This invention provides methods for tissue characterization using optical coherence tomography. Specifically, in part, such characterization can be performed by measuring a tissue's optical and image properties.
Optical coherence tomography (OCT) is an interferometric imaging technique with widespread applications in ophthalmology, cardiology, gastroenterology and other fields of medicine. The ability to view subsurface structures with high resolution (2-15 μm) through small-diameter fiber-optic probes makes OCT especially useful for minimally invasive imaging of internal tissues and organs. OCT systems can generate images up to 100 frames per second, making it possible to image coronary arteries in the beating heart artery within a few seconds. OCT can be implemented in both time domain (TD-OCT) and frequency domain (Fourier domain OCT or optical frequency domain imaging, OFDI).
OCT imaging of portions of a patient's body provides a useful tool for doctors to determine the best type and course of treatment. For example, imaging of coronary arteries by intravascular OCT may reveal the location of a stenosis, the presence of vulnerable plaques, or the type of atherosclerotic plaque. This information helps cardiologists choose which treatment would best serve the patient-drug therapy (e.g., cholesterol-lowering medication), a catheter-based therapy like angioplasty and stenting, or an invasive surgical procedure like coronary bypass surgery. In addition to its applications in clinical medicine, OCT is also very useful for drug development in animal and clinical trials.
Normal arteries have a consistent layered structure consisting of intima, media and adventia. As a result of the process of atherosclerosis, the intima becomes pathologically thickened and may contain plaques composed of different types of tissues, including fiber, proteoglycans, lipid and calcium, as well as macrophages and other inflammatory cells. These tissue types have different optical properties that can be measured by OCT. The plaques that are believed to be most pathologically significant are the so-called vulnerable plaques that have a fibrous cap with an underlying lipid pool.
In a typical OCT imaging system, an optical probe mounted on a catheter is carefully maneuvered to a point of interest such as within a coronary blood vessel. The optical beams are then transmitted and the backscattered signals are received through coherent detection using an interferometer. As the probe is scanned through a predetermined line or area, many data lines can be collected. An image (2D or 3D) is then reconstructed using well-known techniques. This image is then analyzed visually by a cardiologist to assess pathological features, such as vessel wall thickening and plaque composition.
Since tissue type is identified by its appearance on the screen, errors may occur in the analysis because certain information (such as tissue type) cannot be readily discerned. The standard OCT image only contains the intensity information of the OCT signals. Small changes in the optical properties that influence the OCT signals cannot be readily discerned. Thus, it would be advantageous to have an OCT system and method to measure the optical properties and use them to aid scientists and clinicians. The present invention addresses this need.
The methods are explained through the following description, drawings, and claims.
In general the invention relates to a method and apparatus for determining properties of a tissue or tissues imaged by OCT. In one embodiment the backscatter and attenuation of the OCT optical beam is measured and based on these measurements an indicium, such as color, is assigned for each portion of the image corresponding to the specific value of the backscatter and attenuation for that portion. The image is then displayed with the indicia and a user can then determine the tissue characteristics. Alternatively, the tissue characteristics can be classified automatically by a program given the combination of backscatter and attenuation values.
In one aspect the invention relates to a method for identifying tissue components in situ. In one embodiment the method comprises the steps of: taking an OCT image of a tissue in situ; measuring the attenuation and backscatter at a point in the OCT image; and determining the composition of the tissue at a location in the tissue corresponding to the point in the OCT image in response to the measured attenuation and backscatter. In another embodiment the method further comprises mapping a pair of coordinates in backscatter-attenuation space to an indicium of the value of the pair of coordinates in the backscatter-attenuation space. In one embodiment the indicium is a color. In another embodiment the method further comprises displaying the indicium corresponding to the measured attenuation and backscatter at the point in the OCT image.
In another aspect the invention relates to a system for identifying tissue components in situ. In one embodiment the system comprises an OCT subsystem for taking an OCT image of a tissue in situ; a processor in communication with the OCT subsystem for measuring the attenuation and backscatter at a point in the OCT image and determining the composition of the tissue at a location in the tissue corresponding to the point in the OCT image in response to the measured attenuation and backscatter; and a display for displaying the OCT image and an indicium corresponding to the measured attenuation and backscatter at the point in the OCT image.
In another aspect the invention relates to a processor-implemented method for identifying tissue components in situ. In one embodiment, the method includes the steps of (a) collecting an OCT dataset of a tissue sample in situ using a probe; (b) measuring an attenuation value and a backscattering value at a point in the tissue sample; and (c) determining a tissue characteristic at a location in the tissue sample corresponding to an image location in an OCT image formed from the OCT dataset in response to the measured attenuation value and backscattering value. The method can include the further step of mapping a pair of coordinates in backscatter-attenuation space to an indicium of the value of the pair of coordinates in the backscatter-attenuation space. The method can include the further step of displaying the indicium corresponding to the measured attenuation and backscatter at the point in the OCT image. The tissue characteristic can be selected from the group consisting of cholesterol, fiber, fibrous, lipid pool, lipid, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, and proteoglycans. The indicium can be, for example, a color. The indicium can also be selected from the group consisting of an over-lay, a colormap, a texture map, and text. The method can include the further step of classifying tissue type using a property selected from the group consisting of backscattering, attenuation, edge sharpness, and texture measurements. The method can include the further step of correcting a focusing effect to improve tissue type classification. The method can include the further step of applying angular intensity correction to account for an attenuation effect, such as, for example, a blood-related attenuation effect. The method can include the further step of determining a tissue characteristic using a technique selected from the group consisting of boundary detection, lumen location, and OCT location depth.
In another aspect the invention relates to a system for identifying tissue components in situ. In one embodiment, the system includes (a) an OCT subsystem for taking an OCT image of a tissue in situ; (b) a processor in communication with the OCT subsystem for measuring the attenuation and backscatter at a point in the OCT image and determining a tissue characteristic of the tissue at a location in the tissue corresponding to the point in the OCT image in response to the measured attenuation and backscatter; and (c) a display for displaying the OCT image and an indicium corresponding to the measured attenuation and backscatter at the point in the OCT image. The tissue characteristic can be selected from the group consisting of cholesterol, fiber, fibrous, lipid pool, lipid, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, and proteoglycans.
In another aspect the invention relates to an optical coherence tomography system for identifying tissue characteristics of a sample. In one embodiment the computer system includes a detector configured to receive an optical interference signal generated from scanning a sample and converting the optical interference signal to an electrical signal; an electronic memory device and an electronic processor in communication with the memory device and the detector. The memory device can include instructions that, when executed by the processor, cause the processor to: analyze the electrical signal and generate a plurality of datasets corresponding to the sample, wherein one of the plurality of datasets comprises backscattering data; compare the backscattering data to a first threshold, the backscattering data mapping to a first location in the sample; and if the backscattering data exceeds the first threshold, characterize the first location in the sample as having a first tissue characteristic. In some embodiments, the processor is further caused to generate an OCT image of the sample such that the first tissue characteristic is identified and displayed relative to the first location. The first tissue characteristic can be selected from the group consisting of cholesterol, fiber, fibrous, lipid pool, lipid, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, and proteoglycan. In some embodiments, at least one of the plurality of datasets includes OCT scan data, attenuation data, edge sharpness data, texture parameters, or interferometric data.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
The objects and features of the invention can be better understood with reference to the drawings described below, and the claims. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, numerals are used to indicate specific parts throughout the various views. The drawings associated with the disclosure are addressed on an individual basis within the disclosure as they are introduced.
The following description refers to the accompanying drawings that illustrate certain embodiments of the invention. Other embodiments are possible and modifications may be made to the embodiments without departing from the spirit and scope of the invention. Therefore, the following detailed description is not meant to limit the invention. Rather, the scope of the invention is defined by the appended claims.
In general, the invention relates to methods for tissue characterization of vessel walls using optical methods based on what is generally termed low coherence interferometry (LCI), such as, but not limited to optical coherence tomography (OCT) whether in the time or Fourier domain. The methods described herein solve the problems encountered in semi-automatic or automatic tissue characterization application such as optical calibration, artifact removal, generating accurate optical and spatial parameter measurement from regions of interests, tissue segmentations, and statistical discriminant analysis of tissue types. As used herein discriminant analysis refers to classifying images or data into different classes.
The present invention provides methods for analyzing OCT data and images to characterize biological tissues. Although methods described herein may pertain specifically to vascular tissues, the methods also apply to tissues in other organs of the body, including tissues in the gastrointestinal, pulmonary, and reproductive tracts. Embodiments of the present invention operate in conjunction with an OCT system and a computing device that include characterization software and a decision database as discussed below with respect to
In part, embodiments of the invention are used to evaluate the walls of certain lumens and tissues accessible by an OCT probe. Exemplary tissue images or tissue data sets can include, but are not limited to plaques, lipid pools, and stent placement zones. Typically, histology images of a sample are used to automate an OCT data-based characterization of the same and unrelated samples. In one embodiment of the present invention, reference data (e.g., normal tissue type data from histology reviewed samples) are characterized or generated using software comparisons with data stored in a database. In one embodiment, the characterization software implements some or all of the steps shown in
In general, one embodiment of the characterization software is based on manual selection of regions-of-interest in a histology image. The actual histology data is evaluated to identify different tissue types. In turn, these identified tissue evaluations are be compared to OCT images obtained with respect to the same sample tissue. By comparing the manually identified tissues and structures of interest in the histology images, training sets are created to allow some of the software and programming logic described herein to automatically characterize tissue types and structures in an OCT image. For example, if tissue layer A is identified in the histology image, the same region of interest A′ can be identified in the corresponding OCT image. This process can be repeated to build a database of information used to locate different tissues in an OCT image. Backscattering and attenuation data can be used as outlined below to facilitate this process. Other embodiments of the methods described herein also include image preprocessing steps (such as focus correction), and optical property measurement.
As part of an exemplary sample measurement session, one or more tissue samples are first interrogated using OCT such that OCT scan data is collected. Once the scan data is processed, the resulting OCT images relating to the tissue samples are calibrated and corrected for imaging artifacts. Next, the tissue sample is cross-sectioned to create a histology image designating different parts of the image as composed of different elements or features. The tissue samples are processed using a histological method (such as dye staining), and digitized to create a histology image or histology data set.
In one embodiment, the OCT images are image mappings of the backscattered signal that reaches the OCT probe after being reflected from the OCT scan of the sample. In one embodiment, the histology images are digitized microscopic images of real tissue sample undergone dye staining, i.e., the histology images are color images showing the dye distribution. Since the dyes bind to certain molecules and tissue types preferentially, the histology images map the molecules/tissue types in a tissue sample. As used herein, a histology image typically includes data regarding tissue or a tissue structure or the image created from such underlying data.
The histology image allows operators to identify tissue types (or characterizations) and regions of interest (ROIs). The OCT images are matched or mapped to the histology image. In one embodiment, the mapping is done manually. Next, the characterization software then identifies a corresponding region on the OCT image. The characterization software then calculates at least one of the tissue optical properties or spatial features, the result of which is stored in the database. Statistical analysis is then applied to form a discriminant analysis method using both the OCT data and the tissue types identified in histology.
The combined optical interference signal is converted to electrical signal by the optical detector (or detector arrays) 20. The signal is then used to construct images. The detector is in electrical communication with a processing and analysis subsystem 21 in one embodiment. The subsystem can include a processor 22, a data acquisition module 24, and an analysis software application 26.
The processor 22 is a portion of a computer system or other processor-based device executes various software programs or program logic such as data acquisition 24 and data analysis modules 26. In other embodiments the acquisition and analysis system elements are hardware modules. In one embodiment, the software includes characterization software and graphic user interface for displaying regions of interest as described below. Typically, the processor 22 is in communication with memory (not shown) and a database 28. The database is used to store all types of data and participate in various processing phases and stages as outlined below.
OCT is currently the most widespread variant of this group of imaging systems. The sample arm of commercially available OCT system has many configurations, including microscope, forward-looking endoscope and side-looking endoscope. To simplify description without loss of generalization, OCT with side-looking endoscope is used as a non-limiting example for describing this invention below. In this configuration, an optical probe is mounted in an endoscopic catheter at the sample arm 16. The substantially collimated beam exits from the optical probe mounted on the side. Typically the catheter and the probe are rotated to generate 2D scan and can also be pulled or advanced while rotating to generate 3D scan.
The OCT signal can be described as the light collected from a discrete light imaging volume. Signals from discrete locations within the sample include the image data set. The signal detected from any location is determined by the scattering element's size, refractive indices, density, geometrical arrangement, in addition to characteristics of the optical imaging system. Since different tissues have different chemical composition and microscopic structure, their appearances differ in OCT images. Qualitative differences in appearance have been used clinically for identifying and characterizing plaques. However, this qualitative approach requires extensive experience and is prone to instrumental and human errors. To assist in tissue characterization, the present invention provides various means to incorporate quantitative measurements. In some embodiments, this tissue characterization is performed automatically using the processor 22 and characterization software.
In one embodiment of the invention, the characterization software inputs the OCT data, calibrates the signal strength, enhances data quality via filtering, corrects imaging artifacts, and calculates parameters for all tissue regions or specific regions of interest identified by operators, and uses the parameters stored in database to identify tissue type or characterization. In this embodiment, the characterization software identifies at least one of the tissue optical properties or spatial features from OCT data. The tissue optical properties are calculated and displayed. The individual tissue optical properties are displayed either individually or in combination.
To calculate the optical parameters of the tissue, many optical models can be used. In one embodiment of the present invention, the optical parameters of the tissue can be extracted by fitting the data based on single-scatterer theory. In another embodiment of the present invention, the optical parameters can be extracted by models, such as the extended Huygens-Fresnel (ELF) theory that include multiple-scatterer effect.
In one the embodiment, discussed below, P(z) is the power of OCT signal received. According to single-scattering theory, the OCT signal power P(z) collected from a homogeneous sample, from depth z0 to z1 is described by:
P(z)=KA(z,ϕ)T(z0)μbexp(−2μaz),z0<z<z1
log [P(z)]=log [KA(z,ϕ)T(z0)]+log(μb)−2μaz,z0<z<z1 (1.1)
where z is the depth into the sample, K is the delivered incident power, A(z, ϕ) is the optical system efficiency, T(z0) is the optical transmission efficiency from tissue surface to depth z0, μb is the tissue backscattering coefficient, and μa is the tissue attenuation coefficient. In A(z, ϕ), the angular dependence ϕ arises from varying beam delivering efficiency caused by catheter rotation and blood attenuation. The z dependence is caused by factors such as the divergent beam focusing profile. The tissue back-scattering coefficients and the attenuation coefficients are characteristic of tissue types and are the principal optical parameters used in certain embodiments to determine the tissue characteristics. For a specific imaging setting, the K value and A(z, ϕ) value are constant. For a specific region of interest, the T(z0) is also a constant. However, there can be variations from these constants in some embodiments. Given a substantially constant behavior for the different parameters discussed above, a linear relationship between log [P(z)] and the depth z is a reasonable assumption. Accordingly, a line can be fit to the data describing the relationship between scan depth and the signal received by the OCT system. This linear model has various uses. For example, based on this linear model, the attenuation coefficient can be calculated from the slope of the fitted line; while the backscattering coefficient can be calculated from the offset of the fitted line.
With respect to the depth parameter, the z dependence is illustrated by
The OCT imaging machine and sample arm beam delivery device has various optical efficiencies. To ensure the accurate measurement of tissue optical properties, in addition to noise subtraction and filtering, the imaging system must be carefully calibrated and various artifacts must be removed. As shown in
The OCT intensity from this layer 30 is proportional to light intensity exiting the probe, thereby providing a calibrated optical reference. This semi-transparent layer 30 can be in the form of outer sheath of the catheter, a layer between the outmost sheath and the optical fiber probe, or a specific semi-transparent coating on the optical fiber, the catheter sheath or other structural layers in between that has calibrated reflection coefficients. In order to consider this embodiment in more detail, it is useful to review the components of an exemplary OCT probe.
In one embodiment, the OCT probe is composed of the rotating optical fiber 32 surrounded by one or more layers of plastic or glass. These constitute a substantially stationary protective sheath. The partial reflector can be either layer 30 (which is a part of the sheath), or an interface inside the optical fiber or GRIN lens assembly. The advantage of using layer 30 is that the intensity of layer 30 is generally visible in the OCT images. The disadvantage of layer 30 is that it is a larger and more complex structure. This greater size and complexity may be non-uniform and the overall layer may have a rotational dependence. One advantage of using the interface as the reflector is that it rotates together with the fiber. Hence, it does not suffer potential rotational dependence. The disadvantage of the interface is that it may lie outside the normal OCT scan range (i.e. proximal to the fiber tip, where the normal OCT image range begins just distal to the fiber tip) requiring the OCT scan range to adjusted inward to capture this interface and losing a commensurate portion of the outer scan region.
The partial reflector 30 is used to calibrate the delivered incident light intensity (K). Partial reflecting layer 30 can be calibrated by injecting a laser of known intensity and recording the reflected signal strength.
An electromagnetic beam such as an optical beam suitable for performing OCT scans is shown in
In equation 1.2, A(z) is light intensity at depth z, z0 is the Rayleigh range, and f is the focal length of the lens assembly. In a homogeneous media, the divergent beam profile produces an OCT intensity pattern that peaks at the focal plane, and rolls off from either side, as shown in
As shown in
To correct for these effects, if the superficial layer 55 and other biological samples are composed of a homogeneous layer of fibrous tissue beneath the lumen boundary, it is reasonable to use the superficial layer 55 as a calibration basis for the ϕ dependence in A(z,ϕ). To do this, the boundary 53 between the lumen and the vessel is found either by manual selection or by an automatic program. The OCT intensity in the region is then averaged over the depth to give the angular-dependent intensity profile shown in
The inverse of this profile shown in
OCT image noise has several components: shot noise, laser noise and electrical noise. OCT images are also degraded by speckles. The speckle effect is inherent to coherent imaging and can reduce the accuracy of measurements of optical properties. To maintain high-resolution accuracy, denoising procedures that remove noise without degrading spatial resolution are performed.
As shown in
Once an initial data set as been collected, the window W is then moved inside the OCT image to obtain optical properties at different locations in the image (see arrows shown in
The wall of certain lumens, such as an artery, is a layered structure that includes different tissue components. In some embodiments, the linear model fitting shown in
In addition to analyzing a multi-layered structure and obtaining optical property data, the boundaries between different tissue types are also of interest. In one embodiment of this invention, the tissue boundary detection is obtained by analyzing a single depth scan. An example of such boundary detection can be understood using the illustrative OCT data plot and linear curve fitting model in
In another embodiment of this invention, tissue boundary detection is obtained by analyzing 2D or 3D OCT images, either by a human operator or an automatic algorithm. An example of such boundary detection is illustrated in
Once tissue boundary detection is complete, corrected optical properties are retrieved by computational models. One example of such a model compensates for backscattering by the amount of cumulative attenuation due to any layers between the region being scanned and the imaging catheter. For the hypothetical OCT image shown in
To reduce the effect of noise and speckle, the attenuation coefficients of tissue X and Y are then calculated as the average of the slopes of all scan lines. The backscattering coefficient of tissue X is calculated as the offset of the intensity profile between Ai and Bi. However, because the attenuation effect of tissue X, the backscattering coefficients of tissue Y can not be calculated simply by the offset of the intensity profile between Bi and Ci. Another approach is used. Specifically, the effect on the offset by the attenuation due to the tissue X on top of tissue Y can be compensated using the following equation:
Oy,i′=Oy,i+Sx,idi i=1,2,
In the equation above, the Oy,i is the offset of the line fitting of tissue Y, Sx,i is calculated from the line fitting of tissue X, di is the thickness of tissue X. The Oy,i′ and Oy,i are the compensated and the original offset of the line fitting at tissue Y, respectively. Sx,i is the slope of the line fitting at tissue X and di is the depth spanned by scan line inside tissue X.
To reduce the effect of noise and speckle, the backscattering coefficients of tissue X and Y are then calculated as the average of the compensated offsets of all scan lines, Although in the above example the hypothetical image has only two tissue layers, the method can be extended to multiple-layers OCT image by compensating the offsets of bottom layer iteratively from the top.
Another embodiment of this invention relates to the extraction of image features associated with specific tissue types based on 2D or 3D images. These features are not extracted solely from a depth-dependent scanning line, but rather rely on analysis of the patterns of neighboring scans. One example is differentiating calcium tissue and lipid tissue. In OCT, both tissue types appear to be signal poor while the surrounding fibrous or ground tissues appear to be signal rich. However, the boundary between calcium tissue and fibrous tissue is usually sharp, while the boundary between lipid tissue and fibrous tissue in OCT usually appears diffusive. The boundary sharpness can be quantified by measuring the derivative of the image brightness (edge acutance). Other quantifiable local image features include texture and shape information.
One semi-automatic method for measuring boundary sharpness requires the operator to roughly preselect an edge line or a small area enclosing the edge line. Edge detection algorithms (such as Canny's edge detector or region-growing methods) are then used to detect the precise location of the edges. The gray-level variance across the edge line yields a measure of the edge acutance. The edge acutance value is calculated by quantifying the inside-to-outside differences between the signals of the plaque and the surrounding tissue.
In computer vision, texture usually refers to patterns of local variations in brightness. In an OCT image, texture is closely related to the speckle formation, which is influenced by the density and size distribution of scattering elements or structures. In vessel imaging, under similar focusing conditions, the texture is observed to be correlated to tissue type. For example, large and densely packed macrophage foam cells form large speckles and exhibit a “solid” texture; while loosely packed proteoglycan molecules with smaller scattering elements form small speckles and exhibit a “gel” texture. There are numerous ways to quantify texture information in computer vision, including methods based on intensity statistics (histogram or variance), local pattern analysis (e.g., spatial gray-level co-occurrence matrices), or spectral analysis.
Different atherosclerosis plaques have different geometrical shapes. For example, the foam cells usually form ribbon-like features on the shoulders of large lipid pool. In turn, the media appears like annulus around the vessel, etc. The shape information is currently used in qualitative assessment of OCT images. In computerized shape analysis, compactness, Fourier descriptors, central invariant moment, and chord-length distributions are the most commonly used methods. It should be appreciated that shape information can be either 2D shape, 3D shape or both.
It should be appreciated that while optical backscattering coefficient, optical attenuation coefficient, image edge sharpness, image texture, image shape are described in detail above as tissue parameters, the present invention is not limited to these parameters. Thus, other parameters (such as optical anisotropic factor) are within the scope of this invention. It should also be appreciated that while models and calculation methods to derive the parameters described above are possible methods, there are other physical models or calculation methods that are within the scope of this invention.
A quantitative measurement of optical tissue and image properties can be displayed to an OCT operator to assist in clinical interpretation. In one embodiment, the tissue properties are displayed individually. In another embodiment, multiple tissue properties are displayed together using a combination display method. For example, there are two tissue cross-sections shown in
In the another embodiment of the present invention, the characterization software analyzes the OCT data and measured tissue optical properties to generate image segmentations, define tissue boundaries, and identify tissue elements in samples of interest. The tissue parameters are calculated for each tissue sample or element thereof and compared to the parameters stored in a database. Based on these results, the tissue type or characterization is assigned to the tissue sample of element thereof according to univariate or multivariate discriminant analysis or classification. In one embodiment, the calculated tissue parameters are displayed as numbers or color-coded images (e.g., discrete colors, grayscale, etc.). In another embodiment, the derived tissue types are displayed to the user as texts or color-coded images (e.g., discrete colors, grayscale, etc.). These features are described below in more detail.
Another method of generating and analyzing quantitative measurement of tissue optical and image properties is shown in
As shown in
Similarly,
During database population phase, different tissue types are identified and mapped on the histology images. These tissue identifiers or signatures that are stored can be used in the future to automatically identify tissue elements and types of interest for new OCT scans. The corresponding regions are also identified in the OCT data or image. An example of such mapped histology images is shown in
An example of suitable data for use in the database is shown in
There are many statistical methods to compare the tissue properties of a ROI to the database and to assign the tissue type. In one embodiment of this invention the discriminant analysis method (or classification analysis method) is used to identify tissue types based on the tissue properties. For example, different tissue types have different the optical backscattering μb and the attenuation coefficient μa. For any ROI to be examined, both parameters are measured. Hence, during the database population phase, the (μb, μa) pairs of different tissue types are obtained.
During characterization phase, the (μb, μa) pair of the tissue ROI is obtained, and the Mahalanobis distance is calculated between those of new acquired ROI and those values from the database. From the calculation, a decision is made to find the best match. For example, as shown in
It should also be noted that the optical properties and image features for such discriminant or classification analysis are not limited to backscattering coefficients and attenuation coefficients, but include, although not limited to edge sharpness, texture parameters, plaque geometrical shape etc. In addition, the algorithms for performing such analysis are not limited to Mahalanobis distance analysis, but include a variety of statistical methods. Biological tissues are complex. There are many tissue types and sub-types that possibly could not be distinguished by only combining the backscattering and attenuation measurements. For example, the foam cell tissue, and the lipid both have high backscattering and attenuation. Calcification and certain loose connective tissue both have low backscattering and low attenuation. In addition, there are often some overlaps for backscattering and attenuation measurements between different tissue types. For example, some large calcified plaques have small lipid or fibrous tissue pockets embedded inside, hence having higher backscattering coefficients. In these cases, it is often necessary to make additional optical or image parameters to assist or refine tissue characterization.
Additional parameters may be used for assisting and refining tissue characterization. In
In OCT coronary artery imaging, foam cells are also an important indicator of disease state. The foam cells are usually enlarged macrophage or smooth muscle cells that are filled with lipid droplets. Because of the presence of these lipid droplets, it is often difficult to distinguish them from some lipid tissues. However, because foam cells are large cells and are often clustered into groups of various size, they tend have different texture appearance from lipid tissues, which are usually composed of extracellular lipid.
The above analysis is to analyze edge sharpness and texture measurements after analyzing backscattering and attenuation. In other embodiments all of the analysis and comparison can be performed in parallel or in a combination serial/parallel steps. The data and decision shown in
The present invention may be embodied in may different forms, including, but in no way limited to, computer program logic for use with a processor (e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer), programmable logic for use with a programmable logic device, (e.g., a Field Programmable Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof. In a typical embodiment of the present invention, some or all of the processing of the data collected using an OCT probe and the processor-based system is implemented as a set of computer program instructions that is converted into a computer executable form, stored as such in a computer readable medium, and executed by a microprocessor under the control of an operating system. Thus, query response and input data are transformed into processor understandable instructions suitable for generating OCT data, histology images, OCT images, ROIs, overlays, signal processing, artifact removal, and other features and embodiments described above.
Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, linker, or locator). Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as Fortran, C, C++, JAVA, or HTML) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.
The computer program may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g., PCMCIA card), or other memory device. The computer program may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies. The computer program may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink-wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).
Hardware logic (including programmable logic for use with a programmable logic device) implementing all or part of the functionality previously described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (e.g., VHDL or AHDL), or a PLD programming language (e.g., PALASM, ABEL, or CUPL).
Programmable logic may be fixed either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), or other memory device. The programmable logic may be fixed in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies. The programmable logic may be distributed as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink-wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).
Various examples of suitable processing modules are discussed below in more detail. As used herein a module refers to software, hardware, or firmware suitable for performing a specific data processing or data transmission task. Typically, in a preferred embodiment a module refers to a software routine, program, or other memory resident application suitable for receiving, transforming, routing and processing instructions, or various types of data such as OCT scan data, interferometer signal data, clock signals, region of interest types, formulas, and other information of interest.
Computers and computer systems described herein may include operatively associated computer-readable media such as memory for storing software applications used in obtaining, processing, storing and/or communicating data. It can be appreciated that such memory can be internal, external, remote or local with respect to its operatively associated computer or computer system.
Memory may also include any means for storing software or other instructions including, for example and without limitation, a hard disk, an optical disk, floppy disk, DVD (digital versatile disc), CD (compact disc), memory stick, flash memory, ROM (read only memory), RAM (random access memory), DRAM (dynamic random access memory), PROM (programmable ROM), EEPROM (extended erasable PROM), and/or other like computer-readable media.
In general, computer-readable memory media applied in association with embodiments of the invention described herein may include any memory medium capable of storing instructions executed by a programmable apparatus. Where applicable, method steps described herein may be embodied or executed as instructions stored on a computer-readable memory medium or memory media. These instructions may be software embodied in various programming languages such as C++, C, Java, and/or a variety of other kinds of software programming languages that may be applied to create instructions in accordance with embodiments of the invention.
It is to be understood that the figures and descriptions of the invention have been simplified to illustrate elements that are relevant for a clear understanding of the invention, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize, however, that these and other elements may be desirable. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the invention, a discussion of such elements is not provided herein. It should be appreciated that the figures are presented for illustrative purposes and not as construction drawings. Omitted details and modifications or alternative embodiments are within the purview of persons of ordinary skill in the art.
It can be appreciated that, in certain aspects of the invention, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to provide an element or structure or to perform a given function or functions. Except where such substitution would not be operative to practice certain embodiments of the invention, such substitution is considered within the scope of the invention.
The examples presented herein are intended to illustrate potential and specific implementations of the invention. It can be appreciated that the examples are intended primarily for purposes of illustration of the invention for those skilled in the art. There may be variations to these diagrams or the operations described herein without departing from the spirit of the invention. For instance, in certain cases, method steps or operations may be performed or executed in differing order, or operations may be added, deleted or modified.
Furthermore, whereas particular embodiments of the invention have been described herein for the purpose of illustrating the invention and not for the purpose of limiting the same, it will be appreciated by those of ordinary skill in the art that numerous variations of the details, materials and arrangement of elements, steps, structures, and/or parts may be made within the principle and scope of the invention without departing from the invention as described in the claims.
This application is a continuation of U.S. patent application Ser. No. 12/455,523, filed on Jun. 2, 2009, which claims priority from U.S. Provisional Patent Application No. 61/058,077, filed on Jun. 2, 2008, the disclosures of which are incorporated by reference herein in their entirety. This application claims priority to U.S. Provisional Application 61/058,077 filed on Jun. 2, 2008, the disclosure of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5054492 | Scribner et al. | Oct 1991 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5465147 | Swanson | Nov 1995 | A |
5488674 | Burt et al. | Jan 1996 | A |
5509093 | Miller et al. | Apr 1996 | A |
5531227 | Schneider | Jul 1996 | A |
5662109 | Hutson | Sep 1997 | A |
5748598 | Swanson et al. | May 1998 | A |
5771895 | Slager | Jun 1998 | A |
5784352 | Swanson et al. | Jul 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5920390 | Farahi et al. | Jul 1999 | A |
5956355 | Swanson et al. | Sep 1999 | A |
5989189 | LeBlanc et al. | Nov 1999 | A |
5999588 | Shao et al. | Dec 1999 | A |
6013033 | Berger et al. | Jan 2000 | A |
6111645 | Tearney et al. | Aug 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6148095 | Prause et al. | Nov 2000 | A |
6160826 | Swanson et al. | Dec 2000 | A |
6191862 | Swanson et al. | Feb 2001 | B1 |
6208883 | Holupka et al. | Mar 2001 | B1 |
6282011 | Tearney et al. | Aug 2001 | B1 |
6421164 | Tearney et al. | Jul 2002 | B2 |
6445939 | Swanson et al. | Sep 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6552796 | Magnin et al. | Apr 2003 | B2 |
6564087 | Pitris et al. | May 2003 | B1 |
6570659 | Schmitt | May 2003 | B2 |
6608717 | Medford et al. | Aug 2003 | B1 |
6706004 | Tearney et al. | Mar 2004 | B2 |
6879851 | McNamara et al. | Apr 2005 | B2 |
6891984 | Petersen et al. | May 2005 | B2 |
7061622 | Rollins et al. | Jun 2006 | B2 |
7148970 | de Boer | Dec 2006 | B2 |
7208333 | Flanders et al. | Apr 2007 | B2 |
7241286 | Atlas | Jul 2007 | B2 |
7414779 | Huber et al. | Aug 2008 | B2 |
7415049 | Flanders et al. | Aug 2008 | B2 |
7593559 | Toth et al. | Sep 2009 | B2 |
7625366 | Atlas | Dec 2009 | B2 |
7668342 | Everett | Feb 2010 | B2 |
7729746 | Redel et al. | Jun 2010 | B2 |
7787129 | Zysk et al. | Aug 2010 | B2 |
8953911 | Xu et al. | Feb 2015 | B1 |
8983580 | Boppart et al. | Mar 2015 | B2 |
20020115931 | Strauss et al. | Aug 2002 | A1 |
20030028100 | Tearney et al. | Feb 2003 | A1 |
20040068192 | Westphal | Apr 2004 | A1 |
20040215166 | Atlas | Oct 2004 | A1 |
20050004453 | Tearney et al. | Jan 2005 | A1 |
20050201662 | Petersen et al. | Sep 2005 | A1 |
20050238067 | Choi | Oct 2005 | A1 |
20060058622 | Tearney et al. | Mar 2006 | A1 |
20060095065 | Tanimura et al. | May 2006 | A1 |
20060165270 | Borgert et al. | Jul 2006 | A1 |
20060187537 | Huber et al. | Aug 2006 | A1 |
20060203859 | Cable et al. | Sep 2006 | A1 |
20060227286 | Hong et al. | Oct 2006 | A1 |
20060241461 | White et al. | Oct 2006 | A1 |
20060241465 | Huennekens et al. | Oct 2006 | A1 |
20060241487 | Nair | Oct 2006 | A1 |
20060241503 | Schmitt et al. | Oct 2006 | A1 |
20060244973 | Yun et al. | Nov 2006 | A1 |
20070081236 | Tearney et al. | Apr 2007 | A1 |
20070115481 | Toth et al. | May 2007 | A1 |
20070123771 | Redel et al. | May 2007 | A1 |
20070167710 | Unal | Jul 2007 | A1 |
20070260198 | Atlas | Nov 2007 | A1 |
20080069776 | Yamamoto et al. | Mar 2008 | A1 |
20080100612 | Dastmalchi et al. | May 2008 | A1 |
20080161696 | Schmitt et al. | Jul 2008 | A1 |
20080165366 | Schmitt et al. | Jul 2008 | A1 |
20080177183 | Courtney | Jul 2008 | A1 |
20090079993 | Yatagai et al. | Mar 2009 | A1 |
20100094127 | Xu | Apr 2010 | A1 |
20160058622 | Allred | Mar 2016 | A1 |
20180192957 | Schmitt et al. | Jul 2018 | A1 |
20190110776 | Yu et al. | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
106361295 | Feb 2017 | CN |
107730540 | Feb 2018 | CN |
106377229 | Apr 2019 | CN |
2408797 | Jun 2005 | GB |
H04-189349 | Jul 1992 | JP |
H09-070404 | Mar 1997 | JP |
H11-173976 | Jul 1999 | JP |
2002534199 | Oct 2002 | JP |
2006000385 | Jan 2006 | JP |
2006516739 | Jul 2006 | JP |
2007029520 | Feb 2007 | JP |
2008069107 | Mar 2008 | JP |
2008-510586 | Apr 2008 | JP |
2008510586 | Apr 2008 | JP |
2008510595 | Apr 2008 | JP |
2011-173976 | Sep 2011 | JP |
2004 066824 | Aug 2004 | WO |
2006 024015 | Mar 2006 | WO |
2006076409 | Jul 2006 | WO |
2007002685 | Jan 2007 | WO |
2007015051 | Feb 2007 | WO |
2007 028531 | Mar 2007 | WO |
2007028531 | Mar 2007 | WO |
2007060973 | May 2007 | WO |
2008024419 | Feb 2008 | WO |
Entry |
---|
Jeon et al.; A feasibility study of optical coherence tomography for guiding deep brain probes; Journal of Neuroscience Methods vol. 154, Issues 1-2, Jun. 30, 2006, Available online Feb. 9, 2006; pp. 96-101 (Year: 2006). |
Image segmentation—Wikipedia (Year: 2020). |
Boyer et al.; Automatic recovery of the optic nervehead geometry in optical coherence tomography; published on May 1, 2006; IEEE Transactions on Medical Imaging (vol. 25, Issue: 5, May 2006); pp. 553-570 (Year: 2006). |
Xu et al., “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” Journal of Biomedical Optics, vol. 13(3), May/Jun. 2008, 8 pages. |
Kholodnykh et al., “Accurate Measurement of Total Attenuation Coefficient of Thin Tissue with Optical Coherence Tomography,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 9, No. 2, Mar./Apr. 2003, pp. 210-221. |
Schmitt et al., “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39 (1994), pp. 1705-1720. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Patent Application No. PCT/US2009/046035, 15 pages. |
Japanese Office Action for Patent Application No. 2011-511907 dated Sep. 24, 2013 (9 pages). |
English translation of Office Action of Japan Patent Office for Japanese Patent Application No. 2015-112641 dated Jun. 6, 2017 (3 pages). |
P. Gatenby. “Neural networks, Part I: Feedforward Hardlimited Networks,” 2002 http://www.hpcc.org/datafile/V21N1/neural1.html (8 pages). |
Van der Meer et al., “Localized Measurement of Optical Attenuation Coefficients of Atherosclerotic Plaque Constituents by Quantitative Optical Coherence Tomography,” 2005, IEEE Transactions on Medical Imaging, vol. 24, No. 10, pp. 1369-1376. |
Mehrotra et al., “Elements of Artificial Neural Networks,” 1997, Massachusetts Institute of Technology, pp. 24-27. |
Search Report by Registered Search Organization for Japanese Application No. 2014-011005 dated Nov. 19, 2014. 10 pgs. |
Search Report by Registered Search Organization for Japanese Application No. 2011-511907 dated Sep. 13, 2012. 18 pgs. |
Number | Date | Country | |
---|---|---|---|
20180192957 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
61058077 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12455523 | Jun 2009 | US |
Child | 15913300 | US |