a physiological characteristic which is sensed by an implanted and/or an external sensor. The sensed characteristic may be a naturally occurring or an evoked in response to the electrical stimulation from the implanted medical device. In one embodiment, externally sensed motion may be used in conjunction with an internally sensed heart rate to provide an adaptive algorithm for waveform envelope selection. In another embodiment, the envelope of the synthesized waveform is a function of a command signal transmitted to the implanted device via RF telemetry. In a further embodiment, the synthesized waveform's envelope is a function of preprogrammed clinical algorithm that may be application dependent. Such a preprogrammed clinical algorithm may be needed in an emergency care situation, for example. In a general case, the envelope of the synthesized waveform may be a function of an attribute that can be a sensed signal, received telemetry signal, or a preprogrammed clinical algorithm to mention only a few.
In a digital system,
Having described a general case, the preferred embodiment is described below. In the preferred embodiment, the controller delivers segmented digital waveforms whose voltage envelope is chosen such that it is close to the desired output voltage. In such a device capture threshold is managed by modifying the duration of the output waveform to minimize energy losses at the output stage. In this case as shown in
Using a wireless intravascular platform in its generalization, several application paths may be defined.
Wireless intravascular platform for A: Wireless intravascular platform for treating at least one clinical condition; examples: wireless intravascular platform for CHF resynchronization therapy; and wireless intravascular platform for CHF therapy involving non-pharmacologic inotropic stimulation.
Wireless intravascular platform for B: Wireless intravascular platform for a clinical purpose; Example: Wireless intravascular platform for CHF resynchronization therapy monitoring.
Wireless intravascular platform for B “AND” A: Wireless intravascular platform for a clinical purpose attribute to act on a clinical condition attribute; Example: Wireless intravascular platform for monitoring patients during CHF resynchronization therapy.
Wireless intravascular platform for C “AND” B: Wireless intravascular platform for an implanted device control. Example: Wireless intravascular platform for an event triggered insulin pump control.
Wireless intravascular platform for C “AND” A: Wireless intravascular platform for temporal attribute manipulating an implanted device in response to a clinical condition. Example: Wireless intravascular platform for an event triggered cardiac pacing for CHF patients.
Wireless intravascular platform for D “AND” B: Wireless intravascular platform for parameter attribute manipulating a clinical purpose to treat a patient. Example: Wireless intravascular platform for remote monitoring of electrical parameters of chronic cardiac failure patients.
Wireless intravascular platform for C “AND” D: Wireless intravascular wireless platform for temporal attribute to modulate parameter attribute. Example: Wireless intravascular platform for continuous intravenous pressure measurement.
Wireless intravascular platform for C “AND” D with B: Wireless intravascular wireless platform for temporal attribute to modulate a parameter attribute to achieve a clinical purpose (i.e., one or multi-parameter and one or multi-purpose). Example: Wireless intravascular platform for periodically alerting a caregiver on a patient's vital signs.
Wireless intravascular platform for C “AND” D with A: Wireless intravascular wireless platform for a temporal attribute to modulate a parameter attribute to treat a clinical condition. Example: Wireless intravascular platform for periodically monitoring electrolyte levels during GI tract stimulation.
Wireless intravascular platform for D with B and A: Wireless intravascular platform for a parameter value driven therapy modification. Example: Wireless intravascular platform for cardiac signal (ECG) based electrical stimulation treatment of CHF.
Wireless intravascular platform for B on A with C: Wireless intravascular platform for a clinical purpose attribute to act on a clinical condition attribute using a temporal attribute. Example: Wireless intravascular platform for deep brain stimulation for epileptic seizures based on temporal EEG signal analysis.
Wireless intravascular platform for B on A with C and D: Wireless intravascular platform for a clinical purpose attribute to act on a clinical condition attribute using a temporal attribute in conjunction with a parameter attribute. Example: Continuous glucose monitoring to control the amount of electrical stimulation for chronic obesity treatment.
Wireless intravascular platform for multiple B: Wireless intravascular platform for therapy convergence. Example: Wireless intravascular platform to perform a number of treatment options including electrical stimulation treatment and drug treatment.
As illustrated with the last scenario, it should be understood that two or more options within the same attribute, B in the above scenario, can also be combined in a desired application.
The second sub-component, which is part of the external component, is a data processing device 230, interpreting the presented data and comparing these to preset or programmable thresholds, which include static or dependant variables, such as rates that change with time. For example, a threshold could be the maximum allowable change of the heart rate. Another example of a variable can be the energy consumption over time.
The third sub-component is one or more of the communication devices that could be one or more of the following: audio means 24) for generating sounds at various levels; display means 250 for generating simple lights to text or waveforms or video or combination displays; and audio and voice using pre-recorded messages, associated with conditions and/or measurements. For example, an audio signal could indicate when an optimal relative position of external and internal components has not been achieved. In this example, a user can reposition the external component to minimize the audio signal, which falls below the audible range when optimal relative position is achieved. A second example could be a message indicating that the device should be repositioned on the patient. The message stops when the device is properly repositioned.
The fourth component is auto-communicator 270 that interface via signal path 260 with the data processing device 230. In one example, it could be a portion of a cell phone or a comparable wireless means 280 that calls a responsible party, a target recipient 295, that may be a caretaker, a primary physician, or a relative. This call may be directly to the target recipient or through a service provider 290. The wireless means may also call for service 285 in case of a device break down or when service is required. In another example, an acoustical warning emanated from the system, in the form of a subtle beep to prompt the user to activate the message system, which can be initiated in a suitable location to provide privacy if needed. In another example, the alerting mechanism can activate sound, or light if the device is dislodged and no longer with the patient. This alert enables localization of the external component and assist retrieve the component. In the same example, if no action takes place for a pre-determined time, the next level of alerting can be initiated.
In yet another example, if the data indicates either a serious condition of the patient, for example, absence of heartbeat for a pre-specified amount of time, or failure to attach the device, an automatic call can be placed using conventional existing cell phone networks. A prerecorded message, along with physiological data, where applicable, can be transmitted to the target audience. The prerecorded message can also be accessed by the target audience when their designated pager is activated.
It should be noted that the data transfer may not be a scheduled data transfer, but rather an impromptu situation-based, autonomous communication to allow corrective action at a tiered level, commensurate to the situation. In autonomous operation, the device will take action based on a set of criteria and circumstance. In some embodiments, environmental variables, such as air pressure, air temperature and skin temperature may be incorporated to correlate with physiological data prior to a communication decision being made.
As previously noted, the communication signal could be one or more of the following in the form of a low level audible alarm, an escalated audible alarm, a dial out, a dial out and voice exchange—as in comparable cell phone function, a data exchange or a multi-media data exchange.
With regards to the intravascular implanted system, it is capable of self monitoring, physiological monitoring and autonomously alerting the patient, a bystander, a remote expert, a networked computer, a service person or a relative. Thus it is further intended to include alerting mechanism to communicate with different, independent communicable targets based on both the needs of the device and the patient based on pre-determined conditions. In a first example, a caretaker can be alerted if internal and external components do not communicate with each other for a predetermined time. In a second example, the alerting mechanism may contact a medical service or physician if abnormal rhythms are observed. In a third example, the alerting mechanism may trigger a service call if communication is present but battery power is lower than a predetermined value.
Now referring to he component 310, the first sub-component, which is located inside the body of an animal, is the sensing component 302 that senses the physiological parameter via one or more transducers. For example, the sensors of the present invention may be employed to provide measurements of volume. flow rate, pressure, temperature, electrical parameters, biochemical characteristics, or the amount and type of deposits in the lumen of an intravascular implant, such as a stent or other type of intravascular conduit. The present invention also provides a means to modulate mechanical and/or physical properties of the intravascular implant in response to the sensed or monitored parameter. Quantitative in vivo measurements of volumetric flow rate, flow velocity, biochemical constitution, fluid pressure or similar
physical or biochemical property of the body fluid through an intravascular device would provide more accurate diagnostic information to the medical practitioner. As used herein, the term “intravascular device” is intended to include stents, grafts and stent-grafts which are implanted within an anatomical passageway or are implanted with a body to create a non-anatomical passageway between anatomically separated regions within the body. The term “sensor,” as used herein, includes, without limitation, biosensors, chemical sensors, electrical sensors and mechanical sensors. While the term “biosensor” has been used to variously describe a number of different devices which are used to monitor living systems or incorporating biological elements, the International Union for Pure and Applied Chemistry (IUPAC) located in Research Triangle Park, N.C., U.S.A. has recommended that the term “biosensor” be used to describe “a device that uses specific biochemical reactions mediated by isolated enzymes, immunosystems, tissues, organelles or whole cells to detect chemical compounds usually by electrical, thermal or optical signals.” The term “chemical sensor” is defined by the IUPAC as a device that transforms chemical information, ranging from concentration of a specific sample component to total composition analysis, into an analytically useful signal. Conventional biosensors are a type of chemical sensor that consists of three basic elements: a receptor (biocomponent), transducer (physical component) and a separator (membrane or coating of some type). The receptor of a chemical sensor usually consists of a doped metal oxide or organic polymer capable of specifically interacting with the analyte or interacting to a greater or lesser extent when compared to other receptors. In the case of a biosensor the receptor or biocomponent converts the biochemical process or binding event into a measurable component. Biocomponents include biological species such as: enzymes, antigens, antibodies, receptors, tissues, whole cells, cell organelles, bacteria and nucleic acids. The transducer or physical component converts the component into a measurable signal, usually an electrical or optical signal. Physical components include: electrochemical devices, optical devices, acoustical devices, and calorimetric devices as examples. The interface or membrane separates the transducer from the chemical or biocomponent and links this component with the transducer. They are in intimate contact. The interface separator usually screens out unwanted materials, prevents fouling and protects the transducer. Types of interfaces include: polymer membranes, electropolymerized coatings and self-assembling monomers.
The second sub-component is the data input component 304 that collects processed and/or unprocessed data for physiological monitoring and system performance. An example for the system performance parameters that could be monitored is the energy transfer efficiency, which would be zero if the external component 102 shown in
Now referring to the extravascular component 324, it may have a transceiver component 316 for bidirectional communication 312 and 314 with intravascular component 310. It may also have a data processing component 318 for interpreting the presented data and comparing these to preset or programmable thresholds, which include static or dependant variables, such as rates that change with time. For example, a threshold could be the maximum allowable change of the heart rate. Another example of a variable can be the energy consumption over time. The data processing component may be a part of the external computer 320 or it may have a self-contained computing capability with its own memory and logic. Additionally, the extravascular component may have an external communication sub-component 322 for communicating with a programmer. It may also be used with the alerting system described in
The description of parameter sensing is described in the monitoring section above and is incorporated herein by reference. While any of the sensing transducers adapted for use with the intravascular platform may be used, in the following, a signal amplifier and associated electronics that does not require a separate ground is described. The rationale for the signal amplifier is that in an implanted system, an additional ground line will only see common mode especially when the signal pair is either from a coaxial or a twisted pair.
In an exemplary case of electrical sensing and amplifying of physiological signals is shown in
If the main signal leads, providing Va and Vb are contained within a space or volume with noise sources external to that volume as would be the case in an implanted system, the reference or ground lead may be removed with a concomitant performance improvement of the system as shown in
Noise voltage 342 can still be injected within each individual conductor and present an unbalanced noise component to the amplifier 350 where it will be amplified and spoil the original signal. Depending on location and application, the contributions of unbalanced noise must be considered before choosing this method.
In the
In a preferred embodiment, the signal detector comprises a signal transition detector shown in
The signal detector can be implemented using a circuit using conventional operational amplifiers for frequencies less than 200 Hz. However, for higher frequencies, comparator operational amplifiers are preferred. In any case, the output of the circuit is independent of the input signal. The method is sensitive to the time delay value 352, which will separate the signals in time. There are a number of conditions to consider in choosing the time delay value 352. It should prevent setting off events from small random noise amplitudes. It could be set to exclude certain portions of the cardiac signal time sequence. For example, when a good QRS signal is detected, a larger delay can be chosen.
In
The output 384 of the detector is shown in
In
For the purposes of reporting on paper or in an electronic medical record, analog signal may be digitized and displayed or reported using the means 396 with the classified information superimposed via linkage 400. Finally the displayed signal can be stored and/or printed at block 398 for future reference.
In the case of fibrillation detection, the signal detector further comprises a pulse counter that counts the number of pulses for a preset time period. If the current signal corresponds to the normal heart beat, the pulse counter would register a count in a predetermined normal range since the normal biological signals have transition changes at a relatively low rate. In the event of a fibrillation, the count would be dramatically different and much higher than the normal rate and this increased count would be advantageously used to determine a defibrillation event. The physiological noise will also have relatively high counts but these counts would not add up to a sustained large number and thus can be differentiated from a fibrillation event. Unlike the traditional techniques, this method is robust and immune to signal filter degradations and provides a greatly improved event detection and classification.
As another example, the signal detector can be used to determine the heart rate and use this information in an algorithm for pacing a patient's heart. The heart rate detection is based on the number of transitions counted over a prespecified time interval. If the heart rate goes out of range for a predefined time and the frequency of the transitions remain in the non-fibrillation range, cardiac pacing can be initiated to pace the patient's heart.
In another application, when a discrete transition signal has been detected, it can be advantageously used to determine slope and slope duration analysis or any other methods of characterizing the QRS of an ECG signal.
Moreover, instead of the ECG, other signals may be used to utilize the disclosed concept. These may include blood pressure, vasomotor tone, electromyography (EMG), electrodermography, electroneuography, electro-oculography (EOG), electroretinography used (ERG), electronystagmography (ENG), video-oculography (VOG), infrared oculography (IROG), auditory evoked potentials (AEP), visual-evoked potentials (VEP), all kinds of Doppler signal, etc.
The treatment system uses the information detected by the detection and classification system and treats the patient condition. The treatment can be imparted via electrical, mechanical, thermal, chemical or drug stimulation. In one embodiment, the treatment can be long term stimulation for tissue repair. In another embodiment the treatment is a periodic stimulation for chronic pain relief. In another example, the treatment is short term stimulation for defibrillating a fibrillating heart. In one embodiment, the treatment can be achieved by stimulating a vessel to treat a medical condition. In another embodiment, the treatment is achieved by stimulating a nerve indirectly through a vessel stimulation to treat a medical condition.
Certain changes to the existing means for the treatment are necessary before incorporating them in the intravascular framework. In the following, changes to the lead and the stimulation waveforms are described.
The stimulation waveform is generated using a computer program in the main computer of the intravascular platform.
Getting back to alternative forms of stimulation, the stimulation treatment may be provided by stimulating a vessel indirectly through another vessel stimulation to treat a medical condition.
In accordance with an exemplary method of this invention, one can utilize a system of RF energy transfer 452 from the extravascular signal generator and transmitter means 450 to the vascular transceiver 456 by use of wired or wireless means. Once the energy is received in the venous system it may be transmitted by means of more conventional wires 454 within the venous system. Such hardware is, in general, not a major issue in the venous aspect of the vasculature. However, such hardware can be problematic in the arterial aspect of the vasculature since it can potentially cause arterial occlusion or obstruction to arterial blood supply. RF energy is received into the venous vasculature as described before. The energy is then transferred to the arterial vessel 458 by means of inductive coupling 460 using, for example, parallel coils. The coil in the venous system is powered via the transceiver wired to a second site of interest. At this site, the artery is in close proximity contains a stent like coil 462 capable of receiving an induced current. This stent is not hardwired, but is placed similar to typical stents used to keep arteries open. However in this application the stent may have different configurations. In one embodiment, it may be an electrical solenoid type device. In another embodiment, it may be a spiral or a combination of spirals and solenoids. Any of these configurations are capable of converting the induced energy from the venous inductor for the purpose of stimulating receptors in the wall of the artery and/or for monitoring parameters such as pressure, blood flow and other physiologic parameters or chemical parameters in the artery. The arterial transceiver is also able to send such data either to the nearby transceiver in the venous system for relaying to the external receiver as shown or directly without a relay (not shown). In one embodiment, the stimulator coil 462 in the arterial system can stimulate a nerve 464 through energy transfer 468.
The intravascular platform can be conveniently used to control a device. In one embodiment, the platform can deliver scalable wireless energy to one or more applications. In one example, the wireless energy can be used for powering a localized drug delivery system. As another example, the wireless energy can be used to control localized tissue ablation. In yet another example, the wireless energy may be used to control heart augmentation devices.
Referring to
Referring to
Referring to
Referring to
Multi-functional hybrid platform shown in the
With the hybrid platform it is possible to use any combination of features that are enabled by the system programmatically. It is also possible to disable any desired feature programmatically as well.
In many applications, the intravascular wireless platform may be configured for various temporal attributes. In one example application, the wireless intravascular platform can be configured for continuous operation of, for example, monitoring or sensing. In another example, the platform may be configured for intermittent operation of, for example, electrical stimulation. This operation may be guided by a physiological need as in an exemplary case of cardiac stimulation of CHF patients whose heart rate fell below a predetermined threshold. In another example, the platform may be configured for a triggered operation. In this example, one may use intravascular or external ECG to trigger physiological data sensing and/or monitoring. In another example application, the platform may be operated by an interrupt. In this example, the platform may switch from the regular mode of operation to a time critical or life critical operation that requires immediate attention. Defibrillation therapy is an example of this case.
In some example applications, the platform may be interrogated to communicate with the external devices. The communication may be continuous, interval-based, interrupt driven, event driven or data driven. The communication may include by way of example, unprocessed or processed physiological data, alerts to the patient, or a caregiver, device service data, device identification data. The mode of communication may be audio, visual, text, or graphics. The communication may be local or remote. It may be automated, operator assisted or patient driven.
The foregoing description was primarily directed to a preferred embodiments of the invention. Although some attention was given to alternatives within the scope of the invention, it is anticipated that one skilled in the art will likely realize additional alternatives that are now apparent from disclosure of embodiments of the invention. Accordingly, the scope of the invention should be determined from the following claims and not limited by the above disclosure.
This application claims benefit of U.S. Provisional Patent Application No. 60/821,776, filed on Aug. 8, 2006.
Number | Date | Country | |
---|---|---|---|
60821776 | Aug 2006 | US |