Aortic valve stenosis is a common cardiac disease resulting in approximately 65,000 aortic valve replacement surgeries in the United States annually. Aortic valve stenosis can occur via several etiologies including rheumatic disease, congenital and degenerative calcific stenosis. In developing countries, rheumatic fever results in thickening and progressive immobility of the valve tissues. Calcific disease accounts for almost all of the cases of aortic stenosis in the United States and in developed nations where rheumatic disease is rare.
Over time, a build up of calcium can occur in the annulus of the valve, along the leaflet cusps and on or within the leaflets. This calcific material such as nodular calcific deposits may be superimposed on an underlying fibrotic aortic valve leaflet or calcific deposits may be diffusely distributed throughout the body (spongiosa) of the aortic valve leaflets. Although distribution and type of deposits may differ depending on valve geometry (bicuspid, tricuspid), the deposits generally contribute to leaflet immobility, thickening and other pathologies that lead to degenerative valve function. The presence and progression of this disease leads to a decreased functional area of the valve and dramatically reduced cardiac output.
In the late 1980s and early 1990s balloon dilation of the aortic valve, or valvuloplasty, became a popular therapy for aortic valve stenosis. Dilation of the aortic valve using large angioplasty balloons from either an antegrade (transeptal) or retrograde (aortic) approach resulted in improvements in left ventricular ejection fractions (increased cardiac output), decreases in pressure gradients across the valve, and increases in valve cross-sectional area. Various vavuloplasty balloon designs and other approaches, including energy based therapies, have been disclosed in U.S. Pat. No. 3,667,474 Lapkin, U.S. Pat. No. 4,484,579 Meno, U.S. Pat. No. 4,787,388 Hoffman, U.S. Pat. No. 4,777,951 Cribier, U.S. Pat. Nos. 4,878,495 and 4,796,629 to Grayzel, U.S. Pat. No. 4,819,751 Shimada, U.S. Pat. No. 4,986,830 Owens, U.S. Pat. Nos. 5,443,446 and 5,295,958 to Schturman, U.S. Pat. No. 5,904,679 Clayman, U.S. Pat. Nos. 5,352,199 and 6,746,463 to Tower, the disclosures of which are expressly incorporated herein by reference.
In addition, various surgical approaches to de-calcify the valve lesions were attempted utilizing ultrasonic devices to debride or obliterate the calcific material. Such devices include the CUSA Excel™ Ultrasonic Surgical Aspirator and handpieces (23 kHz and 36 kHz, Radionics, TYCO Healthcare, Mansfield, Mass.). Further work, approaches and results have been documented in “Contrasting Histoarchitecture of calcified leaflets from stenotic bicuspid versus stenotic tricuspid aortic valves,” Journal of American College of Cardiology 1990 April; 15(5):1104-8, “Ultrasonic Aortic Valve Decalcification: Serial Doppler Echocardiographic Follow Up” Journal of American College of Cardiology 1990 September; 16(3): 623-30, and “Percutaneous Balloon Aortic Valvuloplasty: Antegrade Transseptal vs. Conventional Retrograde Transarterial Approach” Catheterization and Cardiovascular inverventions 64:314-321 (2005), the disclosures of which are expressly incorporated by reference herein.
Devices and techniques have suffered from only a modest ability to increase valve cross-sectional area, however. For instance, many studies showed that a pre-dilatation area of about 0.6 cm2 could be opened to only between about 0.9 to about 1.0 cm2. It would be desirable to open such a stenosis to an area closer to about 1.2 to about 1.5 cm2. In addition to opening the cross-sectional area, it may be desirable to treat the leaflets and surrounding annulus to remove calcific deposits that stiffen the valve, impair flow dynamics, and otherwise degenerate valve function. Toward this end, other techniques such as direct surgical ultrasonic debridement of calcium deposits have had some success, but required an open surgical incision, thereby increasing the risk to the patient.
Although balloon dilatation offered patients a viable, less invasive alternative, it fell into disfavor in the early to mid 1990s primarily as a result of rapid restenosis of the valve post treatment. At six months, reports of restenosis rates were commonly in excess of 70-80%. Today, balloon valvuloplasty is primarily reserved for palliative care in elderly patients who are not candidates for surgical replacement due to comorbid conditions.
Recent clinical focus on technologies to place percutaneous valve replacement technologies have also caused some to revisit valvuloplasty and aortic valve repair. Corazon, Inc. is developing a system which isolates the leaflets of the aortic valve so that blood flow through the center of the device is preserved while calcium dissolving or softening agents are circulated over and around the leaflets. See for example, United States Patent Application Publication 2004/0082910, the disclosure of which is expressly incorporated herein by reference. The hope is that reducing the stiffness of the leaflets by softening the calcium will allow for more normal functioning of the valve and increased cardiac output. The system is complex, requires upwards of 30 minutes of softening agent exposure time, and has resulted in complete AV block and emergency pacemaker implantation in some patients.
In addition, other technologies have been documented to address aortic stenosis in various ways. U.S. Patent Application Publication 2005/007219 to Pederson discloses balloon materials and designs, as well as ring implants for use in vavuloplasty and treatment of aortic stenosis, the disclosure of which is expressly incorporated herein by reference. Further, Dr. Pederson recently presented initial results of the RADAR study for aortic valve stenosis therapy. This study combines traditional balloon valvuloplasty with external beam radiation to try to prevent the restenosis which occurs post-dilatation. While radiation therapy has been shown to have a positive impact on restenosis in coronary angioplasty, the methods employed in the RADAR study require that the patient undergo a minimum of 4-6 separate procedures, the initial valvuloplasty plus 3-5 separate radiation therapy sessions. These radiation therapy sessions are similar to those used for radiation treatment for cancer.
Over the past three years, dramatic advances in the prevention of restenosis after coronary balloon angioplasty and stenting have been made by the introduction of drug-eluting stents by companies like Boston Scientific and Johnson & Johnson. These devices deliver a controlled and prolonged dose of antiproliferative agents to the wall of the coronary artery in order to manage the sub-acute wound healing and prevent the long-term hyperproliferative healing response that caused restenosis in bare metal stents or in stand-alone angioplasty. Furthermore, various advances have been made on the administration of anti-calcification drugs, including ACE inhibitors, statins, and angiotensins, specifically angiotensin II, as detailed in United States Patent Application Publication 2004/0057955, the disclosure of which is expressly incorporated herein by reference.
While the conventional methods have proven to be reasonably successful, the problem of aortic valve stenosis and subsequent restenosis after valvuloplasty or other intervention still requires better solutions. The present invention provides various devices and methods that create more effective treatments for aortic stenosis and prevent or reduce the incidence and/or severity of aortic restenosis. In addition, the present inventions provides methods and devices for decalcification or debridement of aortic stenosis, either as a stand alone therapy or in conjunction with conventional techniques, such as traditional valvuloplasty, stenting, valve repair, and percutaneous or surgical valve replacement.
The present invention relates to the repair of aortic and other cardiac valves, and more particularly devices and methods for calcium removal and anti-restenosis systems for achieving such repair. The invention can take a number of different forms, including apparatus, acute interventions performed at the time of the aortic repair or valvuloplasty, or temporary or permanent implant, and the like.
In one aspect, the methods and devices of the reduce or remove calcifications on or around the valve through application or removal of energy to disrupt the calcifications. The present invention may apply ultrasound energy, RF energy, a mechanical energy, or the like, to the valve to remove the calcification from the valve. Alternatively, it may be desirable to instead remove energy (e.g. cryogenically cooling) from the calcification to enhance the removal of the calcification from the valve. In all cases, it will be desirable to create an embolic containment region over a localized calcific site on or near the cardiac valve. Such containment may be achieved by creating a structure about the localized site and/or by actively aspirating embolic particles from the site as they are created. Suitable structures include filters, baskets, balloons, housings and the like.
In another aspect of the present invention, treatment catheters are provided to deliver a working element to the vicinity of the diseased valve. Working element can include an ultrasonic element, or any other delivery mechanism or element that is capable of disrupting, e.g., breaking up or obliterating calcific deposits in and around the cardiac valve. Such devices may be steerable or otherwise positionable to allow the user to direct the distal end of the catheter grossly for initial placement through the patient's arteries to the valve, and then precisely adjust placement prior to and/or during treatment.
In another aspect, the present invention provides a treatment catheter that comprises a mechanical element that can disrupt, e.g., mechanically break up, obliterate, and remove the calcific deposits in and around the aortic valve. Similar to the ultrasonic-based catheters, the catheter comprising the mechanical element may be steerable or otherwise articulable to allow the user to direct the distal end of the catheter grossly for initial placement, and then fine tune placement during treatment.
In a further aspect of the present invention, systems including a guide catheter may also be employed to position the treatment catheter at the site of the disease to be treated, either as a separate catheter or as part of the treatment device. In one embodiment, a main guide catheter may be used to center a secondary positioning catheter that contains the treatment catheter over the aortic valve. The treatment catheter may then be further articulated to provide even further directionality to the working end. Various other apparatus and methods may be employed for positioning and stabilizing the treatment catheter, including shaped balloons, baskets or filters and methods of pacing the heart.
In a further aspect of the present invention, methods may be used to disrupt the calcified sites and trap and evacuate emboli and other debris from the treatment site, using filters located on the treatment catheter, suction housings located on the treatment catheter, perfusion balloons linked with aspiration devices, separate suction catheters, separate filter devices either at the treatment site or downstream from the treatment site, and/or external filter and perfusion systems. Certain filter embodiments may be shaped to allow the treatment catheter to access the location to be treated, while still allowing flow through the valve (e.g. treating one leaflet at a time).
In particular, methods for treating cardiac valves according to the present invention comprise creating an emboli containment region over a calcific site and delivering energy (including cryotherapy) to disrupt said site and potentially create emboli which are contained in the containment region. The containment regions will typically be localized directly over a target site, usually having a limited size so that the associated aorta or other blood vessel is not blocked or occluded. The containment region may be created using a barrier, such as a filter structure, basket, or balloon over the calcified site. Alternatively or additionally, the containment region may be created by localized aspiration to remove substantially all emboli as they are formed. The energy applied may be ultrasound, radiofrequency, microwave, mechanical, cryogenic, or any other type of energy capable of disrupting valve calcifications.
In a further aspect of the present invention, the methods may virtually disintegrate the calcification through the use a media that contains microspheres or microbubbles, such as Optison™ sold by GE Healthcare (www.amershamhealth-us.com/optison/). Delivery of an ultrasound energy (or other form of energy, for example, laser, RF, thermal, energy) to the media may cause the microspheres to rupture, which causes a release of energy toward the valve, which may help remove the calcification around and on the valve. Bioeffects Caused by Changes in Ascoustic Cavitation Bubble Density and Cell Concentration: A Unifed Explanation Based on Cell-to-Bubble Ratio and Blast Radius, Guzman, et al. Ultrasound in Med. & Biol., Vol. 29, No. 8, pp. 1211-1222 (2003).
Certain imaging and other monitoring modalities may be employed prior to, during or after the procedure of the present invention, utilizing a variety of techniques, such as intracardiac echocardiography (ICE), transesophageal echocardiography (TEE), fluoroscopy, intravascular ultrasound, angioscopy or systems which use infrared technology to “see through blood”, such as that under development by Cardio-Optics, Inc.
Various energy sources may be utilized to effect the treatment of the present invention, including RF, ultrasonic energy in various therapeutic ranges, and mechanical (non-ultrasound) energy. The distal tips of the RF, ultrasonic treatment catheters, and mechanical treatment catheters of the present invention may have a variety of distal tip configurations, and be may be used in a variety of treatment patterns, and to target specific locations within the valve.
In addition, intravascular implants are contemplated by the present invention, including those placed within the valve annulus, supra annular, sub annular, or a combination thereof to assist in maintaining a functional valve orifice. Such implants may incorporate various pharamacological agents to increase efficacy by reducing restenosis, and otherwise aiding valve function. Implants may be formed of various metals, biodegradable materials, or combinations thereof.
These devices may all be introduced via either the retrograde approach, from the femoral artery, into the aorta and across the valve from the ascending aorta, or through the antegrade approach—transeptal, across the mitral valve, through the left ventricle and across the aortic valve.
In other aspects, the present invention provides an anti-restenosis system for aortic valve repair. Acute interventions are performed at the time of the aortic repair or valvuloplasty and may take the form of a temporary or permanent implant.
These implant devices may all be introduced via either the retrograde approach, from the femoral artery, into the aorta and across the valve from the ascending aorta, or through the antegrade approach—trans-septal, across the mitral valve, through the left ventricle and across the aortic valve, and will provide for delivery of anti-restenosis agents or energy to inhibit and/or repair valve restenosis.
Treatment Catheter Design—General
Treatment catheters 10 (
Typically, the treatment catheters 10 of the present invention are configured to be introduced to the target area “over the wire.” The treatment catheters may be positioned adjacent the aortic valve through a guide catheter or sheath. As such, the treatment catheters of the present invention may comprise a central guidewire lumen 20 for receiving a guidewire GW (
As noted above, the treatment catheters 10 of the present invention may comprise a suction housing positioned at the distal end of the catheter body having an expanded configuration and a retracted configuration and configured to conform to the valve leaflet to be treated. While the suction housing 22 may be fixedly attached at the distal end, in preferred embodiments, the suction housing is movable between a retracted configuration (
In the embodiment of
In
The depth of the suction housing may take many forms such that it is compatible with the valve to be treated. For example, the suction housing 22 may be shallow (
The suction cups/housings may also have rigid or semi-rigid members around the circumference or part of the circumference of the housing to preferentially align the cup on certain valve features, such as the annulus. The suction cup housings have a depth range of 0.1″ to 0.5″ and a diameter of 15 mm to 30 mm. The cup or housing may have fingers 30 or longitudinal stabilizing elements 32 to assist in placing the housing against the valve as shown in
Such stabilizing elements may also be in the form of pleats, rings or hemispherical elements, or other reinforcements to assist the device to seat within the annulus of the valve or against the leaflet. Such reinforcements or stabilizing elements may be formed of stainless steel, NiTi (superelastic or shape memory treated), Elgiloy®, cobalt chromium, various polymers, or may be in the form of an inflatable ringed cup. The cup or housing of the present invention is intended to function to provide sufficient approximation with the treatment area so as to stabilize or localize the working element while also minimizing embolic events. It that sense, it is substantially sealing against the treatment region, but such seal is not necessarily an “airtight” seal, but an approximation that performs the desired functions listed above.
In addition, certain stabilizing devices 36, 38 may be located on the main catheter shaft 12 to provide stability within the aorta, and may, in some cases, extend through the valve leaflets L below the valve to further stabilize the treatment device, as shown in
Given the variety of leaflet geometries (e.g. size, curvature) from leaflet to leaflet, and patient to patient, it may be desirable to provide a main treatment catheter through which a variety of sized and shaped cups or housings can be passed, depending on the particular geometry to be treated. For example, a system could include a main guide catheter GC placed over the treatment area as depicted in
It is within the scope of the present invention to use any one of these steps, in any order to treat the targeted region, for example, one leaflet may be treated only, more than one leaflet, and in any order according to the type of calcification, health of the patient, geometry of the target region or preference of the operator.
Ultrasound Treatment Catheters
In accordance with one aspect of the present invention a treatment catheter 50 is provided having an ultrasonic probe for decalcifying the leaflet. An ultrasonic probe 52 may be surrounded by a frame or sheath 54. Both the frame and the sheath may be connected to a source of ultrasonic vibration (not shown). In certain embodiments, the probe 52 is surrounded by a sheath or housing that enables the system to be substantially sealed against the treatment surface via a source of suction attached at the proximal end of the catheter system and connected to the catheter housing via a suction lumen in the catheter body. Alternatively, the system may be placed or localized at the treatment site with a mechanical clip or interface that physically attaches the housing to the treatment area (annulus or leaflet). In operation, the ultrasonic probe 52 is activated to disintegrate the calcium on the leaflets, creating debris that may then be removed through a suction lumen in the catheter body 50. In some cases it may be desirable to also infuse saline or other fluids into the housing area simultaneously or prior to application of suction. It may be advantageous to provide a cooling fluid to the ultrasonic waveguide as well and to other embodiments such as one with a PZT stack at the distal end of the device. It may also be advantageous to infuse anti-calcification therapy to the site of the valve, including a ferric and/or stannic salt, or other solution as in known in the art to tan or otherwise make the leaflets resistant to calcium buildup, such as the type set forth in U.S. Pat. No. 5,782,931, the contents of which is expressly incorporated by reference herein. Another embodiment of an ultrasonic probe 60 having a silicone cup is shown in
In embodiments where a filter device 74 is disposed on the main catheter shaft (shown in
As shown in
The distal portion 90 of the treatment catheters of the present invention may be shaped to substantially correspond to a shape of the targeted leaflet L (e.g., formed to fit within shape of the leaflet cusp, with the mouth of the housing being shaped to conform to the leaflet shape as shown in
Alternatively, the treatment catheter 100 of the present invention may be formed having a circumferential, annular treatment 102 surface to apply energy/vibration to the annulus to be treated. In this embodiment the catheter may be placed antegrade or retrograde, or two circumferential treatment surfaces may be used in conjunction with each other, as shown in
Various ultrasonic working ends may be used, depending on the type and location of the disease to be treated. For example, the distal tip of an ultrasonic catheter may be coupled to a ultrasound transmission member or waveguide. The distal tip may be chosen from the various examples below, including a blunt tip, a beveled tip, a rounded tip, a pointed tip and may further include nodules or ribs (
The distal tip of the ultrasonic catheters of the present invention may also take the shape of the waveguide tips that are shown and described in U.S. Pat. No. 5,304,115, the contents of which is expressly incorporated by reference herein. U.S. Pat. No. 5,989,208 (“Nita”), the contents of which is expressly incorporated by reference herein, illustrate some additional tips in
The ultrasound transmission members of the present invention may comprise a solid tube that is coupled to an enlarged distal working end. A central lumen may extend throughout the ultrasonic transmission member and may be used for aspiration, suction, and/or to receive a guidewire. In the embodiment illustrated in
In a further embodiment of the distal working end, similar to the embodiment illustrated above, a central lumen may extend through the ultrasound transmission element and through the enlarged distal working end. In the configuration illustrated in
In alternative embodiments, the portion of the ultrasound transmission element (or waveguide) that is adjacent the distal working end may be modified to amplify the delivery of the ultrasonic waves from the working end. The waveguide may comprises a plurality of axial slots in the tubing that act to create a plurality of “thin wires” from the tubing, which will cause the ultrasonic waves to move radially, rather than axially. The enlarged distal working end may then be attached to the plurality of thin wires. Two embodiments of such a configuration are illustrated in
The ultrasonic catheters of the present invention may be adapted to impart motion to the distal tip that is oscillatory, dottering, circular, lateral or any combination thereof. For any of such distal tips described herein, Applicants have found that the use of a small distal tip relative to the inner diameter of the catheter body provides a better amplitude of motion and may provide improved decalcification. In addition, an ultrasonic tip of the present invention can be operated in a variety of treatment patterns, depending on the region of the leaflet or annulus that is being treated, among other things. For example, the treatment pattern, either controlled by the user programmed into the treatment device, may be a circular motion to provide rings of decalcification on the surface being treated, a cross-hatching pattern to break up larger deposits of calcium (
Certain safety mechanisms may be incorporated on the treatment catheter and related components to ensure that the treatment device does not perforate or otherwise degrade the leaflet. In one embodiment, a force limiting feature may be incorporated into the treatment catheter shaft as shown in
In another embodiment, features of the catheter shaft may limit the force that is delivered to the tissues. A soft distal tip 150 (
In addition, the treatment catheter 200 may be advanced through a sheath 202 that acts as a depth limiter to the treatment catheter as shown in
An assembly of an ultrasonic catheter of the present invention is shown in
Another embodiment of an ultrasonic catheter 220 includes a PZT stack 222 and a distal horn 224 at the distal end of the device as shown in
The advantage of the embodiment of
The proximal end of the ultrasonic catheter of the present invention may be configured according to the schematic depicted in
Mechanical Treatment Catheter and Methods
In addition to ultrasound treatment catheters described above, the present invention further provides treatment catheters and methods that use mechanically activatable tips to mechanically disrupt or obliterate the calcium on the leaflets. In general, the catheters will comprise a catheter body that comprises one or more lumens. A drive shaft (or similar element) may extend from a proximal end of one of the lumens to the distal end of the lumen. A distal working element may be coupled to (or formed integrally from) the drive shaft and will be configured to extend at least partially beyond a distal end of the catheter body. The proximal end of the drive shaft may be coupled to a source of mechanical motion (rotation, oscillation, and/or axial movement) to drive the drive shaft and distal working element.
The catheters of the present invention may use a variety of configurations to decalcify the leaflet. Some examples of the working elements and distal ends of the catheter body that may be used are described below.
In one embodiment (
In the configuration of
In another embodiment (
In yet another embodiment (
The working elements may also comprise mechanically rotating devices. In the embodiment of
In alternative methods, it may be possible to position an impeller element 290 (
In another configuration, a rotating grinder head 292 (
In another grinder distal tip configuration shown in
In an alternative configuration as shown in
In another embodiment, the distal working element may comprise a castellated mechanical tip, such as that shown above for the ultrasonic working element. Optionally, the castellated tip may have an impeller that is set back from the distal tip.
In yet another embodiment, the present invention may use the Rotablator device that is described in U.S. Pat. No. 5,314,407 or 6,818,001, the complete disclosure of which are expressly incorporated herein by reference, to decalcify a leaflet. The Rotablator (as shown below) may be used as originally described, or the distal tip may be modified by flattening the tip, applying diamond dust on the tip, making the distal tip more bulbous, or the like. See FIG. 58 which is taken from the '407 patent.
The air turbine used for the Rotablator may be used to power some or all of the aforementioned mechanically-based treatment catheters. The air turbine provides an appropriate amount of torque and speed for disruption of calcium on the leaflets. The torque and speed, combined with a low moment of inertia of the drive shaft and distal tips of the present invention, reduce the risk of catastrophic drive shaft failure. For example, when the distal tip becomes “loaded” due to contact with the calcific deposits, the speed of rotation will reduce to zero without snapping or wrapping up the drive shaft. As an alternative to the air turbine, it may also be possible to use a motor with an electronic feedback system that can sense torque and speeds such that the motor may be slowed down at appropriate times.
Some embodiments of the treatment catheter may comprise an optional sheath that surrounds the distal working element. As illustrated in
In some embodiments, the sheath may comprise bellows or a flexible portion that allows for the end of the sheath to bend, extend, and/or retract. The sheath will typically not rotate, and the sheath will typically be sized to allow the distal working element and the drive shaft to rotate within the sheath. Rotation of the distal working element within the sheath will articulate the sheath (which will depend on the shape and type of actuation of the drive shaft) and may create a “scrubbing effect” on the calcific deposits. Advantageously, the sheath will transmit the mechanical motion of the drive shaft, while providing a layer of protection to the leaflets by controlling the oscillation of the working element. The sheath may be made of a variety of materials as known in the art and reinforced in such a way as to withstand the friction from the rotation of the distal working element within the spherical distal tip Consequently, one useful material for the sheath is steel, or a braided or other catheter reinforcement technique.
In any of the mechanical embodiments, it may be desirable to circulate or inject a cooling fluid may be to decrease the heat energy seen by the tissue, and assist in the removal of debris during debridement. Such a fluid may also assist with tissue fragmentation by providing a cavitation effect in either the ultrasonic embodiments or the mechanical embodiments.
Virtual Decalcification Use of Microspheres and/or Microbubbles
As noted above, most embodiments of the ultrasound treatment catheters and the mechanical treatment catheters comprise a lumen that runs through the catheter body to the distal end. It may be useful to deliver a media, such as a cooling fluid, an ultrasound contrast fluid, or the like, through the lumen to the target leaflet to amplify the effect of the energy delivery to the embedded calcific nodules on the leaflet. In one preferred configuration, the media may comprise microspheres or microbubbles. One useful contrast media that may be used with the methods and treatment catheters of the present invention is the Optison™ contrast agent (GE Healthcare). Various depictions of techniques utilizing cavitation and/or microbubbles to enhance a therapeutic effect may be found in U.S. patent RE036939 to Tachibana, and U.S. Pat. No. 6,321,109 to Ben-Haim, the contents of which are expressly incorporated by reference herein in their entirety.
Delivery of the ultrasonic wave through the contrast media that contains the microbubbles can increase the amount of cavitation or fragmentation energy delivered to the leaflet. Applying suction during the procedure can also enhance the fragmentation energy as described by Cimino and Bond, “Physics of Ultrasonic Surgery using Tissue Fragmentation: Part I and Part II”, Ultrasound in Medicine and Biology, Vol. 22, No. 1, pp. 89-100, and pp. 101-117, 1996. It has been described that the interaction of gas bodies (e.g., microbubbles) with ultrasound pulses enhances non-thermal perturbation (e.g., cavitation-related mechanical phenomena). Thus, using a controlled amount of contrast agent with microbubbles may enhance the removal of the calcification from the leaflets. A more complete description of the use of microbubbles with ultrasound energy is described in Guzman et al., “Bioeffects Caused by Changes in Acuostic Cavitation Bubble Density and Cell Concentration: A Unified Explanation Based on Cell-to-Bubble Ratio and Blast Radius,” Ultrasound in Med. & Biol., Vol. 29, No. 8, pp. 1211-1222, 2003 and Miller et al., “Lysis and Sonoporation of Epidel moid and Phagocytic Monolayer Cells by Diagnostic Ultrasound Activation of Contrast Agent Gas Bodies,” Ultrasound in Med. & Biol., Vol. 27, No. 8, pp 1107-1113, 2001, the complete disclosures of which are incorporated herein by reference.
It should be appreciated however, that the use of microbubbles are not limited to the ultrasound or mechanical treatment catheters. For example, as shown below, the contrast media may be used with an RF catheter or a piezoelectric-based catheter. In the RF catheter embodiment, the catheter body may comprise two RF electrodes positioned at or near the distal end of the catheter. The media with the microbubbles may be delivered to the target leaflet through the lumen of the catheter, and an RF energy may be delivered between two leads to deliver energy to the microbubbles. In some embodiments, it may be desirable to deliver RF energy to the calcification on the leaflets without the use of the microbubbles. In other embodiments, it may be desirable to use other types of energy sources to deliver energy to the leaflets.
As an alternative to RF electrodes, it may be possible to position a piezo film 330 at the distal tip of the catheter (
Protection
In a further aspect of the present invention, protection devices and methods may be used to trap and evacuate debris from the treatment site. In one embodiment shown in
In another embodiment (
It may be advantageous to have filtering applied more locally closer to the treatment site (e.g. one leaflet at a time), to protect local structures such as the ostium of the coronaries located just above the aortic valve. Such a filtering device may be used in conjunction with treatment devices, such as the ultrasonic suction catheter shown in
Numerous features of the present invention aid in directing, positioning and stabilizing the treatment catheter optimally at the site of the disease to be treated. In addition to catheter and guide features, baskets, anchor or filter configurations that seat within the valve, certain methods may be used to position the catheter. For example, the heart may be connected to a pacing lead and the heart then paced at an increased rate, for example 200 beats per minute, which then holds the aortic leaflets in a relatively fixed location arresting blood flow and allowing the treatment catheter of the present invention to be applied to at least one leaflet. Following placement of the catheter, such as a suction housing, pacing is stopped, and the remaining leaflets not engaged by the catheter, function normally. In the event that all leaflets are engaged at once, it may be necessary to provide flow through the treatment catheter, such as in a perfusion balloon or device known in the art, some features of which are shown in U.S. Pat. No. 4,909,252 to Goldberg the disclosure of which is expressly incorporate by reference herein.
Imaging
Features of the present invention include various devices and methods for monitoring and imaging prior to, during and post procedure. Various imaging modalities may be employed for this purpose, including intracardiac echocardiography (ICE), transesophageal echocardiography (TEE), fluoroscopy, intravascular ultrasound (IVUS), angioscopy, infrared, capacitive ultrasonic transducers (cMUTs) available from Sensant, Inc./Seimens (San Leandro, Calif.) or other means known in the art. For example the treatment catheter may have an imaging device integrated into the housing or treatment element catheter shaft, such as a phased array intravascular ultrasound element. In some embodiments it may be advantageous to construct the device of the present invention so that they working element is a separate, removable element that is coaxial with the sheath to enable the operator to remove the working element and place an imaging element in its place.
Imaging may become critical at various stages of the procedure, including diagnosing the type and location of the disease, placing the treatment catheter, assessing the treatment process, and verifying the function of the valve once it is treated. Imaging devices may be placed locally at the treatment site, such as on the catheter tip, or catheter body, alongside the treatment catheter, or in more remote locations such as known in the art (e.g. superior vena cava, esophagus, or right atrium). If the imaging element is placed on the treatment catheter, it may be adapted to be “forward looking” e.g. image in a plane or multiple planes in front of the treatment device.
It is also within the scope of the present invention to employ interrogation techniques or other imaging modalities, such as infrared imaging to see through blood for direct visualization of the treatment site, or elastography, the ultrasonic measurement of tissue motion, to sense what type of tissue is targeted, e.g. leaflet tissue or calcium, or to sense the region of the valve that is most calcified. Elastography in this context may be performed using an intravascular ultrasound (IVUS) catheter, either a mechanical transducer or phased array system, such as those described in “Characterization of plaque components and vulnerability with intravascular ultrasound elastography” Phys. Med. Biol. 45 (2000) 1465-1475, the contents of which is expressly incorporated by reference herein. In practice, the transducer may be advanced to a treatment site on the valve, and using either externally applied force, or “periodic excitation” of the tissue region either by externally applied force or the naturally occurring movement in the tissue itself (such as the opening and closing of the valve leaflets), an initial baseline reading can be taken. This baseline could be set by engaging the region or leaflet to be treated with a suction catheter of the present invention (including circulating fluid within the treatment site), inserting an ultrasound transducer through the treatment catheter up to the treatment site, and interrogating the targeted region with the ultrasound transducer to establish the elasticity of the region (stress/strain profile). For a particular region of the leaflet, infusion can then be stopped, putting the leaflet under additional stress (by suction alone) and the displacement in the stress/strain profile can be noted and evaluated to direct the treatment device to those locations showing less elasticity (“stiffer” regions indicating the presence of calcific deposits. See also those techniques set forth in “Elastography—the movement begins” Phys. Med. Biol. 45 (2000) 1409-1421 and “Selected Methods for Imaging Elastic Properties of Biological Tissues” Annu Rev. Biomed. Eng. (2003) 5:57-78, the contents of which are expressly incorporated by reference herein.
In some instances, for example with ultrasound or laser, the same transducer or fiber optic that is used to interrogate or image the region may also be used to break up or treat the underlying calcific deposits. Certain parameters may be adjusted to transition the therapy device from diagnostic to therapeutic, including frequency, power, total energy delivered, etc.
In addition, other characterization techniques may be employed to both target the calcific region to be treated or assess the result of a treatment, including MRI, Doppler, and techniques that utilize resistivity data, impedance/inductance feedback and the like. Using imaging and other monitoring techniques such as those described, can result in a more targeted procedure that focuses on removing calcific deposits and limits potential tissue damage to the leaflet and annulus that can lead to an unwanted proliferative response.
Energy Sources/Methods of Treatment
A variety of energy modalities may be used in the treatment catheters envisioned by the present invention. Those modalities more specifically useful for breaking down or obliterating calcific deposits may be ultrasonic energy, laser energy and the like. Specifically, some Er:YAG lasers may specifically target calcium when operated in appropriate ranges. Some detail of targeted bone ablation supports this as found in “Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers” J Periodontol. 2002 June; 73(6):643-52, the contents of which are expressly incorporated by reference herein. Alternatively, energy may be delivered to selectively remove tissue from around or over a calcium deposit by employing a resurfacing laser that selectively targets water-containing tissue resulting in controlled tissue vaporization, such as a high-energy pulsed or scanned carbon dioxide laser, a short-pulsed Er:YAG, and modulated (short-and-long-pulsed) Er:YAG system. This application of energy may be useful for accessing plaque or calcium that is distributed between the leaflets (spongiosa). In practice, it would be desirable to remove the layer of tissue covering the deposit so that the majority of the leaflet remained intact and shielded from unnecessary thermal damage. Further, such specific tissue destruction may also be applied to the removal of scar tissue or regions of hypertrophy within the valve annulus as part of the treatment of the present invention.
The ultrasonic treatment catheters of the present invention may be operated in ranges between 5 and 100 kHz, for example 10-50 kHz, with an oscillation rate in the range of 10-200 microns, for example 75-150 microns (maximum travel between 20-400 microns). In addition, to minimize potential for thermal damage or other tissue damage, it may be advantageous to operate the treatment devices in a pulsed manner, such as a 5-50% duty cycle, for example a 5-20% duty cycle, and to minimize the tissue that is exposed to the energy application by carefully targeting the delivery of energy to the most diseased regions.
In addition, it may be advantageous to focus the treatment on certain locations of the diseased valve where removing or reducing calcium deposits result in the greatest amount of restored leaflet mobility and resulting valve function. For example, deposits within the annulus of the valve, at the nadir of the leaflet, in the mid-section of the leaflet, or at the commissures may be initially targeted. A schematic depiction of these various positions with the valve are depicted in
Depending on the type and frequency of energy used, the treatment catheters of the present invention may also be utilized to not only remove calcium, but also to remove or obliterate the leaflet itself, such as in preparation for implantation of a minimally invasive prosthetic valve, such as those disclosed in U.S. Pat. Nos. 5,840,081 and 6,582,462 to Anderson, US Patent Application 2004/0092858 to Wilson, PCT Publication WO 2004/093728 to Khairkhahan, WO 2005/009285 to Hermann and the like, the disclosures of which are expressly incorporated herein by reference. Pre-treatment with devices of the present invention may facilitate placement of such prosthetic valves since removing calcium from the site of implantation may reduce perivalvular leak, dislodgement, and may result in a larger prosthesis being implanted due to an increased effective valve orifice.
Implantable Devices
A. As an alternative or adjunct to the devices described above which are removed once the repair is achieved, devices may be provided which are temporarily or permanently implanted across or within the aortic valve. The devices which appear below are all intended to remain for at least a period of time within the body after the repair of the stenosis has been completed in order to prevent or delay the valves from degenerating, by either recalcifying, fusion of leaflets, and restenosing. An implant of the present invention is depicted in
In some embodiments, it may be desirable to place an implant such as the coil depicted below, to extend both sub annular and supra annular to provide additional support to the valve and provide a greater treatment area across the valve. The coil design of this embodiment has a single strut that joins the two ring portions but is low profile enough that is does not occlude the coronaries just above the valve annulus. See,
In a further embodiment, the implant may be formed of a wire, series of wire, or cellular structure similar to that used in peripheral or coronary stents. To better seat in the valve annulus, or below the valve, it may be advantageous to form the implant ring to follow the cusps of the valve, in a sinusoidal form. In addition, the implant ring may have struts that extend to seat against the annulus of the valve to provide structure or further disseminate a pharmacologic coating at specific valve sites. See,
In yet another embodiment, the implant may be formed of multiple loops, such as three loops 120 degrees from each other. See,
In this embodiment, and others depicting wire forms, the wire may have a diameter between 0.020″ and 0.250″ depending on the force desired. In addition, the wire may be flat and the structure may include a mesh between the loops to provide a larger surface area for supporting the valve or delivery the pharmacologic agent. The loops of this device may be moved distally and proximally in a cyclic way to further open the valve leaflets and disrupt plaque as a stand alone therapy. The device may then be permanently implanted as detailed above. It may be desirable to recapture the device, either once the valve has been treated, or during positioning of the permanent implant to ensure proper placement. A recapture device may be the delivery catheter from which the implant is deployed, or may include an expandable funnel on the distal end of a retrieval catheter or may include any number of mechanical devices including a grasper or a hook that mates with a hook on the implant, or grasps the implant at some point such that it may be drawn into the delivery sheath and removed from the body.
The structure of any of the implants described herein may have surface enhancements or coatings to make them radiopaque or echogenic for purposes of procedure assessment as is known in the art. As is further known in the art in the field of coronary artery stenting, the devices described may be permanent, removable, or bio-erodable. They can incorporate anti-restenosis agents or materials such as those set forth above, in the form of coatings, holes, depots, pores or surface irregularities designed into or applied onto the devices. In addition, the implants can be formed of certain calcification resistant materials such as those set forth in U.S. Pat. No. 6,254,635, the contents of which are expressly incorporated by reference herein. Further, implants of the present invention may be configured to emit a slight electrical charge. Since calcium is positively charged, it may be advantageous to repel calcium by positively charging the surface of the aortic implant. In addition, electrical energy may be supplied by the implant to minimize calcification by an implantable pacemaker type device as described in U.S. Pat. No. 6,505,080, which is expressly incorporated by reference herein.
Further, it is within the scope of the present invention to combine certain mechanical procedures and implants with various appropriate pharmacologic agents such as those listed previously. Anti-restenosis agents which may be useful in this application may be chosen from any of the families of agents or energy modalities known in the art. For example, pharmaceutical agents or their analogues such as rapamycin, paclitaxel, sirolimus or nitric-oxide enhancing agents may be coated onto these devices using drug eluting coatings, incorporated into intentionally created surface irregularities or specific surface features such as holes or divots. The devices may be designed for drug infusion through the incorporation of coatings or other surfaces to adhere the agents to the implants utilized to perform the procedures of the present invention, or may be prescribed for oral administration following procedures of the present invention. For example, following a treatment of the present invention, a patient may be prescribed a dose of statins, ACE inhibitors or other drugs to prolong the valve function provided by the intervention.
The device of
The device of
Anti-restenosis agents which may be useful in this application may be chosen from any of the families of agents or energy modalities known in the art. For example, pharmaceutical agents or their analogues such as rapamycin, paclitaxel, sirolimus or nitric-oxide enhancing agents may be coated onto any of the inventive devices using drug eluting coatings, incorporated into intentionally created surface irregularities or specific surface features such as holes or divots. As described, the devices may be designed for drug infusion through the incorporation of infusion channels and infusion holes in the work-performing elements of the devices such as the balloons or commissurotomy vanes shown in the drawings.
Energy delivery may be achieved by several different modalities and for different purposes. Radiofrequency energy can be applied by energizing the commissurotomy vanes or by using the pores on the balloons to achieve a wet electrode. Microwave, ultrasound, high frequency ultrasound energy or pulsed electric fields (for the purpose of inducing cellular electroporation) might be used by incorporating antennae or electrodes into the vanes, balloons or catheter shafts that support these work performing elements. Cryotherapy can be achieved by circulating cooling fluids such as phase-change gases or liquid nitrogen through the work performing elements. Multiple modalities might be incorporated into a single device for achieving the goal of durable aortic valve repair.
This energy may be used to facilitate the valve repair, for instance by making easier the parting of fused leaflets. Alternatively, the energy may be used to delay or prevent restenosis of the treated valve. One example of the use of energy delivery for the prevention of restenosis is the use of pulsed electric fields to induce cellular apoptosis. It is known in the art that the application of pulses of electricity on the order of nanosecond duration can alter the intracellular apparatus of a cell and induce apoptosis, or programmed cell death, which is known to be a key aspect of the mechanism of action of the clinically proven anti-restenosis drugs such as paclitaxel or sirolimus.
These agents or energy applications might be administered while the patient is in the catheterization lab, over the course of minutes to hours. Alternatively, the devices may be designed to allow the patient to return to the hospital floor with the device in place, so that the infusion of agents or the application of energy could proceed over the course of hours or days.
B. As an alternative or adjunct to the devices described above which are removed once the repair is achieved and administration of the anti-restenosis agents is completed, devices may be provided which are temporarily or permanently implanted across or within the aortic valve. The devices which appear below are all intended to remain for at least a period of time within the body after the repair of the stenosis has been completed in order to prevent or delay the valves from readhering to one another and restenosing.
The devices described may be permanent, removable, or bio-erodable. They can incorporate anti-restenosis agents or materials into coatings, holes, depots, pores or surface irregularities designed into or applied onto the devices
The struts 430 may be made of any suitable metal, plastic or combination as shown in
The implantable and bio-erodable devices might all feature pharmaceutical agents or their analogues such as rapamycin, paclitaxel, sirolimus or nitric-oxide enhancing agents, which may be coated onto any of the inventive devices using drug eluting coatings, or incorporated into intentionally created surface irregularities or specific surface features such as holes or divots.
Additional anti-restenosis agents or energy modalities might be delivered separate from and/or in addition to those agents that are incorporated onto the implant, for instance as a feature of the delivery system.
While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the disclosure and appended claims.
The present application is a continuation of U.S. patent application Ser. No. 13/692,613, filed Dec. 3, 2012, which is a continuation of U.S. patent application Ser. No. 12/870,270 filed Aug. 27, 2010, now abandoned, which is a divisional of U.S. patent application Ser. No. 11/299,246 filed Dec. 9, 2005, now U.S. Pat. No. 7,803,168, which claims the benefit of U.S. Provisional Application No. 60/635,275 filed Dec. 9, 2004; U.S. Provisional Application No. 60/662,764 filed Mar. 16, 2005; and U.S. Provisional Application No. 60/698,297 filed on Jul. 11, 2005; the entire contents of these applications are herein incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
931795 | James | Aug 1909 | A |
3526219 | Lewis | Sep 1970 | A |
3565062 | Kuris | Feb 1971 | A |
3589363 | Banko et al. | Jun 1971 | A |
3667474 | Lapkin et al. | Jun 1972 | A |
3752162 | Newash | Aug 1973 | A |
3823717 | Pohlman et al. | Jul 1974 | A |
3861391 | Antonevich et al. | Jan 1975 | A |
3896811 | Storz | Jul 1975 | A |
4042979 | Angell | Aug 1977 | A |
4046150 | Schwartz et al. | Sep 1977 | A |
4188952 | Loschilov et al. | Feb 1980 | A |
4431006 | Trimmer et al. | Feb 1984 | A |
4445509 | Auth | May 1984 | A |
4484579 | Meno et al. | Nov 1984 | A |
4587958 | Noguchi et al. | May 1986 | A |
4589419 | Laughlin et al. | May 1986 | A |
4646736 | Auth | Mar 1987 | A |
4692139 | Stiles | Sep 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4747821 | Kensey et al. | May 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787388 | Hofmann | Nov 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4808153 | Parisi | Feb 1989 | A |
4819751 | Shimada et al. | Apr 1989 | A |
4824436 | Wolinsky | Apr 1989 | A |
4841977 | Griffith et al. | Jun 1989 | A |
4870953 | DonMicheal et al. | Oct 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4898575 | Fischell et al. | Feb 1990 | A |
4909252 | Goldberger | Mar 1990 | A |
4919133 | Chiang | Apr 1990 | A |
4920954 | Alliger et al. | May 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4960411 | Buchbinder | Oct 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4990134 | Auth | Feb 1991 | A |
5058570 | Idemoto et al. | Oct 1991 | A |
5069664 | Guess et al. | Dec 1991 | A |
5071424 | Reger | Dec 1991 | A |
5076276 | Sakurai et al. | Dec 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5087244 | Wolinsky et al. | Feb 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5106302 | Farzin-Nia et al. | Apr 1992 | A |
5156610 | Reger | Oct 1992 | A |
5158564 | Schnepp-Pesch et al. | Oct 1992 | A |
5190540 | Lee | Mar 1993 | A |
5211651 | Reger et al. | May 1993 | A |
5248296 | Alliger | Sep 1993 | A |
5255679 | Imran | Oct 1993 | A |
5267954 | Nita | Dec 1993 | A |
5269291 | Carter | Dec 1993 | A |
5282484 | Reger | Feb 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
5304120 | Crandell et al. | Apr 1994 | A |
5306250 | March et al. | Apr 1994 | A |
5314407 | Auth et al. | May 1994 | A |
5318014 | Carter | Jun 1994 | A |
5326341 | Lew et al. | Jul 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5345936 | Pomeranz et al. | Sep 1994 | A |
5356418 | Shturman | Oct 1994 | A |
5397293 | Alliger et al. | Mar 1995 | A |
5411025 | Webster, Jr. | May 1995 | A |
5419767 | Eggers et al. | May 1995 | A |
5419777 | Hofling | May 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5464395 | Faxon et al. | Nov 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5471982 | Edwards et al. | Dec 1995 | A |
5476495 | Kordis et al. | Dec 1995 | A |
5489297 | Duran | Feb 1996 | A |
5496311 | Abele et al. | Mar 1996 | A |
5538504 | Linden et al. | Jul 1996 | A |
5540679 | Fram et al. | Jul 1996 | A |
5571122 | Kelly et al. | Nov 1996 | A |
5584879 | Reimold et al. | Dec 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5588962 | Nicholas et al. | Dec 1996 | A |
5590654 | Prince | Jan 1997 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5636634 | Kordis et al. | Jun 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5665098 | Kelly et al. | Sep 1997 | A |
5667490 | Keith et al. | Sep 1997 | A |
5681336 | Clement et al. | Oct 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5704908 | Hofmann et al. | Jan 1998 | A |
5709874 | Hanson et al. | Jan 1998 | A |
5722401 | Pietroski et al. | Mar 1998 | A |
5725494 | Brisken | Mar 1998 | A |
5772590 | Webster, Jr. | Jun 1998 | A |
5782931 | Yang et al. | Jul 1998 | A |
5807306 | Shapland et al. | Sep 1998 | A |
5817144 | Gregory | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5827229 | Auth et al. | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5843016 | Lugnani et al. | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5860974 | Abele | Jan 1999 | A |
5865801 | Houser | Feb 1999 | A |
5873811 | Wang et al. | Feb 1999 | A |
5876374 | Alba et al. | Mar 1999 | A |
5904679 | Clayman | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5916227 | Keith et al. | Jun 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5938670 | Keith et al. | Aug 1999 | A |
5954742 | Osypka | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5989208 | Nita | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6014590 | Whayne et al. | Jan 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6036689 | Tu et al. | Mar 2000 | A |
6047700 | Eggers et al. | Apr 2000 | A |
6056744 | Edwards | May 2000 | A |
6079414 | Roth | Jun 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6117128 | Gregory | Sep 2000 | A |
RE36939 | Tachibana et al. | Oct 2000 | E |
6129725 | Tu et al. | Oct 2000 | A |
6132444 | Shturman et al. | Oct 2000 | A |
6149647 | Tu et al. | Nov 2000 | A |
6152899 | Farley et al. | Nov 2000 | A |
6165187 | Reger | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6211247 | Goodman | Apr 2001 | B1 |
6216044 | Kordis | Apr 2001 | B1 |
6217595 | Shturman et al. | Apr 2001 | B1 |
6219577 | Brown, III et al. | Apr 2001 | B1 |
6231513 | Daum et al. | May 2001 | B1 |
6231516 | Keilman et al. | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6236883 | Ciaccio et al. | May 2001 | B1 |
6238389 | Paddock et al. | May 2001 | B1 |
6245045 | Stratienko | Jun 2001 | B1 |
6254635 | Schroeder et al. | Jul 2001 | B1 |
6283947 | Mirzaee | Sep 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6292695 | Webster, Jr. et al. | Sep 2001 | B1 |
6295712 | Shturman et al. | Oct 2001 | B1 |
6296619 | Brisken et al. | Oct 2001 | B1 |
6302870 | Jacobsen et al. | Oct 2001 | B1 |
6309379 | Willard et al. | Oct 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6319251 | Tu et al. | Nov 2001 | B1 |
6321109 | Ben-Haim et al. | Nov 2001 | B2 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6353751 | Swanson et al. | Mar 2002 | B1 |
6357447 | Swanson et al. | Mar 2002 | B1 |
6379373 | Sawhney et al. | Apr 2002 | B1 |
6389311 | Whayne et al. | May 2002 | B1 |
6389314 | Feiring | May 2002 | B2 |
6401720 | Stevens et al. | Jun 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6409723 | Edwards | Jun 2002 | B1 |
6423032 | Parodi | Jul 2002 | B2 |
6454737 | Nita et al. | Sep 2002 | B1 |
6454757 | Nita et al. | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6494890 | Shturman et al. | Dec 2002 | B1 |
6494891 | Cornish et al. | Dec 2002 | B1 |
6497711 | Plaia et al. | Dec 2002 | B1 |
6500174 | Maguire et al. | Dec 2002 | B1 |
6505080 | Sutton | Jan 2003 | B1 |
6511496 | Huter et al. | Jan 2003 | B1 |
6514236 | Stratienko | Feb 2003 | B1 |
6524274 | Rosenthal et al. | Feb 2003 | B1 |
6558382 | Jahns et al. | May 2003 | B2 |
6562034 | Edwards et al. | May 2003 | B2 |
6565588 | Clement et al. | May 2003 | B1 |
6572612 | Stewart et al. | Jun 2003 | B2 |
6575933 | Wittenberger et al. | Jun 2003 | B1 |
6579308 | Jansen et al. | Jun 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6595959 | Stratienko | Jul 2003 | B1 |
6616624 | Kieval | Sep 2003 | B1 |
6623452 | Chien et al. | Sep 2003 | B2 |
6623453 | Guibert et al. | Sep 2003 | B1 |
6638288 | Shturman et al. | Oct 2003 | B1 |
6640120 | Swanson et al. | Oct 2003 | B1 |
6645223 | Boyle et al. | Nov 2003 | B2 |
6648854 | Patterson et al. | Nov 2003 | B1 |
6651672 | Roth | Nov 2003 | B2 |
6658279 | Swanson et al. | Dec 2003 | B2 |
6673090 | Root et al. | Jan 2004 | B2 |
6679268 | Stevens et al. | Jan 2004 | B2 |
6689086 | Nita et al. | Feb 2004 | B1 |
6689148 | Sawhney et al. | Feb 2004 | B2 |
6692490 | Edwards | Feb 2004 | B1 |
6692738 | MacLaughlin et al. | Feb 2004 | B2 |
6695830 | Vigil et al. | Feb 2004 | B2 |
6702748 | Nita et al. | Mar 2004 | B1 |
6706011 | Murphy-Chutorian et al. | Mar 2004 | B1 |
6714822 | King et al. | Mar 2004 | B2 |
6723064 | Babaev | Apr 2004 | B2 |
6746463 | Schwartz | Jun 2004 | B1 |
6748255 | Fuimaono et al. | Jun 2004 | B2 |
6748953 | Sherry et al. | Jun 2004 | B2 |
6749607 | Edwards et al. | Jun 2004 | B2 |
6752805 | Maguire et al. | Jun 2004 | B2 |
6763261 | Casscells, III et al. | Jul 2004 | B2 |
6767544 | Brooks et al. | Jul 2004 | B2 |
6780183 | Jimenez, Jr. et al. | Aug 2004 | B2 |
6788977 | Fenn et al. | Sep 2004 | B2 |
6811801 | Nguyen et al. | Nov 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6829497 | Mogul | Dec 2004 | B2 |
6830568 | Kesten et al. | Dec 2004 | B1 |
6837886 | Collins et al. | Jan 2005 | B2 |
6843797 | Nash et al. | Jan 2005 | B2 |
6845267 | Harrison et al. | Jan 2005 | B2 |
6849075 | Bertolero et al. | Feb 2005 | B2 |
6852118 | Shturman et al. | Feb 2005 | B2 |
6855123 | Nita | Feb 2005 | B2 |
6869431 | Maguire et al. | Mar 2005 | B2 |
6869439 | White et al. | Mar 2005 | B2 |
6893414 | Goble et al. | May 2005 | B2 |
6974456 | Edwards et al. | Dec 2005 | B2 |
6978174 | Gelfand et al. | Dec 2005 | B2 |
6991617 | Hektner et al. | Jan 2006 | B2 |
7022105 | Edwards | Apr 2006 | B1 |
7066904 | Rosenthal et al. | Jun 2006 | B2 |
7100614 | Stevens et al. | Sep 2006 | B2 |
7104987 | Biggs et al. | Sep 2006 | B2 |
7122033 | Wood | Oct 2006 | B2 |
7127284 | Seward | Oct 2006 | B2 |
7141041 | Seward | Nov 2006 | B2 |
7162303 | Levin et al. | Jan 2007 | B2 |
7165551 | Edwards et al. | Jan 2007 | B2 |
7184811 | Phan et al. | Feb 2007 | B2 |
7197354 | Sobe | Mar 2007 | B2 |
7200445 | Dalbec et al. | Apr 2007 | B1 |
7241273 | Maguire et al. | Jul 2007 | B2 |
7241736 | Hunter et al. | Jul 2007 | B2 |
7273469 | Chan et al. | Sep 2007 | B1 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7297475 | Koiwai et al. | Nov 2007 | B2 |
7326226 | Root et al. | Feb 2008 | B2 |
7326235 | Edwards | Feb 2008 | B2 |
7329236 | Kesten et al. | Feb 2008 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7364566 | Elkins et al. | Apr 2008 | B2 |
7396355 | Goldman et al. | Jul 2008 | B2 |
7407502 | Strul et al. | Aug 2008 | B2 |
7407671 | McBride et al. | Aug 2008 | B2 |
7413556 | Zhang et al. | Aug 2008 | B2 |
7425212 | Danek et al. | Sep 2008 | B1 |
7426409 | Casscells, III et al. | Sep 2008 | B2 |
7465298 | Seward et al. | Dec 2008 | B2 |
7481803 | Kesten et al. | Jan 2009 | B2 |
7485104 | Kieval | Feb 2009 | B2 |
7507235 | Keogh et al. | Mar 2009 | B2 |
7529589 | Williams et al. | May 2009 | B2 |
7532938 | Machado et al. | May 2009 | B2 |
7540870 | Babaev | Jun 2009 | B2 |
7556624 | Laufer et al. | Jul 2009 | B2 |
7558625 | Levin et al. | Jul 2009 | B2 |
7563247 | Maguire et al. | Jul 2009 | B2 |
7599730 | Hunter et al. | Oct 2009 | B2 |
7632268 | Edwards et al. | Dec 2009 | B2 |
7640046 | Pastore et al. | Dec 2009 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7666163 | Seward et al. | Feb 2010 | B2 |
7670335 | Keidar | Mar 2010 | B2 |
7678123 | Chanduszko | Mar 2010 | B2 |
7691080 | Seward et al. | Apr 2010 | B2 |
7706882 | Francischelli et al. | Apr 2010 | B2 |
7744584 | Seward et al. | Jun 2010 | B2 |
7766892 | Keren et al. | Aug 2010 | B2 |
7803168 | Gifford et al. | Sep 2010 | B2 |
7837720 | Mon | Nov 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
7854734 | Biggs et al. | Dec 2010 | B2 |
7905862 | Sampson | Mar 2011 | B2 |
7917208 | Yomtov et al. | Mar 2011 | B2 |
7972330 | Alejandro et al. | Jul 2011 | B2 |
8007495 | McDaniel et al. | Aug 2011 | B2 |
8016786 | Seward et al. | Sep 2011 | B2 |
8019435 | Hastings et al. | Sep 2011 | B2 |
8021362 | Deem et al. | Sep 2011 | B2 |
8027740 | Altman et al. | Sep 2011 | B2 |
8119183 | O'Donoghue et al. | Feb 2012 | B2 |
8131371 | Demarais et al. | Mar 2012 | B2 |
8162933 | Francischelli et al. | Apr 2012 | B2 |
8257724 | Cromack et al. | Sep 2012 | B2 |
8257725 | Cromack et al. | Sep 2012 | B2 |
8263104 | Ho et al. | Sep 2012 | B2 |
8295902 | Salahieh et al. | Oct 2012 | B2 |
8317776 | Ferren et al. | Nov 2012 | B2 |
8317810 | Stangenes et al. | Nov 2012 | B2 |
8337492 | Kunis et al. | Dec 2012 | B2 |
8364237 | Stone et al. | Jan 2013 | B2 |
8388680 | Starksen et al. | Mar 2013 | B2 |
8396548 | Perry et al. | Mar 2013 | B2 |
8399443 | Seward | Mar 2013 | B2 |
8403881 | Ferren et al. | Mar 2013 | B2 |
8403983 | Quadri et al. | Mar 2013 | B2 |
8409172 | Moll et al. | Apr 2013 | B2 |
8465752 | Seward | Jun 2013 | B2 |
8562573 | Fischell | Oct 2013 | B1 |
8584681 | Danek et al. | Nov 2013 | B2 |
8663190 | Fischell et al. | Mar 2014 | B2 |
8708995 | Seward et al. | Apr 2014 | B2 |
8721590 | Seward et al. | May 2014 | B2 |
8740849 | Fischell et al. | Jun 2014 | B1 |
8740895 | Mayse et al. | Jun 2014 | B2 |
8758334 | Coe et al. | Jun 2014 | B2 |
8777943 | Mayse et al. | Jul 2014 | B2 |
8909316 | Ng | Dec 2014 | B2 |
8951251 | Willard | Feb 2015 | B2 |
8975233 | Stein et al. | Mar 2015 | B2 |
8979839 | De La Rama et al. | Mar 2015 | B2 |
9011879 | Seward | Apr 2015 | B2 |
9033917 | Magana et al. | May 2015 | B2 |
9055956 | McRae et al. | Jun 2015 | B2 |
9056184 | Stein et al. | Jun 2015 | B2 |
9056185 | Fischell et al. | Jun 2015 | B2 |
9108030 | Braga | Aug 2015 | B2 |
9114123 | Azamian et al. | Aug 2015 | B2 |
9131983 | Fischell et al. | Sep 2015 | B2 |
9173696 | Schauer et al. | Nov 2015 | B2 |
9179962 | Fischell et al. | Nov 2015 | B2 |
9199065 | Seward | Dec 2015 | B2 |
9237925 | Fischell et al. | Jan 2016 | B2 |
9254360 | Fischell et al. | Feb 2016 | B2 |
9278196 | Fischell et al. | Mar 2016 | B2 |
9301795 | Fischell et al. | Apr 2016 | B2 |
9320850 | Fischell et al. | Apr 2016 | B2 |
9414852 | Gifford, III et al. | Aug 2016 | B2 |
9414885 | Willard | Aug 2016 | B2 |
9526827 | Fischell et al. | Dec 2016 | B2 |
9539047 | Fischell et al. | Jan 2017 | B2 |
9554849 | Fischell et al. | Jan 2017 | B2 |
9629719 | Rothstein et al. | Apr 2017 | B2 |
9681951 | Ratz et al. | Jun 2017 | B2 |
9687342 | Figulla et al. | Jun 2017 | B2 |
9687343 | Bortlein et al. | Jun 2017 | B2 |
9693859 | Braido et al. | Jul 2017 | B2 |
9693862 | Campbell et al. | Jul 2017 | B2 |
9694121 | Alexander et al. | Jul 2017 | B2 |
9700409 | Braido et al. | Jul 2017 | B2 |
9700411 | Klima et al. | Jul 2017 | B2 |
9730791 | Ratz et al. | Aug 2017 | B2 |
9730794 | Carpentier et al. | Aug 2017 | B2 |
9750605 | Ganesan et al. | Sep 2017 | B2 |
9750606 | Ganesan et al. | Sep 2017 | B2 |
9750607 | Ganesan et al. | Sep 2017 | B2 |
9763657 | Hacohen et al. | Sep 2017 | B2 |
9763658 | Eigler et al. | Sep 2017 | B2 |
9763782 | Solem et al. | Sep 2017 | B2 |
9770328 | Macoviak et al. | Sep 2017 | B2 |
9827092 | Vidlund et al. | Nov 2017 | B2 |
9827101 | Solem et al. | Nov 2017 | B2 |
9833313 | Board et al. | Dec 2017 | B2 |
9833315 | Vidlund et al. | Dec 2017 | B2 |
9839511 | Ma et al. | Dec 2017 | B2 |
9844435 | Eidenschink | Dec 2017 | B2 |
9848880 | Coleman et al. | Dec 2017 | B2 |
9848983 | Lashinski et al. | Dec 2017 | B2 |
9861477 | Backus et al. | Jan 2018 | B2 |
9861480 | Zakai et al. | Jan 2018 | B2 |
20010000041 | Selmon et al. | Mar 2001 | A1 |
20010007070 | Stewart et al. | Jul 2001 | A1 |
20010031981 | Evans et al. | Oct 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20010044591 | Stevens et al. | Nov 2001 | A1 |
20010044596 | Jaafar | Nov 2001 | A1 |
20020007192 | Pederson et al. | Jan 2002 | A1 |
20020077592 | Barry | Jun 2002 | A1 |
20020077627 | Johnson et al. | Jun 2002 | A1 |
20020082552 | Ding et al. | Jun 2002 | A1 |
20020082637 | Lumauig | Jun 2002 | A1 |
20020099439 | Schwartz et al. | Jul 2002 | A1 |
20020103445 | Randert et al. | Aug 2002 | A1 |
20020139379 | Edwards et al. | Oct 2002 | A1 |
20020143324 | Edwards | Oct 2002 | A1 |
20020151918 | Lafontaine et al. | Oct 2002 | A1 |
20020165532 | Hill et al. | Nov 2002 | A1 |
20020183682 | Darvish et al. | Dec 2002 | A1 |
20030028114 | Casscells et al. | Feb 2003 | A1 |
20030050637 | Maguire et al. | Mar 2003 | A1 |
20030069619 | Fenn et al. | Apr 2003 | A1 |
20030074039 | Puskas | Apr 2003 | A1 |
20030082225 | Mason | May 2003 | A1 |
20030114791 | Rosenthal et al. | Jun 2003 | A1 |
20030139689 | Shturman et al. | Jul 2003 | A1 |
20030144658 | Schwartz et al. | Jul 2003 | A1 |
20030158584 | Cates et al. | Aug 2003 | A1 |
20030176816 | Maguire et al. | Sep 2003 | A1 |
20030216792 | Levin et al. | Nov 2003 | A1 |
20030233099 | Danaek et al. | Dec 2003 | A1 |
20030236455 | Swanson et al. | Dec 2003 | A1 |
20040006358 | Wulfman et al. | Jan 2004 | A1 |
20040019348 | Stevens et al. | Jan 2004 | A1 |
20040039412 | Isshiki et al. | Feb 2004 | A1 |
20040043030 | Griffiths et al. | Mar 2004 | A1 |
20040044286 | Hossack et al. | Mar 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040057955 | O'Brien et al. | Mar 2004 | A1 |
20040062852 | Schroeder et al. | Apr 2004 | A1 |
20040064090 | Keren et al. | Apr 2004 | A1 |
20040064093 | Hektner et al. | Apr 2004 | A1 |
20040073243 | Sepetka et al. | Apr 2004 | A1 |
20040082910 | Constantz et al. | Apr 2004 | A1 |
20040082978 | Harrison et al. | Apr 2004 | A1 |
20040088002 | Boyle et al. | May 2004 | A1 |
20040092858 | Wilson et al. | May 2004 | A1 |
20040092962 | Thornton et al. | May 2004 | A1 |
20040092989 | Wilson et al. | May 2004 | A1 |
20040103516 | Bolduc et al. | Jun 2004 | A1 |
20040117032 | Roth | Jun 2004 | A1 |
20040122421 | Wood | Jun 2004 | A1 |
20040127979 | Wilson et al. | Jul 2004 | A1 |
20040186468 | Edwards | Sep 2004 | A1 |
20040199191 | Schwartz | Oct 2004 | A1 |
20040220556 | Cooper et al. | Nov 2004 | A1 |
20040230117 | Tosaya et al. | Nov 2004 | A1 |
20040230212 | Wulfman | Nov 2004 | A1 |
20040230213 | Wulfman et al. | Nov 2004 | A1 |
20040243097 | Falotico et al. | Dec 2004 | A1 |
20040243162 | Wulfman et al. | Dec 2004 | A1 |
20040253304 | Gross et al. | Dec 2004 | A1 |
20050007219 | Ma et al. | Jan 2005 | A1 |
20050075662 | Pedersen et al. | Apr 2005 | A1 |
20050090820 | Cornelius et al. | Apr 2005 | A1 |
20050096647 | Steinke et al. | May 2005 | A1 |
20050149173 | Hunter et al. | Jul 2005 | A1 |
20050149175 | Hunter et al. | Jul 2005 | A1 |
20050154445 | Hunter et al. | Jul 2005 | A1 |
20050154453 | Hunter et al. | Jul 2005 | A1 |
20050154454 | Hunter et al. | Jul 2005 | A1 |
20050165391 | Maguire et al. | Jul 2005 | A1 |
20050165467 | Hunter et al. | Jul 2005 | A1 |
20050175661 | Hunter et al. | Aug 2005 | A1 |
20050175662 | Hunter et al. | Aug 2005 | A1 |
20050177103 | Hunter et al. | Aug 2005 | A1 |
20050181004 | Hunter et al. | Aug 2005 | A1 |
20050182479 | Bonsignore et al. | Aug 2005 | A1 |
20050186242 | Hunter et al. | Aug 2005 | A1 |
20050186243 | Hunter et al. | Aug 2005 | A1 |
20050192638 | Gelfand et al. | Sep 2005 | A1 |
20050228286 | Messerly et al. | Oct 2005 | A1 |
20050267556 | Shuros et al. | Dec 2005 | A1 |
20050283195 | Pastore et al. | Dec 2005 | A1 |
20060018949 | Ammon et al. | Jan 2006 | A1 |
20060025821 | Gelfand et al. | Feb 2006 | A1 |
20060041277 | Deem et al. | Feb 2006 | A1 |
20060111672 | Seward | May 2006 | A1 |
20060189941 | Seward et al. | Aug 2006 | A1 |
20060240070 | Cromack et al. | Oct 2006 | A1 |
20060247618 | Kaplan et al. | Nov 2006 | A1 |
20060247619 | Kaplan et al. | Nov 2006 | A1 |
20060263393 | Demopulos et al. | Nov 2006 | A1 |
20060280858 | Kokish | Dec 2006 | A1 |
20070066959 | Seward | Mar 2007 | A1 |
20070078620 | Seward et al. | Apr 2007 | A1 |
20070100318 | Seward et al. | May 2007 | A1 |
20070106249 | Seward et al. | May 2007 | A1 |
20070106250 | Seward et al. | May 2007 | A1 |
20070106251 | Seward et al. | May 2007 | A1 |
20070106255 | Seward et al. | May 2007 | A1 |
20070106256 | Seward et al. | May 2007 | A1 |
20070106257 | Seward et al. | May 2007 | A1 |
20070106293 | Oral et al. | May 2007 | A1 |
20070118107 | Francischelli et al. | May 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070208134 | Hunter et al. | Sep 2007 | A1 |
20070219576 | Cangialosi | Sep 2007 | A1 |
20070248639 | Demopulos et al. | Oct 2007 | A1 |
20070254833 | Hunter et al. | Nov 2007 | A1 |
20070269385 | Yun et al. | Nov 2007 | A1 |
20070278103 | Hoerr et al. | Dec 2007 | A1 |
20070287994 | Patel | Dec 2007 | A1 |
20070299043 | Hunter et al. | Dec 2007 | A1 |
20080004596 | Yun et al. | Jan 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080045890 | Seward et al. | Feb 2008 | A1 |
20080064957 | Spence | Mar 2008 | A1 |
20080082109 | Moll et al. | Apr 2008 | A1 |
20080086072 | Bonutti et al. | Apr 2008 | A1 |
20080097426 | Root et al. | Apr 2008 | A1 |
20080172035 | Starksen et al. | Jul 2008 | A1 |
20080208162 | Joshi | Aug 2008 | A1 |
20080213331 | Gelfand et al. | Sep 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080317818 | Griffith et al. | Dec 2008 | A1 |
20090024195 | Rezai et al. | Jan 2009 | A1 |
20090074828 | Alexis et al. | Mar 2009 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090105631 | Kieval | Apr 2009 | A1 |
20090142306 | Seward et al. | Jun 2009 | A1 |
20090156988 | Ferren et al. | Jun 2009 | A1 |
20090157057 | Ferren et al. | Jun 2009 | A1 |
20090203962 | Miller et al. | Aug 2009 | A1 |
20090216317 | Cromack et al. | Aug 2009 | A1 |
20090221955 | Babaev | Sep 2009 | A1 |
20100023088 | Stack et al. | Jan 2010 | A1 |
20100049186 | Ingle et al. | Feb 2010 | A1 |
20100069837 | Rassat et al. | Mar 2010 | A1 |
20100087782 | Ghaffari et al. | Apr 2010 | A1 |
20100137860 | Demarais et al. | Jun 2010 | A1 |
20100168737 | Grunewald | Jul 2010 | A1 |
20100191232 | Boveda | Jul 2010 | A1 |
20100204560 | Salahieh et al. | Aug 2010 | A1 |
20100217162 | Hissong et al. | Aug 2010 | A1 |
20100222851 | Deem et al. | Sep 2010 | A1 |
20100228122 | Keenan et al. | Sep 2010 | A1 |
20100249702 | Magana et al. | Sep 2010 | A1 |
20100256616 | Katoh et al. | Oct 2010 | A1 |
20100268217 | Habib | Oct 2010 | A1 |
20100286684 | Hata et al. | Nov 2010 | A1 |
20100324472 | Wulfman | Dec 2010 | A1 |
20100324554 | Gifford et al. | Dec 2010 | A1 |
20110104060 | Seward | May 2011 | A1 |
20110104061 | Seward | May 2011 | A1 |
20110118726 | De la rama et al. | May 2011 | A1 |
20110137155 | Weber et al. | Jun 2011 | A1 |
20110166499 | Demarais et al. | Jul 2011 | A1 |
20110182912 | Evans et al. | Jul 2011 | A1 |
20110184337 | Evans et al. | Jul 2011 | A1 |
20110202098 | Demarais et al. | Aug 2011 | A1 |
20110213231 | Hall et al. | Sep 2011 | A1 |
20110257622 | Salahieh et al. | Oct 2011 | A1 |
20110301587 | Deem et al. | Dec 2011 | A1 |
20110306851 | Wang | Dec 2011 | A1 |
20120029500 | Jenson | Feb 2012 | A1 |
20120029504 | Afonso et al. | Feb 2012 | A1 |
20120029510 | Haverkost | Feb 2012 | A1 |
20120071870 | Salahieh et al. | Mar 2012 | A1 |
20120116438 | Salahieh et al. | May 2012 | A1 |
20120157992 | Smith et al. | Jun 2012 | A1 |
20120157993 | Jenson et al. | Jun 2012 | A1 |
20120172837 | Demarais et al. | Jul 2012 | A1 |
20120184952 | Jenson et al. | Jul 2012 | A1 |
20120259269 | Meyer | Oct 2012 | A1 |
20120265198 | Crow et al. | Oct 2012 | A1 |
20120271301 | Fischell et al. | Oct 2012 | A1 |
20120296232 | Ng | Nov 2012 | A1 |
20120296329 | Ng | Nov 2012 | A1 |
20130053732 | Heuser | Feb 2013 | A1 |
20130053792 | Fischell et al. | Feb 2013 | A1 |
20130066316 | Steinke et al. | Mar 2013 | A1 |
20130090651 | Smith | Apr 2013 | A1 |
20130090652 | Jenson | Apr 2013 | A1 |
20130096550 | Hill | Apr 2013 | A1 |
20130096554 | Groff et al. | Apr 2013 | A1 |
20130096604 | Hanson et al. | Apr 2013 | A1 |
20130110106 | Richardson | May 2013 | A1 |
20130116687 | Willard | May 2013 | A1 |
20130123778 | Richardson et al. | May 2013 | A1 |
20130158509 | Consigny et al. | Jun 2013 | A1 |
20130158536 | Bloom | Jun 2013 | A1 |
20130172815 | Perry et al. | Jul 2013 | A1 |
20130204131 | Seward | Aug 2013 | A1 |
20130226166 | Chomas et al. | Aug 2013 | A1 |
20130231658 | Wang et al. | Sep 2013 | A1 |
20130231659 | Hill et al. | Sep 2013 | A1 |
20130245622 | Wang et al. | Sep 2013 | A1 |
20130252932 | Seward | Sep 2013 | A1 |
20130253623 | Danek et al. | Sep 2013 | A1 |
20130274614 | Shimada et al. | Oct 2013 | A1 |
20130274673 | Fischell et al. | Oct 2013 | A1 |
20130274674 | Fischell et al. | Oct 2013 | A1 |
20130282000 | Parsonage | Oct 2013 | A1 |
20130282084 | Mathur et al. | Oct 2013 | A1 |
20130289369 | Margolis | Oct 2013 | A1 |
20130289555 | Mayse et al. | Oct 2013 | A1 |
20130289556 | Mayse et al. | Oct 2013 | A1 |
20130289686 | Masson et al. | Oct 2013 | A1 |
20130296853 | Sugimoto et al. | Nov 2013 | A1 |
20140012231 | Fischell | Jan 2014 | A1 |
20140018789 | Kaplan et al. | Jan 2014 | A1 |
20140018790 | Kaplan et al. | Jan 2014 | A1 |
20140025063 | Kaplan et al. | Jan 2014 | A1 |
20140025069 | Willard et al. | Jan 2014 | A1 |
20140046319 | Danek et al. | Feb 2014 | A1 |
20140058374 | Edmunds et al. | Feb 2014 | A1 |
20140074083 | Horn et al. | Mar 2014 | A1 |
20140074089 | Nishii | Mar 2014 | A1 |
20140107478 | Seward et al. | Apr 2014 | A1 |
20140107639 | Zhang et al. | Apr 2014 | A1 |
20140135661 | Garrison et al. | May 2014 | A1 |
20140142408 | De la rama et al. | May 2014 | A1 |
20140180077 | Huennekens et al. | Jun 2014 | A1 |
20140180196 | Stone et al. | Jun 2014 | A1 |
20140188103 | Millett | Jul 2014 | A1 |
20140200578 | Groff et al. | Jul 2014 | A1 |
20140207136 | De la rama et al. | Jul 2014 | A1 |
20140228829 | Schmitt et al. | Aug 2014 | A1 |
20140243821 | Salahieh et al. | Aug 2014 | A1 |
20140246465 | Peterson et al. | Sep 2014 | A1 |
20140271717 | Goshayeshgar et al. | Sep 2014 | A1 |
20140276124 | Cholette et al. | Sep 2014 | A1 |
20140276724 | Goshayeshgar | Sep 2014 | A1 |
20140276728 | Goshayeshgar | Sep 2014 | A1 |
20140276733 | Vanscoy et al. | Sep 2014 | A1 |
20140276742 | Nabutovsky et al. | Sep 2014 | A1 |
20140276746 | Nabutovsky et al. | Sep 2014 | A1 |
20140276747 | Abunassar et al. | Sep 2014 | A1 |
20140276752 | Wang et al. | Sep 2014 | A1 |
20140276756 | Hill | Sep 2014 | A1 |
20140276762 | Parsonage | Sep 2014 | A1 |
20140276766 | Brotz et al. | Sep 2014 | A1 |
20140276767 | Brotz et al. | Sep 2014 | A1 |
20140276773 | Brotz et al. | Sep 2014 | A1 |
20140296279 | Seward et al. | Oct 2014 | A1 |
20140296849 | Coe et al. | Oct 2014 | A1 |
20140303569 | Seward et al. | Oct 2014 | A1 |
20140303617 | Shimada | Oct 2014 | A1 |
20140316400 | Blix et al. | Oct 2014 | A1 |
20140316496 | Masson et al. | Oct 2014 | A1 |
20140324043 | Terwey et al. | Oct 2014 | A1 |
20140330267 | Harrington | Nov 2014 | A1 |
20140336494 | Just et al. | Nov 2014 | A1 |
20140350533 | Horvath et al. | Nov 2014 | A1 |
20140350551 | Raatikka et al. | Nov 2014 | A1 |
20140350553 | Okuyama | Nov 2014 | A1 |
20140358079 | Fischell et al. | Dec 2014 | A1 |
20140364926 | Nguyen et al. | Dec 2014 | A1 |
20140378906 | Fischell et al. | Dec 2014 | A1 |
20150018656 | Min et al. | Jan 2015 | A1 |
20150018818 | Willard et al. | Jan 2015 | A1 |
20150105715 | Pikus et al. | Apr 2015 | A1 |
20150105772 | Hill et al. | Apr 2015 | A1 |
20150112327 | Willard | Apr 2015 | A1 |
20150112329 | Ng | Apr 2015 | A1 |
20150132409 | Stein et al. | May 2015 | A1 |
20150148797 | Willard | May 2015 | A1 |
20150202220 | Stein et al. | Jul 2015 | A1 |
20150223866 | Buelna et al. | Aug 2015 | A1 |
20150231386 | Meyer | Aug 2015 | A1 |
20150289770 | Wang | Oct 2015 | A1 |
20150335384 | Fischell et al. | Nov 2015 | A1 |
20150343156 | Fischell et al. | Dec 2015 | A1 |
20150343175 | Braga | Dec 2015 | A1 |
20150351836 | Prutchi | Dec 2015 | A1 |
20150374435 | Cao et al. | Dec 2015 | A1 |
20160008059 | Prutchi | Jan 2016 | A1 |
20160008387 | Stein et al. | Jan 2016 | A9 |
20160051465 | Azamian et al. | Feb 2016 | A1 |
20160058489 | Fischell et al. | Mar 2016 | A1 |
20160157933 | Hollett et al. | Jun 2016 | A1 |
20160235464 | Fischell et al. | Aug 2016 | A1 |
20160242661 | Fischell et al. | Aug 2016 | A1 |
20160310200 | Wang | Oct 2016 | A1 |
20160324574 | Willard | Nov 2016 | A1 |
20160354137 | Fischell et al. | Dec 2016 | A1 |
20160374568 | Wang | Dec 2016 | A1 |
20170014183 | Gifford, III et al. | Jan 2017 | A1 |
20170100248 | Tegels et al. | Apr 2017 | A1 |
20170100250 | Marsot et al. | Apr 2017 | A1 |
20170119526 | Luong et al. | May 2017 | A1 |
20170128198 | Cartledge et al. | May 2017 | A1 |
20170128205 | Tamir et al. | May 2017 | A1 |
20170128206 | Rafiee et al. | May 2017 | A1 |
20170156860 | Lashinski | Jun 2017 | A1 |
20170165054 | Benson et al. | Jun 2017 | A1 |
20170165055 | Hauser et al. | Jun 2017 | A1 |
20170172737 | Kuetting et al. | Jun 2017 | A1 |
20170181851 | Annest | Jun 2017 | A1 |
20170189179 | Ratz et al. | Jul 2017 | A1 |
20170189180 | Alkhatib | Jul 2017 | A1 |
20170189181 | Alkhatib et al. | Jul 2017 | A1 |
20170231762 | Quadri et al. | Aug 2017 | A1 |
20170231763 | Yellin et al. | Aug 2017 | A1 |
20170258585 | Marquez et al. | Sep 2017 | A1 |
20170266001 | Vidlund et al. | Sep 2017 | A1 |
20170281345 | Yang et al. | Oct 2017 | A1 |
20170290659 | Ulmer et al. | Oct 2017 | A1 |
20170296339 | Thambar et al. | Oct 2017 | A1 |
20170319333 | Tegels et al. | Nov 2017 | A1 |
20170325941 | Wallace et al. | Nov 2017 | A1 |
20170325945 | Dale et al. | Nov 2017 | A1 |
20170325948 | Wallace et al. | Nov 2017 | A1 |
20170333186 | Spargias | Nov 2017 | A1 |
20170333188 | Carpentier et al. | Nov 2017 | A1 |
20170340440 | Ratz et al. | Nov 2017 | A1 |
20170348098 | Rowe et al. | Dec 2017 | A1 |
20170348100 | Lane et al. | Dec 2017 | A1 |
20170354496 | Quadri et al. | Dec 2017 | A1 |
20170354497 | Quadri et al. | Dec 2017 | A1 |
20170354499 | Granada et al. | Dec 2017 | A1 |
20170360426 | Hacohen et al. | Dec 2017 | A1 |
20170360549 | Lashinski et al. | Dec 2017 | A1 |
20170360558 | Ma | Dec 2017 | A1 |
20170360585 | White | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2384866 | Apr 2001 | CA |
2575458 | Mar 2006 | CA |
2855350 | Jan 2007 | CN |
101076290 | Nov 2007 | CN |
102271607 | Dec 2011 | CN |
102274074 | Dec 2011 | CN |
202069688 | Dec 2011 | CN |
202426647 | Sep 2012 | CN |
102885648 | Jan 2013 | CN |
102885649 | Jan 2013 | CN |
102908188 | Feb 2013 | CN |
102908189 | Feb 2013 | CN |
202761434 | Mar 2013 | CN |
202843784 | Apr 2013 | CN |
202960760 | Jun 2013 | CN |
103549993 | Feb 2014 | CN |
29909082 | Jul 1999 | DE |
10252325 | May 2004 | DE |
10257146 | Jun 2004 | DE |
202004021941 | May 2013 | DE |
202004021942 | May 2013 | DE |
202004021949 | May 2013 | DE |
202004021951 | Jun 2013 | DE |
202004021952 | Jun 2013 | DE |
202004021953 | Jun 2013 | DE |
202004021944 | Jul 2013 | DE |
0233100 | Aug 1987 | EP |
0497041 | Aug 1992 | EP |
0774991 | May 1997 | EP |
1180004 | Feb 2002 | EP |
1512383 | Mar 2005 | EP |
1634542 | Mar 2006 | EP |
1782852 | May 2007 | EP |
1802370 | Jul 2007 | EP |
1874211 | Jan 2008 | EP |
1009303 | Jun 2009 | EP |
2329859 | Jun 2011 | EP |
2352542 | Aug 2011 | EP |
2400924 | Jan 2012 | EP |
2429436 | Mar 2012 | EP |
2429641 | Mar 2012 | EP |
2457615 | May 2012 | EP |
2498706 | Sep 2012 | EP |
2519173 | Nov 2012 | EP |
2528649 | Dec 2012 | EP |
2558016 | Feb 2013 | EP |
2598067 | Jun 2013 | EP |
2598068 | Jun 2013 | EP |
2598069 | Jun 2013 | EP |
2640297 | Sep 2013 | EP |
2656807 | Oct 2013 | EP |
2675458 | Dec 2013 | EP |
2694150 | Feb 2014 | EP |
2694158 | Feb 2014 | EP |
2709517 | Mar 2014 | EP |
2717795 | Apr 2014 | EP |
2731531 | May 2014 | EP |
2747688 | Jul 2014 | EP |
2457615 | Dec 2014 | EP |
2819604 | Jan 2015 | EP |
2844190 | Mar 2015 | EP |
2870933 | May 2015 | EP |
2874555 | May 2015 | EP |
2885041 | Jun 2015 | EP |
2895095 | Jul 2015 | EP |
2911735 | Sep 2015 | EP |
2914326 | Sep 2015 | EP |
2950734 | Dec 2015 | EP |
2954865 | Dec 2015 | EP |
2967383 | Jan 2016 | EP |
3011899 | Apr 2016 | EP |
3019105 | May 2016 | EP |
3060148 | Aug 2016 | EP |
3229736 | Nov 2016 | EP |
3102132 | Dec 2016 | EP |
3132828 | Feb 2017 | EP |
2470119 | May 2017 | EP |
2999436 | May 2017 | EP |
3184081 | Jun 2017 | EP |
3191027 | Jul 2017 | EP |
2611389 | Aug 2017 | EP |
3082656 | Aug 2017 | EP |
3206628 | Aug 2017 | EP |
2010103 | Sep 2017 | EP |
2509538 | Sep 2017 | EP |
3027144 | Nov 2017 | EP |
3110368 | Nov 2017 | EP |
3110369 | Nov 2017 | EP |
3132773 | Nov 2017 | EP |
3245980 | Nov 2017 | EP |
3250154 | Dec 2017 | EP |
3256077 | Dec 2017 | EP |
3258883 | Dec 2017 | EP |
3273910 | Jan 2018 | EP |
49009882 | Jan 1974 | JP |
62181225 | Aug 1987 | JP |
H-06504516 | May 1994 | JP |
3041967 | Oct 1997 | JP |
2002509756 | Apr 2002 | JP |
2003510126 | Mar 2003 | JP |
2004016333 | Jan 2004 | JP |
2004097807 | Apr 2004 | JP |
2016083302 | May 2016 | JP |
2016086999 | May 2016 | JP |
WO-1990000060 | Jan 1990 | WO |
WO-1992011898 | Jul 1992 | WO |
WO-1992017118 | Oct 1992 | WO |
WO-1992020291 | Nov 1992 | WO |
WO-1994021165 | Sep 1994 | WO |
WO-1994021168 | Sep 1994 | WO |
WO-1995001751 | Jan 1995 | WO |
WO-1995010319 | Apr 1995 | WO |
WO-1996034559 | Nov 1996 | WO |
WO-1997003604 | Feb 1997 | WO |
WO-1997017892 | May 1997 | WO |
WO-1997042990 | Nov 1997 | WO |
WO-1999016370 | Apr 1999 | WO |
WO-1999039648 | Aug 1999 | WO |
WO-1999044522 | Sep 1999 | WO |
WO-1999049799 | Oct 1999 | WO |
WO-1999052424 | Oct 1999 | WO |
WO-1999062413 | Dec 1999 | WO |
WO-2000062699 | Oct 2000 | WO |
WO-2001010343 | Feb 2001 | WO |
WO-2001022897 | Apr 2001 | WO |
WO-2001037746 | May 2001 | WO |
WO-2001074255 | Oct 2001 | WO |
WO-2002028421 | Apr 2002 | WO |
WO-2002058549 | Aug 2002 | WO |
WO-2003024311 | Mar 2003 | WO |
WO-2003043685 | May 2003 | WO |
WO-2003082080 | Oct 2003 | WO |
WO-2004011055 | Feb 2004 | WO |
WO-2004028583 | Apr 2004 | WO |
WO-2004049976 | Jun 2004 | WO |
WO-2004093728 | Nov 2004 | WO |
WO-2004096097 | Nov 2004 | WO |
WO-2004112657 | Dec 2004 | WO |
WO-2005001513 | Jan 2005 | WO |
WO-2005002466 | Jan 2005 | WO |
WO-2005007000 | Jan 2005 | WO |
WO-2005007219 | Jan 2005 | WO |
WO-2005009285 | Feb 2005 | WO |
WO-2005009506 | Feb 2005 | WO |
WO-2005041748 | May 2005 | WO |
WO-2006009376 | Jan 2006 | WO |
WO-2006022790 | Mar 2006 | WO |
WO-2006041881 | Apr 2006 | WO |
WO-2006063199 | Jun 2006 | WO |
WO-2006116198 | Nov 2006 | WO |
WO-2009088678 | Jul 2009 | WO |
WO-2010042653 | Apr 2010 | WO |
WO-2010056771 | May 2010 | WO |
WO-2011055143 | May 2011 | WO |
WO-2011060200 | May 2011 | WO |
WO-2011082279 | Jul 2011 | WO |
WO-2011094367 | Aug 2011 | WO |
WO-2011119857 | Sep 2011 | WO |
WO-2011130534 | Oct 2011 | WO |
WO-2011133724 | Oct 2011 | WO |
WO-2012068471 | May 2012 | WO |
WO-2012075156 | Jun 2012 | WO |
WO-2012130337 | Oct 2012 | WO |
WO-2012131107 | Oct 2012 | WO |
WO-2012158864 | Nov 2012 | WO |
WO-2012161875 | Nov 2012 | WO |
WO-2012170482 | Dec 2012 | WO |
WO-2013028274 | Feb 2013 | WO |
WO-2013028781 | Feb 2013 | WO |
WO-2013028812 | Feb 2013 | WO |
WO-2013055815 | Apr 2013 | WO |
WO-2013059735 | Apr 2013 | WO |
WO-2013063331 | May 2013 | WO |
WO-2013070724 | May 2013 | WO |
WO-2013077283 | May 2013 | WO |
WO-2013106054 | Jul 2013 | WO |
WO-2013112844 | Aug 2013 | WO |
WO-2013131046 | Sep 2013 | WO |
WO-2013142217 | Sep 2013 | WO |
WO-2013165920 | Nov 2013 | WO |
WO-2013169741 | Nov 2013 | WO |
WO-2013188689 | Dec 2013 | WO |
WO-2014015065 | Jan 2014 | WO |
WO-2014031167 | Feb 2014 | WO |
WO-2014036160 | Mar 2014 | WO |
WO-2014056460 | Apr 2014 | WO |
WO-2014070820 | May 2014 | WO |
WO-2014070999 | May 2014 | WO |
WO-2014078301 | May 2014 | WO |
WO-2014100226 | Jun 2014 | WO |
WO-2014110579 | Jul 2014 | WO |
WO-2014118733 | Aug 2014 | WO |
WO-2014118734 | Aug 2014 | WO |
WO-2014149550 | Sep 2014 | WO |
WO-2014149552 | Sep 2014 | WO |
WO-2014149553 | Sep 2014 | WO |
WO-2014150204 | Sep 2014 | WO |
WO-2014150425 | Sep 2014 | WO |
WO-2014150432 | Sep 2014 | WO |
WO-2014150441 | Sep 2014 | WO |
WO-2014150455 | Sep 2014 | WO |
WO-2014152344 | Sep 2014 | WO |
WO-2014158708 | Oct 2014 | WO |
WO-2014163990 | Oct 2014 | WO |
WO-2014176205 | Oct 2014 | WO |
WO-2014179768 | Nov 2014 | WO |
WO-2014189887 | Nov 2014 | WO |
WO-2014197688 | Dec 2014 | WO |
2017062640 | Apr 2017 | WO |
2017096157 | Jun 2017 | WO |
2017101232 | Jun 2017 | WO |
WO-2017127939 | Aug 2017 | WO |
WO-2017136596 | Aug 2017 | WO |
2017196511 | Nov 2017 | WO |
2017196909 | Nov 2017 | WO |
2017196977 | Nov 2017 | WO |
2017197064 | Nov 2017 | WO |
2017218671 | Dec 2017 | WO |
2018017886 | Jan 2018 | WO |
Entry |
---|
US 8,398,630 B2, 03/2013, Demarais et al. (withdrawn) |
Ahmed, Humera et al., Renal Sympathetic Denervation Using an Irrigated Radiofrequency Ablation Catheter for the Management of Drug-Resistant Hypertension, JACC Cardiovascular Interventions, vol. 5, No. 7, 2012, pp. 758-765. |
ClinicalTrials.gov, Renal Denervation in Patients with uncontrolled Hypertension in Chinese (2011), 6pages. www.clinicaltrials.gov/ct2/show/NCT01390831. |
Eick, Olaf, “Temperature Controlled Radiofrequency Ablation.” Indian Pacing and Electrophysiology Journal, vol. 2. No. 3, 2002, 8 pages. |
European Search Report dated Feb. 22, 2013; Application No. 12180432.2; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
European Search Report dated Feb. 28, 2013; Application No. 12180427.2; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 4 pages. |
European Search Report dated May 3, 2012; European Patent Application No. 11192511.1; Applicant: Ardian, Inc. (6 pages). |
European Search Report dated May 3, 2012; European Patent Application No. 11192514.5; Applicant: Ardian, Inc. (7 pages). |
European Search Report dated Jan. 30, 2013; Application No. 12180428.0; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
European Search Report dated Jan. 30, 2013; Application No. 12180430.6; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
European Search Report dated Jan. 30, 2013; Application No. 12180431.4; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
European Search Report dated Jan. 30, 2013; European Application No. 12180426.4; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
Mount Sinai School of Medicine clinical trial for Impact of Renal Sympathetic Denervation of Chronic Hypertension, Mar. 2013, 11 pages. http://clinicaltrials.gov/ct2/show/NCT01628198. |
Prochnau, Dirk et al., Catheter-based renal denervation for drug-resistant hypertension by using a standard electrophysiology catheter; Euro Intervention 2012, vol. 7, pp. 1077-1080. |
ThermoCool Irrigated Catheter and Integrated Ablation System, Biosense Webster (2006), 6 pages. |
“Optison (Perflutren Protein—Type A Microspheres for Injection, USP).” GE Healthcare. General Electric Company. 1997-2005. Web. May 26, 2005. <http://www.amershamhealth-us.com/optison/. |
Bernard et al., “Aortic Valve Area Evolution After Percutaneous Aortic Valvuloplasty,” European Heart Journal vol. 11, No. 2, pp. 98-107. |
BlueCross BlueShield of Northern Carolina Corporate Medical Policy “Balloon valvuloplasty, Percutaneous”, (Jun. 1994). |
Bond, et al. “Physics of Ultrasonic Surgery Using Tissue Fragmentation: Part II”, Ultrasound Med. & Bio., 1996, vol. 22 (1), pp. 101-117. |
Cimino, et al., “Physics of Ultrasonic Surgery Using Tissue Fragmentation: Part I”, Ultrasound Med. & Bio., 1996, vol. 22 (1), pp. 89-100. |
Cimino, Ultrasonic surgery: power quantification and efficiency optimization. Aesthetic surgery journal, 2001, 233-241. |
Cowell et al., “A randomized Trial of Intensive Lipid-Lowering Therapy in Calcific Aortic Stenosis,” NEJM vol. 352 No. 23, pp. 2005, 2389-2397. |
De Korte et al., “Characterization of plaque components and vulnerability with intravascular ultrasound elastography” Phys. Med. Biol. vol. 45, 2000, pp. 1465-1475. |
European Search Report for European App. No. 05853460.3, completed Mar. 13, 2015, 3 pages. |
Feldman, “Restenosis Following Successful Balloon Valvuloplasty: Bone Formation in Aortic Valve Leaflets,” Cathet Cardiovasc Diagn, vol. 29 No. 1, 1993, pp. 1-7. |
Final Office Action for U.S. Appl. No. 12/870,270, dated Jul. 3, 2012, 7 pages. |
Final Office Action for U.S. Appl. No. 11/299,246, dated Feb. 17, 2010, 6 pages. |
Final Office Action for U.S. Appl. No. 11/299,246, dated Jun. 6, 2008, 5 pages. |
Final Office Action for U.S. Appl. No. 13/692,613, dated Nov. 12, 2015, 14 pages. |
Fitzgerald et al., “Intravascular Sonotherapy Decreased Neointimal Hyperplasia After Stent Implantation in Swine,” Circulation, vol. 103, 2001, pp. 1828-1831. |
Freeman et al., “Ultrasonic Aortic Valve Decalcification: Serial Doppler Echocardiographic Follow Up,” J Am Coll Cardiol., vol. 16, No. 3, pp. 263-630 (Sep. 1990). |
Greenleaf et al., “Selected Methods for Imaging Elastic Properties of Biological Tissues” Annu. Rev. Biomed. Eng., vol. 5, pp. 57-78, (2003). |
Gunn et al., “New Developments in Therapeutic Ultrasound-Assisted Coronary Angioplasty,” Curr Interv Cardiol Rep., vol. 1 No. 4, pp. 281-290, (Dec. 1990). |
Guzman, et al., “Bioeffects Caused by Changes in Acoustic Cavitation Bubble Density and Cell Concentration: A Unified Explanation Based on Cell-To-Bubble Ratio and Blast Radius.” Ultrasound in Med. & Biol, vol. 29, No. 8, 2003,1211-1222. |
Hallgrmsson et al., “Chronic Non-Rheumatic Aortic Valvular Disease: a Population Study Based on Autopsies,” J Chronic Dis.vol. 32 No. 5, 1979, pp. 355-363. |
Isner et al., “Contrasting Histoarchitecture of calcified leaflets from stenotic bicuspid versus stenotic tricuspid aortic valves,” J Am Coll Cardiol., vol. 15, No. 5, pp. 1104-1108, (Apr. 1990). |
Lung et al., “A Prospective Survey of Patients with Valvular Heart Disease in Europe: The Euro Heart Survey on Valvular Heart Disease,” Euro Heart Journal, vol. 24, 2003, pp. 1231-1243. |
McBride et al “Aortic Valve Decalcification,” J Thorac Cardiovas-Surg, vol. 100, pp. 36-42 (1999). |
Miller et al., “Lysis and Sonoporation of Epidermoid and Phagocytic Monolayer Cells by Diagnostic Ultrasound Activation of Contrast Agent Gas Bodies, ” Ultrasound in Med. & Biol., vol. 27, No. 8, pp. 1107-1113 (2001). |
Mohler, “Mechanisms of Aortic Valve Calcificaion,” Am J Cardiol, vol. 94 No. 11, 2004, pp. 1396-1402. |
Otto et al., “Three-Year Outcome After Balloon Aortic Valvuloplasty. Insights into Prognosis of Valvular Aortic Stenosis,” Circulation, vol. 89, pp. 642-650. |
Passik et al., “Temporal Changes in the Causes of Aortic Stenosis: A Surgical Pathologic Study of 646 Cases,” Mayo Clin Proc, vol. 62, 1987, pp. 19-123. |
Quaden et al., “Percutaneoous Aortic Valve Replacement: Resection Before Implantation,” Eur J Cardiothorac Surg, vol. 27, 2005, pp. 836-840. |
Riebman et al., “New Concepts in the Management of Patients With Aortic Valve Disease”, Abstract, Valvular Heart Disease, JACC, 2004, p. 34A. |
Rosenschein et al., “Percutaneous Transluminal Therapy of Occluded Saphenous Vein Grafts,” Circulation, vol. 99, 1999, pp. 26-29. |
Sakata et al., “Percutaneous Balloon Aortic Valvuloplasty: Antegrade Transseptal vs. Conventional Retrograde Transarterial Approach,” Catheter Cardiovasc Interv., vol. 64, 2005, p. 314-321. |
Sasaki et al., “Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers” J Periodontol.; vol. 73, No. 6, 2002, pp. 643-652. |
Search Report and Written Opinion dated May 22, 2007 for PCT Application No. PCT/US2005/044543. |
Van Den Brand et al., “Histological Changes in the Aortic Valve after Balloon Dilation: Evidence for a Delayed Healing Process,” Br Heart J, 1992; vol. 67, pp. 445-459. |
Verdaasdonk et al., “The Mechanism of Action of the Ultrasonic Tissue Resectors Disclosed Using High-Speed and Thermal Imaging Techniques,” SPIE , vol. 3594, 1999, pp. 221-231. |
Voelker et al., “Inoperative Valvuloplasty in Calcific Aortic Stenosis: a Study Comparing the Mechanism of a Novel Expandable Device with conventional Balloon Dilation,” Am Heart J. vol. 122 No. 5, 1999, pp. 1327-1333. |
Waller et al., “Catheter Balloon Valvuloplasty of Stenotic Aortic Valves. Part II: Balloon Valvuloplasty During Life Subsequent Tissue Examination,” Clin Cardiol., vol. 14 No. 11, 1991, pp. 924-930. |
Wang, “Balloon Aortic Valvuloplasty,” Prog Cardiovasc Dis., vol. 40, No. 1, 1997, pp. 27-36. |
Wilson et al., “Elastography—The movement Begins” Phys. Med. Biol., vol. 45, 2000, pp. 1409-1421. |
Yock et al, “Catheter-Based Ultrasound Thrombolysis,” Circulation, vol. 95, No. 6, 1997, pp. 1411-1416. |
Opposition to European Patent No. EP0930979, Published Jul. 28, 1999, Decision Dated Sep. 12, 2012, 28 pages. |
U.S. Appl. No. 95/002,253, Office Action dated Oct. 23, 2013, 24 pages. |
U.S. Appl. No. 60/616,254, “Renal neuromodulation”, filed Oct. 5, 2004, 25 pages. |
U.S. Appl. No. 60/624,793, “Renal neuromodulation”, filed Nov. 2, 2004, 20 pages. |
Number | Date | Country | |
---|---|---|---|
20170014183 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
60698297 | Jul 2005 | US | |
60662764 | Mar 2005 | US | |
60635275 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11299246 | Dec 2005 | US |
Child | 12870270 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13692613 | Dec 2012 | US |
Child | 15212797 | US | |
Parent | 12870270 | Aug 2010 | US |
Child | 13692613 | US |