Intravascular treatment of vascular occlusion and associated devices, systems, and methods

Information

  • Patent Grant
  • 11918244
  • Patent Number
    11,918,244
  • Date Filed
    Wednesday, July 12, 2023
    a year ago
  • Date Issued
    Tuesday, March 5, 2024
    9 months ago
Abstract
Systems and methods for removal of thrombus from a blood vessel in a body of a patient are disclosed herein. The method can include: providing a thrombus extraction device including a proximal self-expanding member formed of a unitary fenestrated structure, a distal substantially cylindrical portion formed of a net-like filament mesh structure, and an inner shaft member connected to a distal end of the net-like filament mesh structure; advancing a catheter constraining the thrombus extraction device through a vascular thrombus, deploying the thrombus extraction; retracting the thrombus extraction device to separate a portion of the thrombus from the vessel wall and to capture the portion of the thrombus within the net-like filament mesh structure; and withdrawing the thrombus extraction device from the body to remove thrombus from the patient.
Description
BACKGROUND OF THE INVENTION

Thrombosis is a term for a blood clot occurring inside a blood vessel, and a venous thrombus is a blood clot (thrombus) that forms within a vein. A common type of venous thrombosis is a deep vein thrombosis (DVT). DVT is the formation of a blood clot (thrombus) within a deep vein, predominantly in the legs. Nonspecific signs may include pain, swelling, redness, warmness, and engorged superficial veins.


If the thrombus breaks off (embolizes) and flows towards the lungs, it can become a life-threatening pulmonary embolism (PE), a blood clot in the lungs. In addition to the loss of life that can arise from PE, DVT can cause significant health issues such as post thrombotic syndrome, which can cause chronic swelling, pressure, pain, and ulcers due to valve and vessel damage. Further, DVT can result in significant health-care costs either directly or indirectly through the treatment of related complications and inability of patients to work.


Three processes are believed to result in venous thrombosis. These are a decreased blood flow rate (venous stasis), increased tendency to clot (hypercoagulability), and changes to the blood vessel wall. DVT formation typically begins inside the valves of the calf veins, where the blood is relatively oxygen deprived, which activates certain biochemical pathways. Several medical conditions increase the risk for DVT, including diabetes, cancer, trauma, and antiphospholipid syndrome. Other risk factors include older age, surgery, immobilization (as with bed rest, orthopedic casts, and sitting on long flights), combined oral contraceptives, pregnancy, the postnatal period, and genetic factors. The rate of DVT increases dramatically from childhood to old age and in adulthood, about 1 in 1,000 adults develops it annually.


While current devices and methods of prevention and/or treatment of DVT exist, there are a number of shortcomings that have yet to be resolved, such as high incidence of DVT re-occurrence, use of devices not designed to remove large clot volumes, and/or complicated treatments involving multiple treatment devices and/or pharmaceuticals. Accordingly, new devices, systems, and methods of treating thrombus, and particularly DVT are desired.


BRIEF SUMMARY OF THE INVENTION

Aspects of the present disclosure relate to systems and methods for thrombus extraction, and particularly for thrombus extraction from a peripheral vasculature. The thrombus extraction devices of the present invention are designed to remove large clot volumes, including mature and organized clots, with reduced needs for pharmaceuticals, such as thrombolytics. This reduces risk of bleeding, post-treatment recovery time, and reduces health care procedure costs. The thrombus extraction device may comprise a self-expanding coring portion connected to a braided net so as to effectively core and separate large volumes of thrombus from large vessels in, for example, the venous system or arterial system while capturing the separated thrombus in the braided net.


In some embodiments, the thrombus can be extracted via the use of a thrombectomy system including an introducer sheath having a self-expanding funnel and a thrombus extraction catheter including a thrombus extraction device. The thrombus extraction device can include a self-expanding coring portion that can be a stent portion and an expandable cylindrical portion that can be a braided filament mesh. The expandable cylindrical portion can be formed onto a distal end of the self-expanding coring portion so as to form a unitary thrombus extraction device. In some embodiments, the coring element may have a sharp cutting edge to further enhance its ability to detach thrombus from the vessel wall.


One aspect of the present disclosure relates to a method of treating deep vein thrombosis in a peripheral vasculature of a patient. The method includes providing a thrombus extraction device including a proximal self-expanding coring portion, which can be a stent, formed of a unitary fenestrated structure and a distal expandable cylindrical portion, that can be tubular, formed of a braided filament mesh structure. In some embodiments, the mesh structure is integrally formed with the fenestrated structure so that a proximal end of the mesh structure is attached to a distal end of the fenestrated structure. The method includes advancing a catheter constraining the thrombus extraction device through a vascular thrombus in a venous vessel. In some embodiments, an intermediate shaft slidably extends through the catheter and a distal end thereof is coupled to a proximal end of the fenestrated structure. In some embodiments, an inner shaft slidably extends through the intermediate shaft and a distal end thereof is coupled to a distal end of the mesh structure. The method includes deploying the thrombus extraction device from the catheter from a constrained configuration to an expanded configuration. In some embodiments, the thrombus extraction device engages at least a wall of the venous vessel distally past a portion of the vascular thrombus at full expansion. The method includes retracting the thrombus extraction device proximally so that the coring portion cores and separates a portion of the vascular thrombus from the venous vessel wall while the mesh structure captures the vascular thrombus portion. The method includes withdrawing the thrombus extraction device from the patient to remove the vascular thrombus portion from the venous vessel.


In some embodiments, advancing the catheter includes inserting the catheter into the venous vessel until a radiopaque distal tip of the catheter is distally past the vascular thrombus portion. In some embodiments, deploying the thrombus extraction device from the catheter from the constrained configuration to the expanded configuration includes advancing the intermediate shaft distally until the coring portion of the thrombus extraction device is beyond a distal end of the catheter.


In some embodiments, deploying the thrombus extraction device further includes: locking the intermediate shaft with respect to the catheter; retracting the inner shaft with respect to the catheter and the intermediate shaft until a stop feature fixed on the inner shaft engages a corresponding feature on the stent portion slidably connected to the inner shaft for full expansion of the thrombus extraction device, which stent portion maintains sufficient radial force on the venous vessel wall to core and separate the vascular thrombus portion at full expansion; and dynamically coupling the inner shaft with respect to the intermediate shaft. In some embodiments, the coring portion has a coring angle between 30 degrees and 45 degrees when the thrombus extraction device is at full expansion. In some embodiments, deploying the thrombus extraction device further includes determining a position of the thrombus extraction device with respect to the catheter via imaging of a first radiopaque marker located on the catheter and a second radiopaque marker located on at least one of the intermediate shaft, the inner shaft, stent portion, or mesh structure.


In some embodiments, the vascular thrombus portion is captured into the mesh structure by entering the expandable tubular portion and/or cylindrical portion via at least opening or aperture located at the proximal end of the self-expanding stent portion. In some embodiments, the method includes inserting the catheter into the venous vessel through an access site, which access site is a popliteal access site, a femoral access site, or an internal jugular access site. In some embodiments, the venous vessel has a diameter of at least 5 millimeters and is at least one of a femoral vein, an iliac vein, a popliteal vein, a posterior tibial vein, an anterior tibial vein, or a peroneal vein.


In some embodiments the method further includes: percutaneously accessing the venous vessel of the patient with an introducer sheath through an access site into the venous vessel of the patient; advancing a distal end of the introducer sheath to a position proximal of the vascular thrombus; deploying a self-expanding funnel on the distal end of the introducer sheath; and inserting the catheter through a lumen of the introducer sheath so that a distal tip of the catheter is distally past the vascular thrombus portion. In some embodiments, deploying the self-expanding funnel includes: advancing an obturator having a capture sheath feature on a distal end thereof to unsheathe the self-expanding funnel from a constrained configuration within the capture sheath feature to a deployed configuration free of the capture sheath feature; and removing the obturator from the introducer sheath by retracting the obturator through or outside the deployed self-expanding funnel and through or outside the lumen of the introducer sheath. In some embodiments, withdrawing the thrombus extraction device from the patient includes: retracting the thrombus extraction device relative to the introducer sheath until an opening of the self-expanding stent portion is within the self-expanding funnel; collapsing the stent portion and mesh structure so as to compress the vascular thrombus portion therein; retracting the stent portion and mesh structure into the introducer sheath; and removing the thrombus extraction device from the introducer sheath.


In some embodiments the method further includes extruding at least some of the vascular thrombus portion through pores located at a distal portion of the expandable tubular portion and/or cylindrical portion and capturing a part of the at least some of the vascular thrombus portion in the self-expanding funnel or further compressing the at least one piece of the vascular thrombus portion through a mesh of the self-expanding funnel. In some embodiments the method further includes aspirating at least one piece of the vascular thrombus portion remaining within the self-expanding funnel from the venous vessel and through an aspiration port connected to a proximal end of the introducer sheath.


In some embodiments the method further includes verifying that the opening of the self-expanding stent portion is within the self-expanding funnel via fluoroscopy prior to collapsing the stent portion and mesh structure. In some embodiments, collapsing the stent portion and mesh structure includes: decoupling the inner shaft and the intermediate shaft; and advancing the inner shaft distally relative to the intermediate shaft. In some embodiments the method includes aspirating or infusing a thrombolytic agent into or from the venous vessel before, during, or after thrombus extraction.


One aspect of the present disclosure relates to a method of treating deep vein thrombosis in a peripheral vasculature of a patient. The method includes: percutaneously accessing a venous vessel of a patient with an introducer sheath through a popliteal access site into the venous vessel of the patient; and inserting a catheter constraining a thrombus extraction device through a lumen of the introducer sheath so that a distal tip of the catheter is distally past a portion of the vascular thrombus in the venous vessel, which thrombus extraction device includes a proximal self-expanding stent portion formed of a unitary fenestrated structure and a distal expandable tubular portion and/or cylindrical portion formed of a braided filament mesh structure. In some embodiments, a proximal end of the mesh structure is attached to a distal end of the fenestrated structure. The method includes deploying the thrombus extraction device from the catheter from a constrained configuration to an expanded configuration by advancing an intermediate shaft distally until the stent portion of the thrombus extraction device is beyond a distal end of the catheter, which intermediate shaft slidably extends through the catheter and a distal end thereof is coupled to a proximal end of the fenestrated structure. The method includes retracting the thrombus extraction device proximally so that the stent portion cores and separates a portion of the vascular thrombus from the venous vessel wall while the mesh structure captures the vascular thrombus portion. The method includes withdrawing the thrombus extraction device from the patient.


In some embodiments, deploying the thrombus extraction device further includes retracting an inner shaft with respect to the catheter and the intermediate shaft until a stop feature on the inner shaft engages a corresponding feature on the stent portion for full expansion of the thrombus extraction device. In some embodiments, the stent portion maintains sufficient radial force on the venous vessel wall to core and separate the vascular thrombus portion at full expansion, and in some embodiments the inner shaft slidably extends through the intermediate shaft and a distal end thereof is coupled to a distal end of the mesh structure. In some embodiments the method includes deploying a self-expanding funnel on a distal end of the introducer sheath proximal of the vascular thrombus. In some embodiments, deploying the self-expanding funnel includes: advancing an obturator having a capture sheath feature on a distal end thereof to unsheathe the self-expanding funnel from a constrained configuration within the capture sheath feature to a deployed configuration free of the capture sheath feature; and removing the obturator from the introducer sheath by retracting the obturator through or outside the deployed self-expanding funnel and through or outside the lumen of the introducer sheath.


One aspect of the present disclosure relates to a method for removal of thrombus from a blood vessel in a body of a patient, which blood vessel can be an artery or a vein. The method includes: providing a thrombus extraction device including a proximal self-expanding member formed of a unitary fenestrated structure, a distal substantially cylindrical portion formed of a net-like filament mesh structure which is attached to the unitary fenestrated structure, and an inner shaft member connected to a distal end of the net-like filament mesh structure; advancing a catheter constraining the thrombus extraction device through a vascular thrombus, and deploying the thrombus extraction device by either advancing the thrombus extraction device beyond a distal end of the catheter or retracting the catheter relative to the thrombus extraction device, thus exposing the thrombus extraction device distally past a portion of the thrombus and allowing expansion of the thrombus extraction device to engage a wall of the blood vessel. The method includes: retracting the thrombus extraction device to separate a portion of the thrombus from the vessel wall and to capture the portion of the thrombus within the net-like filament mesh structure; and withdrawing the thrombus extraction device from the body to remove thrombus from the patient.


In some embodiments, advancing the catheter includes inserting the catheter into the blood vessel until a radiopaque distal tip of the catheter is distally past the thrombus portion. In some embodiments, the net-like filament mesh structure is integrally formed with the fenestrated structure so that a proximal end of the net-like filament mesh structure is attached to a distal end of the fenestrated structure. In some embodiments, the self-expanding member of the thrombus extraction device includes a stent portion, which retracting the thrombus extraction device further includes coring the thrombus portion from the vessel wall with the stent portion. In some embodiments, the thrombus portion is captured with the net-like filament mesh structure by entering the net-like filament mesh structure via at least one aperture or opening located at a proximal end of the stent portion.


In some embodiments, the thrombus extraction device is advanced beyond the distal end of the catheter by advancing an intermediate shaft distally through the catheter, which intermediate shaft slidably extends through the catheter and a distal end of the intermediate shaft is coupled to a proximal end of the fenestrated structure. In some embodiments the method includes, retracting the inner shaft member relative to the catheter and the intermediate shaft until a stop feature fixed on the inner shaft member engages a corresponding feature on the fenestrated structure and locking the inner shaft member with respect to the intermediate shaft for full expansion of the thrombus extraction device. In some embodiments, the inner shaft member can be dynamically locked with respect to the intermediate shaft.


In some embodiments the method includes, collapsing the thrombus extraction device so as to compress the thrombus portion therein prior to withdrawing the thrombus extraction device from the body. In some embodiments, collapsing includes unlocking the inner shaft member and the intermediate shaft and advancing the inner shaft member distally relative to the intermediate shaft.


In some embodiments the method includes, fluoroscopically monitoring deployment of the thrombus extraction device and ceasing advancing the thrombus extraction device beyond the distal end of the catheter or retracting the catheter relative to the thrombus extraction device based on a position of a first radiopaque marker located on the catheter relative to a second radiopaque marker located on the thrombus extraction device. In some embodiments, the thrombus is located in a peripheral vasculature of the patient and the blood vessel has a diameter of at least 5 millimeters and includes at least one of a femoral vein, an iliac vein, a popliteal vein, a posterior tibial vein, an anterior tibial vein, or a peroneal vein.


In some embodiments the method includes, percutaneously accessing a blood vessel that can be venous vessel of the patient with an introducer sheath through a popliteal access site and inserting the catheter through a lumen of the introducer sheath and into the venous vessel of the patient. In some embodiments the method includes, percutaneously accessing a venous vessel of the patient with an introducer sheath through a femoral access site and inserting the catheter through a lumen of the introducer sheath and into the venous vessel of the patient, which thrombus extraction device extends within a popliteal sheath and retraction of the thrombus of the extraction device is in a direction of blood flow. In some embodiments the method includes, percutaneously accessing a venous vessel of the patient with an introducer sheath through an internal jugular access site and inserting the catheter through a lumen of the introducer sheath and into the venous vessel of the patient, which thrombus extraction device extends within a popliteal sheath extending from the patient and retraction of the thrombus of the extraction device is in a direction of blood flow. In some embodiments the method includes, aspirating or infusing a thrombolytic agent into or from the blood vessel before, during, or after thrombus extraction.


One aspect of the present disclosure relates to a thrombus extraction device for removal of a vascular thrombus from a blood vessel of a patient. The thrombus extraction device includes: a catheter having a proximal end and a distal end, an outer shaft defining a first lumen, an intermediate shaft defining a second lumen, and an inner shaft, which intermediate shaft is coaxial the first lumen and the inner shaft is coaxial the second lumen; a proximal self-expanding coring element formed of a unitary fenestrated structure having a proximal end and a distal end and configured to core and separate a portion of the vascular thrombus from the blood vessel, which proximal end of the fenestrated structure is coupled to the distal end of the intermediate shaft; and a distal expandable cylindrical portion formed of a braided filament mesh structure having a proximal end and a distal end and configured to capture the vascular thrombus portion, which proximal end of the mesh structure is attached to the distal end of the fenestrated structure, and which distal end of the mesh structure is coupled to the distal end of the inner shaft. In some embodiments, full expansion of the mesh structure and fenestrated structure varies based on a position of the intermediate shaft relative the inner shaft of the catheter.


In some embodiments, the coring element includes a stent. In some embodiments, the stent includes a ring feature slidably coupled to the inner shaft and/or to one or several strut(s) of the stent and the inner shaft includes a stop feature fixed to the inner shaft, which stop feature is configured to engage with the ring feature when the mesh structure and the stent are in full expansion.


In some embodiments the device includes, a locking mechanism that can secure the inner shaft relative to the intermediate shaft when the mesh structure and the stent are in full expansion. In some embodiments, the locking mechanism can maintain a desired radial force on a vessel wall when the stent is compressed. In some embodiments, the locking mechanism moveably secures the inner shaft relative to the intermediate shaft via a spring.


In some embodiments, the proximal end of the mesh structure is integrally formed with the distal end of the fenestrated structure to create a unitary structure. In some embodiments, the coring element and the mesh structure are receivable within the outer shaft. In some embodiments, the coring element and mesh structure are in a constrained configuration when received within the outer shaft and an expanded configuration when free of the constraining outer shaft.


In some embodiments, the mesh structure includes a plurality of radial ribs or grooves longitudinally spaced between the proximal and distal ends of the mesh structure. In some embodiments, the mesh structure has a first pore size at a proximal portion and a second pore size at a distal portion, which first pore size is different from the second pore size. In some embodiments, the second pore size is greater than the first pore size.


In some embodiments, the proximal end of the fenestrated structure is coupled to the distal end of the intermediate shaft via a plurality of struts extending at a coring angle relative to a longitudinal axis of the thrombus extraction device. In some embodiments, the coring angle is in a range between 30 degrees and 45 degrees. In some embodiments, the coring element has a length in a range between 25 millimeters and 100 millimeters and the mesh structure has a length in a range between 100 millimeters and 500 millimeters in, for example, the collapsed state. In some embodiments, the coring element has a diameter in a range between 8 millimeters and 25 millimeters at full expansion and the mesh structure has a diameter in a range between 8 millimeters and 25 millimeters at full expansion.


In some embodiments, the fenestrated structure includes a plurality of interconnected struts. In some embodiments, the proximal end of the fenestrated structure has fewer struts than the distal end of the fenestrated structure to thereby facilitate collapse of the coring element and to facilitate maintenance of a coring orientation when the blood vessel is tortuous. In some embodiments, the fenestrated structure includes a plurality of interconnected struts defining an opening at the proximal end of the fenestrated structure. In some embodiments, at least some of the plurality of interconnected struts defining the opening include a sharpened proximal edge.


In some embodiments the device includes, a first radiopaque marker located on the outer shaft and a second radiopaque marker located on the distal end of the inner shaft. In some embodiments the device includes, a locking mechanism that can secure a relative position of the outer shaft with respect to the intermediate shaft. In some embodiments the device includes, a handle including a plunger that can control a relative position of the inner shaft with respect to the intermediate shaft and to selectively secure the relative position of the inner shaft with respect to the intermediate shaft.


One aspect of the present disclosure relates to an introducer sheath for accessing and removing thrombus within a blood vessel of a patient. The introducer sheath includes: an elongate sheath including a proximal end, a distal end, and a lumen extending therebetween; a self-expanding funnel affixed to the distal end of the elongate sheath; and an obturator including an elongate shaft having a capture sheath located proximate to a distal end of the obturator, which capture sheath can retain the self-expanding funnel in a constrained configuration and the obturator is configured to be received within the lumen of the elongate sheath.


In some embodiments the introducer sheath includes, a sealed hub located at the proximal end of the elongate sheath. In some embodiments, the sealed hub includes an aspiration port. In some embodiments, the self-expanding funnel has a diameter equal to or less than a diameter of the elongate sheath when the self-expanding funnel is in the constrained configuration. In some embodiments, the obturator includes an atraumatic tip located at the distal end of the obturator, which atraumatic tip is radiopaque. In some embodiments, the obturator includes a connection fitting configured to sealingly connect with the distal end of the elongate sheath. In some embodiments, the self-expanding funnel is permeable to blood. In some embodiments, the self-expanding funnel includes a conical shape formed from at least one of a castellated nitinol braid, a nitinol braided stent, a laser cut nitinol, a laser cut polymer tube, an injection molded polymeric structure, or an inflatable balloon.


One aspect of the present disclosure relates to a method of accessing and removing thrombus from a venous vessel of a patient. The method includes: providing an introducer sheath including an elongate sheath defining a lumen, a self-expanding funnel affixed to a distal end of the elongate sheath, and an elongate obturator extending through the lumen and retaining the self-expanding funnel in a constrained configuration within a capture sheath of the obturator; percutaneously accessing a venous vessel of a patient with the introducer sheath through an access site, which access site includes a popliteal access site, a femoral access site, or an internal jugular access site; advancing a distal end of the introducer sheath to a position proximal of a thrombus; deploying the self-expanding funnel from the constrained configuration within the capture sheath to an expanded configuration free of the capture sheath; capturing thrombus in the self-expanding funnel; and aspirating the captured material through the lumen of the elongate sheath.


In some embodiments, deploying the self-expanding funnel includes distally advancing the obturator relative to the elongate sheath to unsheathe the self-expanding funnel from the constrained configuration to the expanded configuration and removing the obturator from the introducer sheath by proximally retracting the obturator through the deployed self-expanding funnel and through the lumen of the elongate sheath. In some embodiments, deploying the self-expanding funnel includes proximally retracting the sheath over the obturator to unsheathe the self-expanding funnel from the constrained configuration to the expanded configuration and removing the obturator from the introducer sheath by proximally retracting the obturator through or outside of the deployed self-expanding funnel and through or outside of the lumen of the elongate sheath.


In some embodiments the method includes, inserting a catheter constraining a thrombus extraction device through the lumen of the elongate sheath so that a distal tip of the catheter is distally past the vascular thrombus portion, deploying the thrombus extraction device from the catheter, and proximally retracting the thrombus extraction device relative to the introducer sheath until an opening of the thrombus extraction device is within the self-expanding funnel. In some embodiments the method includes, extruding a portion of thrombus captured by the thrombus extraction device through the thrombus extraction device. In some embodiments, the thrombus captured by the self-expanding funnel includes the extruded portion of thrombus captured by the thrombus extraction device.


One aspect of the present disclosure relates to a thrombectomy system for removal of a vascular thrombus from a blood vessel of a patient. The thrombectomy system includes: a thrombus extraction catheter including a thrombus extraction device. The thrombus extraction devices includes: a proximal self-expanding coring element formed of a unitary fenestrated structure; and a distal expandable cylindrical portion formed of a braided filament mesh structure having a proximal end attached to a distal end of the fenestrated structure. The thrombectomy system includes: a catheter including a lumen constraining the thrombus extraction device, an intermediate shaft connected to a proximal end of the self-expanding coring element, and an inner shaft connected to a distal end of the expandable cylindrical portion and slidably displaceable with respect to the intermediate shaft to control expansion of the expandable cylindrical portion. The thrombectomy system includes: an introducer sheath including: an elongate sheath defining an insertion lumen; a self-expanding funnel affixed to a distal end of the elongate sheath; and an elongate obturator including a sheath capture feature configured to retain the self-expanding funnel in a constrained configuration.


In some embodiments, the obturator is configured to be received within the lumen of the elongate sheath and includes a connection fitting configured to sealingly connect with a distal end of the elongate sheath. In some embodiments, the self-expanding funnel has a length that is at least equal to a length of the self-expanding coring element. In some embodiments, the introducer sheath includes a self-sealing aperture located at a proximal end of the introducer sheath.


In some embodiments the thrombectomy system includes, an aperture dilator sized to be receivable within the self-sealing aperture and having an internal diameter larger than a diameter of the self-sealing aperture in a sealed configuration. In some embodiments, the introducer sheath includes an aspiration port located at a proximal end of the inserter sheath, which aspiration port is selectably fluidly connected to the insertion lumen via an aspiration valve.


In some embodiments, the insertion lumen is sized to slidably receive the thrombus extraction catheter. In some embodiments, the expandable cylindrical portion is formed on the self-expanding coring element to form a unitary thrombus extraction device.


One aspect of the present disclosure relates to a method of manufacturing a unitary thrombus extraction device including a proximal fenestrated structure including a plurality of struts and a distal net-like filament mesh structure formed on a distal end of the fenestrated structure. The method includes: identifying a plurality of formation points formed by some of the plurality of struts of the unitary fenestrated structure; threading a unique pair of wires including a first wire and a second wire overlaying the first wire through each of the formation points; and weaving the net-like filament mesh structure from the unique pairs of wires such that one of: the first wires and the second wires do not form loops about the formation points through which the first wires and second wires are threaded, and such that the other of: the first wires and the second wires form loops about the formation points through which the first wires and the second wires are threaded.


In some embodiments, the net-like filament mesh structure is woven from the unique pairs of wires such that the first wires do not form loops about the formation points through which the first wires are threaded and such that the second wires form loops about the formation points through which the second wires are threaded. In some embodiments, each of the formation points includes a peak strut. In some embodiments, the fenestrated structure includes 12 peak struts. In some embodiments, the net-like filament mesh includes 48 wires. In some embodiments, the net-like filament mesh structure is manually woven. In some embodiments, the net-like filament mesh structure is automatically woven.


Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating various embodiments, are intended for purposes of illustration only and are not intended to necessarily limit the scope of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of one embodiment of a thrombectomy system for removal of a thrombus from a blood vessel of a patient.



FIG. 2 is a side view of one embodiment of the thrombus extraction catheter having a thrombus extraction device is a deployed configuration.



FIG. 3 is a side view of one embodiment of the thrombus extraction catheter having a thrombus extraction device is a deployed configuration at full expansion.



FIG. 4 is a side view of one embodiment of a self-expanding coring element.



FIG. 5 is a top view of one embodiment of a self-expanding coring element.



FIG. 6 is a front view of one embodiment of a self-expanding coring element.



FIG. 7 is a side view of one embodiment of the thrombus extraction device in a full expansion configuration.



FIG. 8 is a view of one embodiment of a ball shaped thrombus captured in a thrombus extraction device.



FIG. 9 is a side view of one embodiment of the braided filament mesh structure having multiple pore sizes.



FIG. 10 is a side view of one embodiment of the thrombus extraction device including a plurality of circumferential grooves.



FIG. 11 is a schematic illustration of one embodiment of a weaving pattern for forming the cylindrical portion and/or the braided filament mesh structure onto the self-expanding coring element.



FIG. 12 is a section view of an embodiment of the handle with a plunger in a first position.



FIG. 13 is a section view of an embodiment of the handle with a plunger in a second position.



FIG. 14 is a close-up, section view of a portion of the handle with a plunger in a second position.



FIG. 15 is a side view of one embodiment of an obturator having a constant dimension of an elongate shaft.



FIG. 16 is a side view of one embodiment of an obturator having a variable dimension of an elongate shaft.



FIG. 17 is a detailed section view of one embodiment of the capture sheath of the obturator.



FIG. 18 is a side view of one embodiment of an introducer sheath in an undeployed configuration.



FIG. 19 is a side view of one embodiment of an introducer sheath in a partially deployed configuration.



FIG. 20 is a side view of one embodiment of an introducer sheath in a deployed configuration.



FIG. 21 is a side view of one embodiment of an introducer sheath comprising an inflatable balloon.



FIG. 22 is a schematic depiction of one embodiment of accessing the blood vessel via a popliteal access site.



FIGS. 23-A through 23-H are views depicting one embodiment of a process for fully expanding the thrombus extraction device in a blood vessel.



FIGS. 24-A and 24-B are views depicting alternative steps in the process for fully expanding the thrombus extraction device in a blood vessel.



FIGS. 25-A through 25-H are views depicting one embodiment of a process for removal of thrombus with an expanded thrombus extraction device.



FIG. 26 is a schematic depiction of one embodiment of accessing the blood vessel via an internal jugular access site.



FIG. 27 is a schematic depiction of one embodiment of accessing the blood vessel via a popliteal access site with an extension sheath 2300.



FIG. 28 is a schematic depiction of one embodiment of accessing the blood vessel via a popliteal access site and a femoral access site.





DETAILED DESCRIPTION OF THE INVENTION

The present disclosure relates to a thrombectomy system for removal of a vascular thrombus from a blood vessel of a patient. The thrombectomy system can remove thrombus from a blood vessel, and particularly from a venous vessel of a patient via the coring of the thrombus and/or the separating of the thrombus from the walls of the blood vessel that can occur when the thrombectomy system is retracted through the vascular thrombus. Thrombus that is cored and/or separated from the walls of the blood vessel can be captured within the thrombectomy system and removed from the patient.


The thrombectomy system can include a thrombus extraction catheter including a Thrombus Extraction Device (“TED”). The TED can include a proximal self-expanding coring element that can be a stent portion and/or that can be formed of a unitary fenestrated structure. The TED can include a distal expandable cylindrical portion formed of a braided filament mesh structure. The braided filament mesh structure can be formed on the coring element to thereby form a unitary TED. This forming of the braided filament mesh structure directly on the coring element can eliminate problems, such as: inconsistent material properties, decreased flexibility, decreased strength, and/or quality control issues, arising from connecting the braided filament mesh structure to the coring element via, for example, welding or adhesive.


The expansion of the TED can be controlled by the relative movement of portions of the thrombus extraction catheter. For example, a proximal end of the TED, and specifically a proximal end of the self-expanding coring element can be connected to an intermediate shaft that is slidable within an outer shaft of the thrombus extraction catheter. A distal end of the TED, and specifically a distal end of the expandable cylindrical portion can be connected to an inner shaft that is slidable within the intermediate shaft of the thrombus extraction catheter. As the inner shaft and the intermediate shaft are slidable with respect to the outer shaft, the TED can be withdrawn into the outer shaft to constrain the TED to an undeployed configuration, also referred to herein as a constrained configuration. Similarly, the TED can be deployed from the outer shaft by the relative movement of the intermediate shaft with respect to the outer shaft. After the TED has been deployed from the outer shaft, the inner shaft and the intermediate shaft can be moved with respect to each other to either expand or contract the expandable cylindrical portion of the TED and to bring the self-expanding coring element to full expansion.


The thrombectomy system can include an introducer sheath that can be sized to slidably receive the outer sheath of the thrombus extraction catheter. The introducer sheath can include a sealed aperture at a proximal end of the introducer sheath and a self-expanding funnel. The self-expanding funnel can be located at a distal end of the introducer sheath and can be selectably held in a constrained position by a capture sheath. In some embodiments, the self-expanding funnel can be slidably contained within the introducer sheath and can specifically be slidable with respect to the distal end of the introducer sheath. In some embodiments, the self-expanding funnel can be distally slide from a constrained configuration within the introducer sheath to a deployed configuration at which the self-expanding funnel extends from the distal end of the capture sheath.


The self-expanding funnel can be sized to engage with the self-expanding coring element when the TED is retracted towards the funnel. As the TED is retracted into the funnel, the funnel compresses the TED, and specifically the coring element, and guides the TED, and specifically the coring element into a lumen defined by the introducer sheath. The TED can be retracted until it is completely contained within the introducer sheath, and then the TED and the thrombus captured in the TED can be removed from the patient via the sealed aperture.


The thrombectomy system can access the blood vessel containing the thrombus via a plurality of access sites. These can include, for example, an internal jugular (IJ) access site, a femoral access site, a popliteal access site, or other venous or arterial access sites. The thrombectomy system can be used to extract thrombus and/or embolus from a variety of venous and/or arterial vessels, which can be peripheral vessels, including any vessel, including, by way of non-limiting example, a venous vessel, having a diameter of at least 5 millimeters (mm). The thrombectomy system can be inserted through an access point into a circulatory system of a patient and can be advanced to a position proximate to the thrombus. The TED can then be advanced through the thrombus, and, after being expanded distally of the thrombus, the TED can be retracted through the thrombus, thereby capturing all or portions of the thrombus.


With reference now to FIG. 1, one embodiment of a thrombectomy system 100, also referred to herein as a thrombus extraction system 100, is shown. The thrombectomy system 100 can be used to access a portion of a blood vessel such as a venous vessel containing thrombus and the thrombectomy system 100 can be used to remove all or portions of that thrombus from the blood vessel. The thrombectomy system 100 can include an introducer sheath 102 and a thrombus extraction catheter 104.


The introducer sheath 102 comprises an elongate member 106, also referred to herein as an elongate sheath 106, having a proximal end 108 and a distal end 110. The elongate member 106 can be elastic and/or flexible. The elongate member 106 can comprise any desired length and any desired diameter. In some embodiments, the elongate sheath 106 can have an outer diameter of at least 10 French, at least 12 French, at least 14 French, at least 18 French, at least 20 French, at least 22 French, between 14 French and 24 French, between 15 French and 21 French, between 16 French and 22 French, and/or any other or intermediate size.


The elongate member 106 can comprise a radiopaque marker that can be, for example, part of the distal end 110 of the elongate member 106. The elongate member 106 defines a lumen extending between the proximal end 108 and the distal end 110. The lumen 1701 (shown in FIG. 17) of the elongate member 106 can be sized to slidably receive the thrombus extraction catheter 104. In some embodiments, the lumen 1701 of the elongate member 106 can have an internal diameter of at least 2 French, at least 10 French, at least 14 French, at least 18 French, at least 20 French, at least 22 French, between 11 French and 12 French, between 10 French and 22 French, between 14 French and 21 French, between 16 French and 20 French, and/or any other or intermediate size. The lumen 1701 can terminate at a sealed aperture 112, also referred to herein as a sealed hub 112, located at the proximal end 108 of the elongate member 106. In some embodiments, the sealed aperture 112 can be self-sealing and/or can comprise a self-sealing seal.


The introducer sheath 102 can further include an aspiration port 114 that can be at the proximal end 108 of the elongate member 106 and/or connected to the proximal end 108 of the elongate member 106 via, for example, a connecting tube 116. In some embodiments, the aspiration port 114 can be a part of, and/or connected to the sealed hub 112. In some embodiments, the aspiration port 114 can be selectively fluidly connected to the lumen 1701 via, for example, a valve 118, also referred to herein as an aspiration valve 118, which valve 118 can be a tubing clamp that can be located at a position along the connecting tube 116 between the lumen 1701 and the aspiration port 114.


The introducer sheath 102 can further hold an obturator 120, also referred to herein as a dilator 120. The obturator 120 can be configured to hold a self-expanding funnel that can be attached to the distal end 110 of the elongate member 106 in a constrained configuration, and to release the self-expanding funnel from that constrained configuration. The obturator 120 can comprise a proximal end 122, a distal end 124, and an elongate shaft 126 extending therebetween. In some embodiments, the elongate shaft 126 can have a length that is greater than a length of the elongate member 106 of the introducer sheath 102. The obturator 120 can further define a lumen extending through the obturator 120, which lumen can receive a guidewire. In some embodiments, the guidewire can comprise any desired dimensions and can, in some embodiments, have a diameter of approximately 0.035 inches. The obturator 120 can be sized and shaped so as to be able to slidably move through the lumen of the elongate member 106.


The thrombectomy system 100 can include the thrombus extraction catheter 104. The thrombus extraction catheter 104 can have a proximal end 130 and a distal end 132. A handle 134, also referred to herein as a deployment handle 134, can be located at the proximal end 130 of the thrombus extraction catheter 104 and can connect to a catheter portion 136, also referred to herein as the catheter 136.


The catheter 136 can include an outer shaft 138, an intermediate shaft 140, and an inner shaft. The outer shaft 138 can comprise a variety of lengths and sizes. In some embodiments, the outer shaft 138 can be sized to slidably fit within the introducer sheath 102. In some embodiments, the outer shaft 138 can have a size of at least 8 French, at least 10 French, at least 11 French, at least 12 French, at least 14 French, at least 16 French, between 8 French and 14 French, between 11 French and 12 French, and/or any other or intermediate size.


Each of the outer shaft 138, the intermediate shaft 140, and the inner shaft can define a lumen that can be a central, axial lumen. In some embodiments, the intermediate shaft 140 can be sized and/or shaped to slidably fit within the lumen 802 (shown in FIG. 8) of the outer shaft 138 such that the intermediate shaft 140 and the outer shaft 138 are coaxial. Similarly, in some embodiments, the inner shaft can be sized and/or shaped to slidably fit within the lumen 804 (shown in FIG. 8) of the intermediate shaft 140 such that the inner shaft and the intermediate shaft 140 are coaxial. In this configuration, each of the outer shaft 138, the intermediate shaft 140, and the inner shaft can be displaced relative to the others of the outer shaft 138, the intermediate shaft 140, and the inner shaft.


In some embodiments, each of the outer shaft 138, the intermediate shaft 140, and the inner shaft can have the same length, and in some embodiments some or all of the outer shaft 138, the intermediate shaft 140, and the inner shaft can have different lengths. In some embodiments, for example, the intermediate shaft 140 can be relatively longer than the outer shaft 138, and in some embodiments, the inner shaft can be relatively longer than the intermediate shaft 140.


The thrombus extraction catheter 104 can further include a thrombus extraction device (TED). The TED can connect to the intermediate shaft 140 and the inner shaft, and can be contained in an undeployed configuration within the lumen 802 of the outer shaft 138. In some embodiments, the relative positioning of the outer shaft 138, the intermediate shaft 140, and/or the inner shaft can result in the TED being in an undeployed configuration, a deployed configuration, a partial expansion configuration, and/or a full expansion configuration. In some embodiments, the TED in the deployed configuration can be in either the full expansion configuration or in the partial expansion configuration.


The handle 134 can include a distal end 142, also referred to herein as a lock end 142, and a proximal end 144, also referred to herein as a plunger end 144. In some embodiments, the intermediate shaft 140 connects to, and distally extends towards the distal end 132 of the thrombus extraction catheter 104 from the distal end 142 of the handle 134.


As seen in FIG. 1, the distal end 142 of the handle 134 can include a lock feature 146 such as, for example, a spinlock. The lock feature 146 can selectively engage and/or lockingly engage with a mating feature 148 located on a proximal end 150 of the outer sheath 138. In some embodiments, for example, the outer sheath 138 can proximally slide over the intermediate sheath 140 until the lock feature 146 engages with the mating feature 148 to thereby secure the position of the outer sheath 138 with respect to the intermediate sheath 140. In embodiments in which the intermediate shaft 146 is relatively longer than the outer shaft 138, a portion of the intermediate shaft 146 distally extends from a distal end 152 of the outer shaft 138 when the outer shaft 138 is lockingly engaged with the lock feature 146.


The handle 134 can include a plunger 154 that can be movable between a first, non-extended position and a second, extended position. In some embodiments, the plunger 154 can be moved from the first position to the second position by proximally displacing the plunger 154 relative to the handle 134. The plunger 154 can be lockable in one or both of the first position and/or the second position.


The plunger 154 can connect to the inner shaft such that the inner shaft is displaceable relative to the handle 134, the outer shaft 138, and/or the intermediate shaft 140 via the movement of the plunger 154 from the first position to the second position. In some embodiments in which the inner shaft is relatively longer than the intermediate shaft 140 and/or the outer shaft 138, the inner shaft can have a length such that the inner shaft distally extends past a distal end of the intermediate shaft 140 regardless of whether the plunger 154 is in the first position or the second position.


The thrombus extraction catheter 104 can further include a first flush port 155 connecting to the outer shaft 138 and a second flush port 156 connecting to the handle 134. In some embodiments, the first flush port 155 can be fluidly connected to the lumen 802 of the outer shaft 138 so as to allow the flushing of the lumen 802 of the outer shaft 138 via the first flush port 155. In some embodiments, the second flush port 156 can be fluidly connected to an internal portion of the handle 134 and thereby the lumen of the intermediate shaft 140 so as to allow the flushing of the lumen of the intermediate shaft 140.


The thrombectomy system 100 can further include a loading funnel 158. The loading funnel 158 can include a funnel portion 160 and a shaft portion 162. The funnel portion 160 can define a funnel shaped interior volume connecting to a lumen of the shaft portion 162. The funnel shaped interior volume can be sized and shaped to receive the self-expanding funnel and to move the self-expanding funnel to a constrained position as the self-expanding funnel is advanced through the funnel portion 160. The funnel shaped interior volume and the lumen can be sized to allow the distal end 124 of the obturator 120 to pass completely through the loading funnel 158.


In some embodiments, the loading funnel 158 can be configured to facilitate loading of the self-expanding funnel into the obturator 102. In some embodiments, the self-expanding funnel can be loaded by inserting the obturator 120 through the elongate member 106 such that the obturator 120 extends from the distal end 110 of the elongate member 106 and beyond the self-expanding funnel. The loading funnel 158 can then be proximally slid over the obturator 120 and the self-expanding funnel until the self-expanding funnel is fully encapsulated by the loading funnel 158 and/or until the self-expanding funnel is in the constrained configuration. The obturator 120 can then be retracted to thereby load and/or capture the self-expanding funnel within a portion of the obturator 120, and the loading funnel 158 can then be removed from the obturator 120 and the elongate member 106.


The thrombectomy system 100 can further include a sealed hub dilator 170, also referred to herein as a seal dilator 170 and/or an aperture dilator 170. A section view of seal dilator 170 is shown in FIG. 1. The seal dilator 170 can be sized and shaped for insertion into the sealed aperture 112 prior to removal of thrombus through the sealed aperture 112. By this insertion into the sealed aperture 112, the seal dilator 170 can dilate the sealed aperture 112. In some embodiments, this dilation of the sealed aperture 112 can prevent the application of force from the sealed aperture 112 onto the thrombus during removal of the thrombus through the sealed aperture 112. In some embodiments, the seal dilator 170 can comprise an insertion portion 172 configured to facilitate the insertion of the seal dilator 170 into the sealed aperture 112. The seal dilator 170 can further comprise a body portion 174 that can, alone, or together with the insertion portion 172 define an extraction lumen 176 through which the thrombus can be removed from the lumen 1701 of the elongate member 106. In some embodiments, the internal diameter of the extraction lumen 176 can be larger than a diameter of the sealed aperture 112 in a sealed configuration


With reference now to FIG. 2, a side view of one embodiment of the thrombus extraction catheter 104 is shown. The thrombus extraction catheter 104 includes the handle 134, the outer shaft 138, the intermediate shaft 140, the inner shaft 200, and the thrombus extraction device 202, also referred to herein as the TED 202. As shown in FIG. 2, the outer shaft 138 is proximately displaced relative to the handle 134 such that the mating feature 148 of the outer shaft 138 is contacting the locking feature 146 of the handle 134. Due to this positioning of the outer shaft 138 with respect to the handle 134, each of the intermediate shaft 140, the inner shaft 200, and the TED 202 distally extend beyond a distal end 204 of the outer shaft 138. The thrombus extraction device 202 shown in FIG. 2 is in a deployed and partial expansion configuration.


The thrombus extraction device 202 can include a self-expanding coring element 206, and an expandable cylindrical portion 208. The self-expanding coring element 206 can be relatively more proximally located on the thrombus extraction catheter 104 than the expandable cylindrical portion 208. The self-expanding coring element 206 can include a proximal end 210 connecting to a distal end 212 of the intermediate shaft 140 and a distal end 214 connecting to a proximal end 216 of the expandable cylindrical portion 208. The distal end 217 of the expandable cylindrical portion 208 can connect to a distal end 218 of the inner shaft 200.


In some embodiments, the distal end 218 of the inner shaft 200 can further include a tip 220 such as an atraumatic tip and/or a radiopaque marker 222. In some embodiments, the tip 220 can include the radiopaque marker 222. Further radiopaque markers can be located on, for example, the outer shaft 138 and specifically the distal end 204 of the outer shaft 138 and/or the distal end 212 of the intermediate shaft 140. In some embodiments, one or both of the distal end 204 of the outer shaft 138 and the distal end 212 of the intermediate shaft 140 can each comprise a radiopaque marker. In some embodiments, the atraumatic tip 220 can define a channel configured to allow the guidewire to pass through the atraumatic tip 220.


With reference now to FIG. 3, a side view of one embodiment of the thrombus extraction catheter 104 with the thrombus extraction device 202 in the deployed and full expansion configuration is shown. In contrast to the embodiment of FIG. 2, the plunger 154 is in the second position, proximally retracted from the handle 134, and the inner shaft 200 is thereby proximally retracted relative to the intermediate shaft 140 to thereby fully expand the expandable cylindrical portion 208 and two secure the expandable cylindrical portion 208 and the self-expanding coring element 206 in full expansion configurations and/or in full expansion.


The thrombus extraction catheter 104 can comprise one or several features configured to secure the thrombus extraction device 202, and specifically the self-expanding coring element 206 and/or the expandable cylindrical portion 208 in a fully expanded position and/or in full expansion. As used herein, full expansion occurs when the thrombus extraction device 202 is deployed and when the plunger 154 is in the second position. In some embodiments, one or several dimensions of the thrombus extraction device 202 can vary when the thrombus extraction device 202 is in full expansion. In some embodiments, this can facilitate apposition of the walls of the blood vessel by the thrombus extraction device 202 and/or a desired force or force level applied to the walls of the blood vessel by the thrombus extraction device 202.


In some embodiments, the plunger 154 can be locked in the second position by, for example, rotating the plunger 154 with respect to the handle 134 to thereby engage one or several locking features on the plunger 154 and in the handle 134. In some embodiments, by locking the plunger 154 in the second position, the thrombus extraction device 202, and specifically the self-expanding coring element 206 and/or the expandable cylindrical portion 208 can be secured in the full expansion by securing the position of the inner shaft 200 with respect to the intermediate shaft 140. In some embodiments, securing the position of the inner shaft 200 with respect to the intermediate shaft 140 can include locking the inner shaft 200 with respect to the intermediate shaft 140 and/or coupling the position of the inner shaft 200 with respect to the position of the intermediate shaft 140. In some embodiments, this locking and/or coupling can be static, referred to herein as statically locked and/or statically coupled, in that the position of the inner shaft 200 is fixed with respect to the position of the intermediate shaft 140, and in some embodiments, this locking and/or coupling can be dynamic, referred to herein as dynamically locked and/or dynamically coupled, in that the position of the inner shaft 200 with respect to the intermediate shaft 140 is limited. In some embodiments, and as will be discussed at greater length below, the inner shaft 200 can be dynamically locked to the plunger 154 via a compliance spring 1214 which allows some movement of the inner shaft 200 with respect to the intermediate shaft 140 when the plunger is locked in the second position. Thus, in such an embodiment, the inner shaft 200 is dynamically locked and/or dynamically coupled to the intermediate shaft 140 and/or with respect to the intermediate shaft 140.


With reference now to FIG. 4, a side view of one embodiment of the self-expanding coring element 206 is shown. The self-expanding coring element 206 can comprise a variety of shapes and sizes and can be made from a variety of materials. In some embodiments, the self-expanding coring element can be made from a shape memory material such as, for example, a shape memory alloy and/or a shape memory polymer. In some embodiments, the self-expanding coring element 206 can comprise a nitinol and/or a nitinol alloy.


The self-expanding coring element 206 can be made using a variety of techniques including, for example, welding, laser welding, cutting, laser cutting, expanding, or the like. In some embodiments, the self-expanding coring element 206 can be laser cut from a piece of nitinol such as, for example, a nitinol tube, after which the self-expanding coring element 206 can be blown up and/or expanded.


The self-expanding coring element 206 can comprise a unitary fenestrated structure 400 and/or a stent or a stent portion that can be configured to core and separate a portion of a thrombus such as a vascular thrombus from the blood vessel containing the thrombus. This unitary fenestrated structure 400 can comprise a plurality of struts 402 that together define a plurality of interstices 404. The struts can comprise a variety of shapes and sizes, and in some embodiments, the struts can have a thickness and/or diameter between approximately 0.05 and 0.15 inches, between approximately 0.075 and 0.125 inches, between approximately 0.09 and 0.1 inches, and/or of approximately 0.096 inches.


In some embodiments, the self-expanding coring element 206 can comprise a first region 406 and a second region 408. The second region 408 can be generally tubular and can include a plurality of interconnected struts 402. The first region 406, as seen in FIG. 5, can comprise a reduced number of struts 402 as compared to the second region to facilitate the collapse of the self-expanding coring element 206 to a non-expanded configuration and to maintain a coring orientation when the blood vessel is tortuous. In some embodiments, the first region can further comprise two curved struts 410-A, 410-B twisting in opposite directions around a central axis 412, also referred to herein as a longitudinal axis 412, of the self-expanding coring element 206 to define a mouth 414 of the self-expanding coring element 206.


In some embodiments, the connection of the self-expanding coring element 206 to the intermediate shaft 140 via the two curved struts 410-A, 410-B can improve the operation of the thrombus extraction device 202 by flexibly connecting the self-expanding coring element 206 to the intermediate shaft 140. Particularly, the removal of struts from region 420 of the self-expanding coring element 206 allows the self-expanding coring element 206 to flex about a connection member 415 located at the proximal end 210 of the self-expanding coring element 206 and connecting the self-expanding coring element 206 to the intermediate shaft 140 of the thrombus extraction catheter 104. This ability to flex can facilitate the maintenance of the coring orientation with the blood vessel is tortuous. In some embodiments, such flexing of the self-expanding coring element 206 can result in the region 420 functioning as the mouth 414.


As seen in FIG. 4, the curved struts 410 extend at an angle θ, also referred to herein as a coring angle, relative to the central axis 412 from a bottom 416 of the self-expanding coring element 206 towards the top 418 of the self-expanding coring element 206. In some embodiments, this angle can be between 20 degrees and 50 degrees and/or between 30 degrees and 45 degrees when fully expanded.


In some embodiments, the coring angle can either positively or adversely affect the operation of the TED 202. For example, too steep a coring angle can prevent the self-expanding coring element 206 from being collapsible and thus prevent the retraction of the self-expanding coring element 206 into the introducer sheath 102. Additionally, too shallow a coring angle can result in the self-expanding coring element 206 too easily collapsing which can decrease the coring ability of the self-expanding coring element 206. In some embodiments, this decrease in the coring ability of the self-expanding coring element 206 can result in the self-expanding coring element 206 no longer effectively coring thrombus.


In some embodiments, the most proximal edge of the two curved struts 410-A, 410-B, referred to herein as a leading edge 411, can be sharpened and/or the leading edge 411 of the two curved struts 410-A, 410-B can comprise a cutting element, knife, or the like


The self-expanding coring element 206 can comprise a variety of sizes. In some embodiments, the self-expanding coring element 206 can comprise a length, defined as the shortest distance between the proximal end 210 of the self-expanding coring element 206 and the distal end 214 of the self-expanding coring element 206, of between approximately one and 3 inches, between approximately 1.5 and 2.5 inches, between approximately 1.75 and 2.25 inches, between approximately 1.9 2.0 inches, and/or of approximately 1.96 inches. In some embodiments, the self-expanding coring element 206 can comprise a fully expanded diameter between approximately 2 and 50 mm, between approximately 4 and 25 mm, between approximately 6 and 20 mm, and/or between approximately 8 and 16 mm. In some embodiments, the self-expanding coring element can be applied to debulking of an artery or vein such as, for example, the inferior vena cava. In some embodiments, such debulking can be performed in response to the occluding and/or partial occluding of one or several filters in the inferior vena cava.


In some embodiments, the length and the diameter of the self-expanding coring element 206 can be selected based on the size of the blood vessel, and particularly the diameter of the blood vessel from which thrombus is to be extracted. In some embodiments, the length of the self-expanding coring element 206 can be selected based on the fully expanded diameter of the self-expanding coring element 206 to prevent undesired tipping and/or rotation of the self-expanding coring element within the blood vessel and with respect to the blood vessel. As used anywhere herein, “approximately” refers to a range of +1-10% of the value and/or range of values for which “approximately” is used.


With reference now to FIG. 7, a side view of one embodiment of the thrombus extraction device 202 is shown. As seen in FIG. 7, the self-expanding coring element 206 is connected via the connection member 415 at the proximal end 210 of the self-expanding coring element 206 to the distal end 212 of the intermediate shaft 140. The proximal end 216 of the expandable cylindrical portion 208 connects to the distal end 214 of the self-expanding coring element 206. In some embodiments, the expandable cylindrical portion 208 and specifically the proximal end 216 of the expandable cylindrical portion 208 is formed on the distal end 214 of the self-expanding coring element 206 to thereby form a unitary thrombus extraction device 202. The distal end 217 of the expanding cylindrical portion 208 connects to the distal end 218 of the inner shaft 200.


In some embodiments, and as seen in FIG. 7, the self-expanding coring element 206 can engage with all or portions of the inner shaft 200 to affect the expansion of the self-expanding coring element 206. Specifically, in some embodiments, the self-expanding coring element 206 can include a ring 700, also referred to herein as a ring feature 700. The ring 700 can be the same material as the self-expanding coring element 206 or can be a different material than the self-expanding coring element 206. The ring 700 can be integrally formed with the self-expanding coring element 206 and/or can be attached to the self-expanding coring element via, for example, one or several welds, adhesive, one or several mechanical fasteners, or the like. The ring 700 can have a diameter larger than the diameter of the inner shaft 200 such that the ring 700 is slidable along the inner shaft 200.


As further seen in FIG. 7, the inner shaft 200 can include a stop 702. In some embodiments, the stop 702 can comprise a polymeric member and/or metallic member that is affixed to a portion of the inner shaft 200. In some embodiments, the stop 702 can be sized and shaped to engage with the ring 700 to thereby apply proximally directed force to the self-expanding coring element 206 when the inner shaft 200 is proximally displaced via movement of the plunger 154 to the second position. In some embodiments, a portion of the self-expanding coring element 206 located between the ring 700 and the connection member 415 can be forcibly expanded by the application of this proximally directed force to ring 700, thereby moving the self-expanding coring member 206 to full expansion.


In some embodiments, the inner shaft 200 of the thrombus extraction catheter 104 can be selectively connected to the distal end 217 of the expandable cylindrical portion 208. This can allow the displacement of the inner shaft 200 to bring the self-expanding coring element 206 to full expansion via the engagement of the ring feature 700 with the stop 702. In some embodiments, and after the self-expanding coring element 206 is at full expansion, the inner shaft 200 can be recoupled to the distal end 217 of the expandable cylindrical portion 208 such that the expandable cylindrical portion 208 is fully expanded and/or can be recoupled to the distal end 217 of the expandable cylindrical portion 208 such that the expandable cylindrical portion 208 to compress the expandable cylindrical portion 208 when the plunger 154 is moved from the second position to the first position.


In some embodiments, the expandable cylindrical portion 208 can comprise a braided filament mesh structure 704 that can be configured to capture thrombus. In some embodiments, the braided filament mesh structure can be coextensive with the expandable cylindrical portion 208 and thus can share a proximal end 216 and/or a distal end 217. In the embodiment shown in FIG. 7, the braided filament mesh structure 704 is a braid of elastic filaments having a generally tubular, elongated portion 706 and a distal tapered portion 708. In other embodiments, the braided filament mesh structure 704 can be any porous structure and/or can have other suitable shapes, sizes, and configurations (e.g., the distal portion 708 can be generally cylindrical, etc.).


Due to the connection of the braided filament mesh structure 704 to the distal end 218 of the inner shaft 200, axial movement of the inner shaft 200 radially expands/shortens and collapses/lengthens the braided filament mesh structure 704 of the TED 200. For example, so long as the intermediate shaft 140 is fixed and/or limited to axial movement at a rate less than that of the inner shaft 200: (1) distal movement of the inner shaft 200 stretches the braided filament mesh structure 704 along its longitudinal axis such that the radius of the braided filament mesh structure 704 decreases and the length of the braided filament mesh structure 704 increases; and (2) proximal movement of the inner shaft 200 compresses the braided filament mesh structure 704 along its longitudinal axis such that the radius of the braided filament mesh structure 704 increases and the length of the braided filament mesh structure 704 decreases. In certain embodiments, the braided filament mesh structure 704 can have a length in the collapsed configuration between approximately 5 and 30 inches, between approximately 10 and 20 inches, and/or of approximately 16 inches, and in some embodiments, the braided filament mesh structure 704 can have a length in the expanded configuration of between approximately 1 and 25 inches, between approximately 10 and 20 inches, and/or of approximately 11 inches.


In some embodiments, the braided filament mesh structure 704 can be formed by a braiding machine and/or weaving machine, and in some embodiments, the braided filament mesh structure 704 can be manually braided and/or woven. In some embodiments, the braided filament mesh structure 704 may be formed as a tubular braid, which tubular braid may then be further shaped using a heat setting process. In some embodiments, the braid may be a tubular braid of fine metal wires such as nitinol (nickel-titanium alloy), platinum, cobalt-chrome alloy, stainless steel, tungsten or titanium. In some embodiments, the braided filament mesh structure 704 can be formed at least in part from a cylindrical braid of elastic filaments. Thus, the braid may be radially constrained without plastic deformation and will self-expand on release of the radial constraint. Such a braid of elastic filaments is herein referred to as a “self-expanding braid.”


In some embodiments, the thickness of the braid filaments can be less that about 0.15 mm. In some embodiments, the braid may be fabricated from filaments and/or wires with diameters ranging from about 0.05 mm to about 0.25 mm. In some embodiments, braid filaments of different diameters may be combined to impart different characteristics including: stiffness, elasticity, structure, radial force, pore size, embolic capturing or filtering ability, etc. In some embodiments, the braided filament count is between 20 and 80, is greater than 30, and/or is approximately 24. Pore sizes of the braided mesh in the elongated portion 706 may be in the range of about 0.4 mm to 4.0 mm. In some embodiments, the pore size may be in the range of 0.5 mm to 2.5 mm.


In some cases thrombus may form a shape that is difficult to retract into the introducer sheath 102 when thrombus is within the braided filament mesh structure 704. Such a case is depicted in FIG. 8 in which the thrombus extraction device 202, and specifically the braided filament mesh structure 704, is partially retracted into the introducer sheath 102. As depicted in FIG. 8, thrombus 800 has formed a ball that has a diameter larger than the diameter of the introducer sheath 102. Such behavior by the thrombus 800 can prevent the removal of the TED 200 and the thrombus 800 from the patient's body. FIGS. 9 and 10 address features to prevent such behavior by the thrombus.



FIG. 8 further shows a cross-section view of the elongate member 106 such that the lumen 1702 of the elongate member is visible, a cross-section of the outer shaft 138 such that the lumen 802 of the outer shaft 138 is visible, and a cross-section of the intermediate shaft 140 such that the lumen 804 of the intermediate shaft 140 is visible.


With reference now to FIG. 9, a side view of one embodiment of the braided filament mesh structure 704 comprising multiple pore sizes is shown. As seen, the braided filament mesh structure 704 comprises a first portion 900 comprising a first plurality of pores 904 and a second portion 902 comprising a second plurality of pores 906. In some embodiments, the first portion 900 can correspond to the elongated portion 706, and the second portion 902 can correspond to the distal tapered portion 708.


As shown in FIG. 9, the first portion 900 of the braided filament mesh structure 704 is relatively more proximal than the second portion 902. As further shown, the pores in the first plurality of pores 904 of the first portion 900 are smaller than the pores in the second plurality of pores 906 of the second portion 902. In some embodiments, the larger pores of the distal, second portion 902 can have an average size greater than or equal to 1.5 mm, and in some embodiments, between approximately 1.0 mm and 4.0 mm.


In such an embodiment, the larger size of the pores of the second plurality of pores 906 can allow and/or facilitate the extrusion of portions of the thrombus when the braided filament mesh structure 704 is moved to the unexpanded configuration and/or when the braided filament mesh structure 704 is retracted into the introducer sheath 102. In some embodiments, this extrusion of portions of the thrombus can prevent the case in which the thrombus cannot be retracted into the introducer sheath 102. Further, in some embodiments, relatively newer portions of thrombus can be extruded before relatively older portions of thrombus as relatively newer portions of thrombus can be softer and/or more malleable. These relatively newer portions of the thrombus can then be captured and/or broken down by features of the introducer sheath 102.


With reference now to FIG. 10, a side view of one embodiment of the TED 200 comprising a plurality of circumferential depressions 1000, also referred to herein as circumferential grooves, radial ribs, and/or radial grooves, is shown. In some embodiments, some or all of this plurality of circumferential depressions 1000 can inwardly extend towards a central axis 1002 and/or midline 1002 of the thrombus extraction device 202. In some embodiments, the plurality of circumferential depressions 1000 can be longitudinally spaced and/or equally spaced along the length of the expandable cylindrical portion 208 and/or the braided filament mesh structure 704 between the proximal end 216 and the distal end 217 of the cylindrical portion 208 and/or the braided filament mesh structure 704. In some embodiments, these circumferential depressions 1000 can, when the thrombus extraction device 202 is moved from an expanded configuration to an unexpanded configuration, engage with portions of the thrombus contained within the cylindrical portion 208 and/or the braided filament mesh structure 704 to inhibit movement of the thrombus with respect to one or both of the proximal end 216 and the distal end 217 of the cylindrical portion 208 and/or the braided filament mesh structure 704. This inhibition of thrombus movement can decrease the likelihood of the creation of thrombus that cannot be retracted into the introducer sheath 102.


Although depicted in separate figures, some embodiments of the thrombus extraction device 202 can include both the plurality of circumferential depressions discussed with respect to FIG. 10 and multiple pore sizes as discussed with respect to FIG. 9.


With reference now to FIG. 11, a schematic illustration of one embodiment of a weaving pattern for forming the cylindrical portion 208 and/or the braided filament mesh structure 704 onto the self-expanding coring element 206 at one or several formation points 1103 is shown. As seen, the self-expanding coring element 206 comprises a plurality of struts 402 that connect at formation points 1103 comprising peaks 1100, also referred to herein as peak struts 1100. As seen, each of the peaks 1100 is formed by the intersection of a first strut 402-A and a second strut 402-B, which intersecting struts 402-A, 402-B form a peak aperture 1101.


In some embodiments, the self-expanding coring element 206 can comprise a plurality of peaks 1100 extending around the distal end of the self-expanding coring element 206. The plurality of peaks 1100 can comprise 4 peaks 1100, 6 peaks 1100, 8 peaks 1100, 10 peaks 1100, 12 peaks 1100, 16 peaks 1100, 20 peaks 1100, 24 peaks 1100, between 4 and 50 peaks, between 8 and 20 peaks, and/or any other or intermediate number of peaks.


The cylindrical portion 208 and/or the braided filament mesh structure 704 can comprise a plurality of filaments 1102 woven and/or braided together to form the cylindrical portion 208 and/or the braided filament mesh structure 704. In some embodiments, the plurality of filaments can include, for each of the peaks 1100 of the self-expanding coring element 206, a first filament 1104 and the second filament 1106. The first and second filaments 1104, 1106 can be woven onto their respective peak. In some embodiments, the first and second filaments 1104, 1106 can be woven onto their respective peak such that one or both of the first and second filaments 1104, 1106 form a loop about their respective peak. Thus, in some embodiments, the only the first filament 1104 forms a look about its peak, only the second filament 1106 forms a loop about its peak, or both the first and second filaments 1104, 1106 form loops about their peak. With reference to the embodiment of FIG. 11, the first filament 1104 can be inserted straight through the peak aperture 1101 of its peak such that the first filament 1104 does not loop on itself directly adjacent to its peak, and more specifically, directly distal of its peak.


The first filament 1104 can be inserted through the peak aperture 1101 of its peak 1100 such that the first filament 1104 passes, when looking from the outside of the self-expanding coring element 206 towards the inside of the self-expanding coring element 206, on top of the first strut 402-A and under the second strut 402-B.


The second filament 1106 can be inserted through the peak aperture 1101 of its peak such that the portion of the second filament 1106 passing through the peak aperture 1101 is separated from the peak by the first filament 1104. Further, the second filament 1106 can be inserted through the peak aperture 1101 such that the second filament 1106 passes underneath the first strut 402-A and over the second strut 402-B. after insertion through the peak aperture 1101, the second filament 1106 can be looped on itself to form a loop 1108 directly distal to its peak 100.


In some embodiments, because each filament 1104, 1106 is inserted through a peak aperture 1101, each filament 1104, 1106 can be treated, for braiding or weaving purposes as comprising a first wire extending from its peak 1100 to a first end of the filament 1104, 1106 and a second wire extending from its peak to a second end of that filament 1104, 1106. Thus, in some embodiments in which the self-expanding coring portion 206 comprises 12 peaks, the cylindrical portion 208 and/or the braided filament mesh structure 704 can be formed from 24 filaments 1104, 1106 which can be woven and/or braided as 48 wires to form a 48 wire mesh and/or weave.


In some embodiments, the cylindrical portion 208 and/or the braided filament mesh structure 704 can be braided/woven by, identifying the plurality of formation points 1103 formed by some of the struts 402 of the self-expanding coring element 206. Unique pairs of wires can be threaded through each of the formation points 1103, and specifically through the peak aperture 1101 adjacent to each of the formation points 1103. In some embodiments, each unique pair of wires can comprise a first wire 1104 and a second wire 1106 overlaying the first wire 1104. The first and second wires can then be woven into a net-like filament mesh structure of the cylindrical portion 208 and/or the braided filament mesh structure 704 from the unique pairs of wires such that the first wires 1104 do not form loops about the formation points 1103 through which the first wires 1104 are threaded and such that the second wires 1106 form loops 1108 about the formation points 1103 through which the second wires 1106 are threaded.


With reference now to FIG. 12, a section view of an embodiment of the handle 134 in which the plunger 154 is in the first position is shown, and with reference to FIG. 13 a section view of an embodiment of the handle 134 in which the plunger 154 is in the second position is shown. The handle 134 can include a housing 1200 that defines an internal volume 1202. A plunger shaft 1204 can extend through all or portions of the internal volume 1202 and can connect to the inner shaft 200, which inner shaft 200 can define the previously referenced lumen 1400, also referred to herein as inner shaft lumen 1400. The plunger shaft 1204 can terminate at a plunger guide 1208 that is affixed to the plunger shaft 1204. In some embodiments, and as seen in FIGS. 12 and 13, the plunger 154 can be biased towards a first position by a plunger spring 1209 which can engage a portion of the handle 134 and the plunger guide 1208. Thus, the plunger spring 1209 is less compressed when the plunger 154 is in the first position as is shown in FIG. 12, and the plunger spring 1209 is more compressed when the plunger 154 is in the second position as is shown in FIG. 13. In some embodiments, this bias towards the first position can create a bias in the thrombus extraction device 202 towards the partial expansion configuration.


As seen in FIG. 14, a close-up view of the encircled portion “A” indicated in FIG. 13, the plunger guide 1208 can be positioned between a proximal stop 1210 and a distal stop 1212, which proximal stop 1210 and which distal stop 1212 can be each affixed to the inner shaft 200 including the inner shaft lumen 1400. The plunger guide 1208 can be dynamically connected to the proximal stop 1210 via a stent compliance spring 1214, also referred to herein as a compliance spring 1214. In some embodiments, the use of the compliance spring 1214 to connect the plunger guide 1208 and the proximal stop 1210 can allow a change in the diameter of the self-expanding coring element 206 according to compressive forces applied to the self-expanding coring element 206.


In some embodiments, for example, via the interaction of the ring feature 700 and the stop 702, radial compressive forces applied to the self-expanding coring element 206 can be transferred from the self-expanding coring element 206 via the ring feature 700 and the stop 702 to the compliance spring 1214. In embodiments in which the compressive force is greater than the spring force, the compliance spring 1214 can be compressed and the inner shaft 200 can distally advance relative to the intermediate shaft 140 to thereby reduce the diameter of the self-expanding coring element 206 until the compressive force is equal to the spring force. This compliance achieved via the compliance spring 1214 enables use of the thrombus extraction catheter 104 in blood vessels that can be arteries or venous vessels of non-constant diameter while maintaining desired contact of the self-expanding coring element 206 on the walls of the blood vessels, veins, or venous vessels. In some embodiments, this compliance can result in a constant outward force applied to the vessel walls by the self-expanding coring element 206 when the vessel has a diameter between approximately 1 and 30 mm, 2 and 25 mm, 5 and 20 mm and/or any other or intermediate diameter. In some embodiments, this constant outward force can be constant in that this outward force is within a predetermined range. In some embodiments, for example, the outward force can be approximately 5 N when the diameter of the self-expanding coring element 206 is approximately 20 mm and the outward force can be approximately 20 N when the diameter of the self-expanding coring element 206 is approximately 5 mm. Thus, in some embodiments, a locking mechanism which can include the plunger 154 and the compliance spring 1214 can be configured to maintain a desired radial force on a vessel wall when the stent is compressed by that vessel wall. In some embodiments, this desired force can be a sufficient radial force on the vessel wall to core and/or separate all or portions of thrombus from the vessel wall when the self-expanding coring element 206 is at full expansion.


With reference now to FIGS. 15 and 16, side views of embodiments of the obturator 120 are shown. As seen, the obturator 120 includes the proximal end 122, the distal end 124, and the elongate shaft 126. As further seen, the obturator 120 can include a capture sheath 1500 proximally extending form the distal end 124 of the obturator 120.


The Obturator 120 can further comprise a tip such as an atraumatic tip 1502 located at the distal end 124 of the obturator 120. In some embodiments, the atraumatic tip 1502 can be radiopaque. The obturator 120 can further include a connection fitting 1504 that can be located at a proximal end 1506 of the capture sheath 1500. In some embodiments, the connection fitting 1504 can be configured to sealingly connect with the distal end 110 of the elongate sheath 106 of the introducer sheath 102.


The obturator 120 can further include a stop portion 1508 located at the proximal end 122 of the obturator 120. In some embodiments, the stop portion 1508 can have a diameter larger than the lumen 1701 of the elongate member 106 of the introducer sheath 102 and/or larger than the diameter of the sealed aperture 112 located at the proximal end 108 of the introducer sheath 102 so as to prevent the stop portion 1508 from entering into the lumen 1701 of the elongate member 106 and/or the sealed aperture 112.


In some embodiments, the elongate shaft 126 can comprise a constant size and/or diameter, and in some embodiments, the elongate shaft 126 can comprise multiple sizes and/or diameters. For example, the diameter 1510 of the elongate shaft 126 shown in FIG. 15 is constant along the length of the elongate shaft 126. In contrast, the elongate shaft 126 shown in FIG. 16 has at least a first diameter 1512 along one or several first portions 1513 of the elongate shaft 126 and a second diameter 1514 along one or several second portions 1515 of the elongate shaft 126.


In some embodiments, the one or several second portions 1515 of the elongate shaft can be located along the length of the elongate shaft 126 such, that when the obturator 120 is received within the elongate member 106 of the introducer sheath 102 and positioned so that the connection fitting 1504 seals with the distal end 110 of the elongate sheath 106, the one or several second portions 1515 extend through the sealed aperture 112. In such an embodiment, the second diameter 1514 can be selected such that the one or several second portions do not contact and/or dilate the sealed aperture 112 and/or a seal within the sealed aperture 112. Because such an embodiment of the obturator 120 does not dilate the seal of the sealed aperture 112 when the one or several second portions extend through the sealed aperture 112, the introducer sheath 102 can be stored, package, and/or sold with such an obturator 120 pre-positioned extending through the lumen 1701 of the elongate member 106.


With reference now to FIG. 17, a detailed section view of one embodiment of the capture sheath 1500 is shown. As seen, the capture sheath 1500 includes the atraumatic tip 1502 and is connected to the elongate shaft 126 of the obturator 120, which elongate shaft 126 extends through a lumen 1701 of the elongate member 106. As further seen, a lumen 1700 extends through the atraumatic tip 1502 and the elongate shaft 126, which lumen 1700 can be configured to receive a guidewire.


That capture sheath 1500 includes a capture shell 1702 that distally extends from the atraumatic tip 1502 to the proximal end 1506 of the capture sheath 1500. The capture shell 1702 terminates in the connection fitting 1504. The capture shell 1702 has an internal diameter 1704 that is greater than a diameter 1706 of the portion of the elongate shaft 126 extending through the capture shell 1702. Due to the larger internal diameter 1704 of the capture shell 1500, a receiving space is created between the capture shell 1702 and the portion of the elongate shaft 126 extending through the capture shell 1702. In some embodiments, this receiving space can be sized and shaped to receive and/or retain a self-expanding funnel 1708 in a constrained configuration. In some embodiments, the self-expanding funnel 1708 can have a diameter matching the internal diameter 1704 of the capture shell 1702 when the self-expanding funnel 1708 is in the constrained configuration. In some embodiments, this diameter of the self-expanding funnel can be less than or equal to a diameter 1716 of the elongate member 106.


The self-expanding funnel 1708 can comprise a variety of shapes and sizes and can be made from a variety of materials. In some embodiments, the self-expanding funnel 1708 can have a maximum diameter greater than and/or equal to the diameter of the self-expanded coring element 206 in full expansion, and in some embodiments, the self-expanding funnel 1708 can have a minimum diameter equal to the diameter 1716 of the elongate member 106 and/or to the diameter of the lumen 1701 of the elongate member 106. In some embodiments, the self-expanding funnel 1708 can have a length greater than and/or equal to the length of the self-expanding coring element 206 such that the self-expanding coring element 206 can be received and contained within the self-expanding funnel 1708.


In some embodiments, the self-expanding funnel 1708 can have a conically shaped portion, and specifically, a truncated-conically shaped portion. In some embodiments, the self-expanding funnel can be formed from at least one of a castellated nitinol braid, a nitinol braided stent, a laser cut nitinol, a laser cut polymer tube, an injection molded polymeric structure, or an inflatable balloon. In some embodiments, the self-expanding funnel 1708 can comprise a mesh having a pore size sufficiently small to prevent the passage of dangerous thrombus through the pores of the mesh. In some embodiments, the self-expanding funnel 1708 can be permeable to blood.


With reference now to FIGS. 18 through 20, side views of embodiments of the introducer sheath 102 in different configurations are shown. In FIG. 18 the introducer sheath 102 is shown in an undeployed configuration, in FIG. 19, the introducer sheath 102 is shown in a partially deployed configuration, and in FIG. 20, the introducer sheath 102 is shown in a fully deployed and/or deployed configuration.


Specifically, as seen in FIG. 18, the obturator 120 extends through the lumen 1701 of the elongate member 106 and the self-expanding funnel 1708 is contained in a constrained configuration within the capture sheath 1500. In FIG. 19, the obturator 120 has been distally advanced to thereby release the self-expanding funnel 1708 from the constrained configuration and/or to deploy the self-expanding funnel 1708. In some embodiments, the length of the obturator 120, and specifically the length of the elongate shaft between the proximal end of the capture sheath 1500 and the stop portion 1508 is sufficient to allow the deployment of the self-expanding funnel 1708 from the capture sheath 1500 before further distal movement of the obturator 120 is prevented by the collision of the stop portion 1508 with the sealed aperture 112.


After the self-expanding funnel 1708 has been deployed, the obturator 120 can be proximally retracted through the lumen 1701 of the elongate member 106 and the sealed aperture 112 and can be removed from the introducer sheath 102. After the obturator 120 has been removed from the introducer sheath 102, the introducer sheath is in the fully deployed configuration as shown in FIG. 20.


In some embodiments, and as seen in FIG. 21, the introducer sheath 102 can include an inflatable balloon 2100 located at, or proximate to the distal end 110 of the elongate member 106. In some embodiments, the balloon 2100 can comprise a conically shaped internal portion 2102 that can be sized and shaped to receive the thrombus extraction device 202, and specifically that can have a length greater than or equal to the length of the self-expanding coring element 206.


With reference now to FIG. 22, an introduction technique for accessing the thrombus 2200 is shown. As depicted, the thrombus 2200 can be located in a blood vessel and accessed through an access site 2260 such as the popliteal access site. The introducer sheath 102 can extend from the popliteal access site 2260 to the deployment position 2262 at which the self-expanding funnel 1708 can be deployed and which can be proximate to the thrombus 2200. The TED 202 can be passed through the clot 2200 in the direction of blood flow and the TED 202 can be retracted through the clot 2200 in a direction opposite blood flow. The retraction of the TED 202 through the clot 2200 can result in the coring of the clot with the self-expanding coring element 206 and the capturing of the clot in the expandable cylindrical 208.


In some such embodiments, all or portions of the TED 202 can extend into one of the iliac veins and/or the inferior vena cava as depicted in FIG. 23. Further, as the TED 202 is retracted from a proximal position with respect to the heart to a distal position with respect to the heart, the diameter of the blood vessel 2202 will decrease as the TED 202 is retracted towards the access site 2260. This can result in increased compressive forces on the TED 202, and specifically on the self-expanding coring element 206. These compressive forces can be transferred via the ring feature 700 and the stop 702 to the compliance spring 1214. Via the stretching or compressing of the compliance spring 1214, the diameter of the TED 202 and specifically of the coring element 206 can change to match the diameter of the blood vessel and a desired radial force, and/or force level can be maintained.



FIGS. 23-A to 23-H, FIGS. 24-A and 24-B, and FIGS. 25-A to 25-H depict processes for using the thrombus extraction system 100 to remove thrombus from a patient's body, and specifically from a blood vessel, which can be a venous vessel, in the patient's body. This includes: accessing the blood vessel via one or several percutaneous access sites that can provide direct access to the blood vessel or indirect access to the blood vessel via one or several other blood vessels; advancing the introducer sheath to a position proximate to the thrombus; deploying the self-expanding funnel of the introducer sheath; advancing the distal end 132 of the thrombus extraction catheter 104 to a position proximate to the thrombus; deploying the thrombus extraction device 202; capturing the thrombus in the thrombus extraction device 202 by retracting the thrombus extraction device 202 through the thrombus; collapsing the thrombus extraction device 202; and removing the thrombus extraction device 202 and the captured thrombus from the introducer sheath 102 and from the patient's body. In some embodiments, these one or several access sites can include, for example, a popliteal access site, a femoral access site, and/or an internal jugular access site. In some embodiments, a thrombolytic agent can be infused and/or aspirated into or from the blood vessel before, during, or after the removal or extraction of the thrombus


The process for using the thrombus extraction system 100 shown in FIGS. 22-A to 22-H, FIGS. 24-A and 24-B, and FIGS. 25-A to 25-H can be performed with the direction of blood flow or against the direction of blood flow. Thus, in some embodiments, the direction of blood flow in FIGS. 22-A to 22-H, FIGS. 24-A and 24-B, and FIGS. 25-A to 25-H, can be from left to right, or from right to left.


With reference now to FIGS. 23-A to 23-H, a process for expanding the thrombus extraction device 202 in a blood vessel such as a venous vessel is shown. The process for expanding the thrombus extraction device 202 in the vessel can be performed using all or portions of the thrombus extraction system 100. In some embodiments, the process for expanding the thrombus extraction device 202 in the vessel can be performed in connection with a monitoring technique, such as fluoroscopy, angiography, and/or ultrasonic monitoring. In some embodiments, the monitoring technique can be used to monitor the deployment of the TED 202 in the vessel via observation of the one or several radiopaque markers located on the introducer sheath 102 and/or the thrombus extraction catheter 104.


The process begins at FIG. 23-A, wherein a thrombus 2200 is identified in a blood vessel 2202 such as venous vessel. In some embodiments, the thrombus 2200 can be located in the peripheral vasculature of the patient's body. The thrombus 2200, also referred to herein as a clot 2200, can comprise a proximal end 2204 and the distal end 2206. In some embodiments, the identification of the blood vessel 2202 can further include the determination of whether the thrombus 2200 in the blood vessel 2202 is suitable for thrombus extraction. In some embodiments, the thrombus 2200 in the blood vessel 2202 can be suitable for extraction when the blood vessel 2202 has a diameter of at least 5 millimeters. In some embodiments, the thrombus 2200 in the blood vessel 2202 can be suitable for extraction when the blood vessel 2202 has a diameter of at least 5 millimeters and is at least one of a femoral vein, an iliac vein, a popliteal vein, a posterior tibial vein, an anterior tibial vein, or a peroneal vein.


After the thrombus has been identified, the process proceeds to the step shown in FIG. 23-B, wherein the introducer sheath 102 is advanced, either with or against the direction of blood flow in the blood vessel, such that the distal end 110 of the introducer sheath 102 and/or the obturator 120 is proximate to the thrombus 2200, and particularly is proximate to the thrombus 2200 at a position proximal of the thrombus 2200. In some embodiments, this can include providing the introducer sheath 102 and percutaneously accessing the circulatory system of the patient and specifically a blood vessel or venous vessel of the patient via an access site 2208 which can be one of the above referenced access sites.


After the introducer sheath 102 has been advanced to a desired position, the self-expanding funnel 1708 can be deployed and/or unsheathed from the constrained configuration to the expanded configuration as depicted in FIG. 23-C. In some embodiments, the self-expanding funnel 1708 can be deployed by the relative distal movement of the obturator 120 with respect to the elongate member 106 until the funnel 1708 is no longer constrained by the capture sheath 1500 and then the obturator 120 can be proximally retracted through the lumen 1701 of the elongate member 106 until the obturator 120 is removed from the introducer sheath 102.


In some embodiments, the relative distal movement of the obturator 120 with respect to the elongate member can comprise fixing the position of the obturator 120 relative to the blood vessel 2202 and proximally retracting the elongate member 106 over the obturator 120 to unsheathe the self-expanding funnel 1708 until the stop 1508 contacts the sealed aperture 112 and/or until monitoring, which can be fluoroscopic monitoring, of radiopaque markers located in, for example, the tip 1502 of the obturator 120 and the distal end 110 of the elongate member 106 indicate that the self-expanding funnel 1708 is deployed and/or is no longer constrained by the capture sheath 1500. Alternatively, in some embodiments, the relative distal movement of the obturator 120 with respect to the elongate member can comprise fixing the position of the elongate member 106 relative to the blood vessel 2202 and distally advancing the obturator 120 two unsheathe the self-expanding funnel 1708 until the stop 1508 contacts the sealed aperture 112 and/or until monitoring, which can be fluoroscopic monitoring, of radiopaque markers located in, for example, the tip 1502 of the obturator 120 and the distal end 110 of the elongate member 106 indicate that the self-expanding funnel 1708 is deployed and/or is no longer constrained by the capture sheath 1500.


After the self-expanding funnel 1708 has been deployed, a portion of the thrombus extraction catheter 104 such as the outer shaft 138 can be inserted into the lumen 1701 of the introducer sheath 102 via the sealed aperture 112 as depicted in FIG. 23-D. In some embodiments, this can include providing the thrombus extraction catheter 104 which comprises the thrombus extraction device 202. In some embodiments, the thrombus extraction device 202 can be constrained within the outer shaft 138 and can inserted, together with the outer shaft 138, into the lumen of the elongate member 106 via the sealed aperture 112. In some embodiments, the outer shaft 138 of the thrombus extraction catheter 104 can have a diameter so as to dilate the seal of the sealed aperture 112 such that the sealed aperture 112 seals around and seals to the outer shaft 138.


After the outer shaft 138 has been inserted into the lumen 1701 of the introducer sheath 102, a portion of the thrombus extraction catheter 104 can be inserted via the introducer sheath 102 into the blood vessel 2202 as depicted in FIG. 23-E. In some embodiments, the distal end 132 of the thrombus extraction catheter 104 can be advanced to a position proximate to the thrombus 2200 and/or to a position proximal to the thrombus 2200. In some embodiments, the insertion and/or advance of the thrombus extraction catheter 104 can be monitored and specifically can be fluoroscopically monitored. In some embodiments, the position of one or several radiopaque markers, including radiopaque marker 222 of the thrombus extraction catheter 104 can be monitored.


After the portion of the thrombus extraction catheter 104 has been inserted into the blood vessel 2202, a portion of the thrombus extraction catheter 104 can be distally advanced through the clot 2200 as depicted in FIG. 23-F. In some embodiments, this distal advance through the clot 2200 can be either with or against the direction of blood flow. In some embodiments, the portion of the thrombus extraction catheter 104 distally advanced through the clot 2000 can contain and/or constrain the thrombus extraction device 202. In some embodiments, distally advancing the portion of the thrombus extraction catheter 104 through the clot can include advancing the portion of the thrombus extraction catheter 104 until the radiopaque marker 222, that can be fluoroscopically monitored and that can be located at the distal end 218 of the inner shaft 200, is distally past the thrombus 2200 and/or a portion of the thrombus 2200.


After the portion of the thrombus extraction catheter 104 is distally advanced through the clot 2200, the thrombus extraction device 202 can be deployed as depicted in FIG. 23-G. In some embodiments, the thrombus extraction device 202 can be deployed by either advancing the thrombus extraction device 202 beyond the distal end 204 of the outer shaft 138 or by retracting the outer shaft 138 relative to the thrombus extraction device 202 until the thrombus extraction device 202 is beyond the distal end 204 of the outer shaft 138. In some embodiments, the thrombus extraction device can be deployed such that the thrombus extraction device 202 is distally past the thrombus 2200 and/or distally past a desired portion of the thrombus 2200.


In some embodiments, the thrombus extraction device is advanced beyond the distal end 204 of the outer shaft 138 by distally advancing the intermediate shaft 140 with respect to the outer shaft 138. In some embodiments, the intermediate shaft 140 can be distally advanced until the lock feature 146 contacts the mating feature 148, and the lock feature 146 can be mated and/or secured to the mating feature 148 to fix the relative position of the intermediate shaft 140 with respect to the outer shaft 138.


In some embodiments, the deployment of the thrombus extraction device 202 can be monitored, and specifically, the deployment of the thrombus extraction device 202 can be fluoroscopically monitored via, for example, the radiopaque marker 222 and the radiopaque marker located at one or both of the distal end 204 of the outer sheath 138 and the distal end 212 of the intermediate sheath 140. In some embodiments, the deployment of the thrombus extraction device 202, and specifically the advancing of the thrombus extraction device 202 beyond the distal end 204 of the outer shaft 138 or retracting the outer shaft 138 relative to the thrombus extraction device 202 can be ceased based on a position the distal end 204 of the outer sheath 138 comprising the radiopaque marker (first radiopaque marker) relative to the radiopaque marker 222 located on the thrombus extraction device 202 (second radiopaque marker).


After the thrombus extraction device 202 is deployed, the thrombus extraction device 202 can be fully expanded as shown in FIG. 23-H. In some embodiments, this can include allowing the full expansion of the thrombus extraction device 202 such that the thrombus extraction device 202 engages a wall 2220 of the blood vessel 2202. In some embodiments, the thrombus extraction device 202 can be fully expanded by moving the plunger 154 from the first position to the second position and securing the plunger 154 in the second position to thereby fix the relative position of the inner shaft 200 with respect to the intermediate shaft 140. In some embodiments, the movement of the plunger 154 from the first position to the second position proximally retracts the inner shaft 200 with respect to the intermediate shaft 140 to thereby fully expand the expandable cylindrical portion 208 of the thrombus extraction device 202. The proximal retraction of the inner shaft 200 with respect to the intermediate shaft 140 can further bring the stop 702 into engagement with the ring feature 700 to thereby fully expand the self-expanding coring element 206. In some embodiments, the securing of the plunger 154 in the second position can secure the self-expanding coring element 206 and the thrombus extraction device 202 in full expansion via the engagement of the stop 702 with the ring feature 700.


With reference now to FIGS. 24-A and 24-B, alternative embodiments of the steps shown in FIGS. 23-G and 23-H are shown. In some embodiments, these alternative embodiments can be performed when the diameter of the blood vessel 2202 containing the thrombus 2200 decreases below a desired level distally beyond the thrombus 2200. In some embodiments, for example, as the distance from the heart increases, the diameter of the blood vessel 2202 can decrease. In some embodiments, this diameter can decrease to a point that use of the thrombus extraction device 202 may no longer be possible.


In such an embodiment, an extension sheath 2300, also referred to herein as a popliteal sheath 2300, can be percutaneously inserted into the blood vessel 2202 through the wall 2220 of the blood vessel 2202 such that at least a portion of the extension sheath 2300 extends from the patient. In some embodiments, the extension sheath 2300 can be percutaneously inserted into the blood vessel 2202 at a position before the blood vessel diameter decreases below a desired value such as, for example, below 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 8 mm, 10 mm, or any other or intermediate value. In some embodiments the extension sheath 2300 can be inserted into the blood vessel 2202 via an access site such as, for example, the popliteal access site.


The thrombus extraction device 202 can be deployed as depicted in FIG. 24-A. In some embodiments, the thrombus extraction device 202 can be deployed by either advancing the thrombus extraction device 202 beyond the distal end 204 of the outer shaft 138 and into the extension sheath 2300 or by advancing the outer shaft 138 containing the thrombus extraction device 202 into the extension sheath and then retracting the outer shaft 138 relative to the thrombus extraction device 202 until the thrombus extraction device 202 is beyond the distal end 204 of the outer shaft 138. In some embodiments, the thrombus extraction device can be deployed such that the thrombus extraction device 202 is distally past the thrombus 2200 and/or distally past a desired portion of the thrombus 2200. In some embodiments, all or portions of the thrombus extraction device can be contained within the extension sheath 2300.


In some embodiments, the outer shaft 138 of the thrombus extraction catheter 104 can be separable into a first piece and a second piece. In some embodiments, this separation can occur at a separation point that can comprise, for example, any feature configured to allow separation of the first and second pieces. These features can include a partial depth slit or score in the outer shaft 138, an overlapping friction fit in the outer shaft 138, or the like. In some embodiments, the separable outer shaft 138 can be used in the place of the extension sheath 2300. In such an embodiment, the outer shaft 138 can exit the blood vessel 2202 via the access site such that the separable portion extends from inside the blood vessel 2202 to outside of the patient's body at the access point. In such an embodiment, the separation portion of the outer sheath 138 can serve as the extension sheath 2300 and can remain in the access point when the thrombus extraction device 202 is retracted. Thus, the thrombus extraction device 202 can be deployed by securing the position of the separation portion of the outer sheath 138 and retracting the thrombus extraction device 202 from that separation portion of the outer sheath 138.


In some embodiments, the thrombus extraction device can be advanced beyond the distal end 204 of the outer shaft 138 by distally advancing the intermediate shaft 140 with respect to the outer shaft 138. In some embodiments, the intermediate shaft 140 can be distally advanced until the lock feature 146 contacts the mating feature 148. In some embodiments, the lock feature 146 can be mated and/or secured to the mating feature 148 to fix the relative position of the intermediate shaft 140 with respect to the outer shaft 138.


In some embodiments, the deployment of the thrombus extraction device 202 can be fluoroscopically monitored, and specifically, the deployment of the thrombus extraction device 202 can be fluoroscopically monitored via, for example, the radiopaque marker 222 and the radiopaque marker located at one or both of the distal end 204 of the outer sheath 138 and the distal end 212 of the intermediate sheath 140. In some embodiments, the deployment of the thrombus extraction device 202, and specifically the advancing of the thrombus extraction device 202 beyond the distal end 204 of the outer shaft 138 or retracting the outer shaft 138 relative to the thrombus extraction device 202 can be seized based on a position the distal end 204 of the outer sheath 138 comprising the radiopaque marker (first radiopaque marker) relative to the radiopaque marker 222 located on the thrombus extraction device 202 (second radiopaque marker).


After the thrombus extraction device 202 is deployed, the thrombus extraction device 202 can be fully expanded as shown in FIG. 24-B. in some embodiments, the thrombus extraction device 202 can be fully expanded while all or portions of the thrombus extraction device 202 are contained in the extension sheath 2300. In such an embodiment, the portions of the thrombus extraction device 202 contained in the extension sheath 2300 can be prevented from reaching full expansion by the extension sheath 2300. In such an embodiment, the thrombus extraction device 202 can reach full expansion as the thrombus extraction device is proximately retrieved from the extension sheath 2300.


In some embodiments, the full expansion of the thrombus extraction device 202 can include allowing the expansion of the thrombus extraction device 202 such that the thrombus extraction device 202 engages a wall 2220 of the blood vessel 2202. In some embodiments, the thrombus extraction device 202 can be fully expanded by moving the plunger 154 from the first position to the second position and securing the plunger 154 in the second position to thereby fix the relative position of the inner shaft 200 with respect to the intermediate shaft 140. The movement of the plunger 154 from the first position to the second position can proximally retract the inner shaft 200 with respect to the intermediate shaft 140 to thereby expand the expandable cylindrical portion 208 of the thrombus extraction device 202. In some embodiments, the proximal retraction of the inner shaft 200 with respect to the intermediate shaft 140 can further bring the stop 702 into engagement with the ring feature 700 to thereby fully expand the self-expanding coring element 206. In some embodiments, the securing of the plunger 154 in the second position can secure the self-expanding coring element 206 and the thrombus extraction device 202 in full expansion via the engagement of the stop 702 with the ring feature 700


In some such embodiments in which the TED 202 is all or wholly contained within the extension sheath 2300, the TED 202 can be retracted until the self-expanding coring element 206 is outside of the extension sheath 2300, and which point the inner shaft 200 can be decoupled from the distal end 217 of the expandable cylindrical portion 208 and the plunger 154 can be moved from the first position to the second position to bring the self-expanding coring element 206 to full expansion. The TED 202 can then be further retracted and the expandable cylindrical portion 208 can be expanded by progressively recoupling the distal end 217 of the expandable cylindrical portion 208 with the inner shaft 200 as the expandable cylindrical portion 208 exits the extension sheath 2300 until the expandable cylindrical portion 208 has completely exited the extension sheath 2300 and is at full expansion with the distal end 217 of the expandable cylindrical portion 208 recoupled to the inner shaft 140. Alternatively, in some embodiments, the distal end 217 of the expandable cylindrical portion 208 can remain uncoupled to the inner shaft 140 until the expandable cylindrical portion 208 has completely exited the extension sheath 2300. Once the expandable cylindrical portion 208 has completely exited the extension sheath 2300, the distal end 217 of the expandable cylindrical portion 208 can be recoupled to the inner shaft 200 and the expandable cylindrical portion 208 can be expanded to full expansion.


With reference now to FIGS. 25-A to 25-H a process for removal of thrombus 2200 with an expanded thrombus extraction device 202 is shown. In some embodiments, the thrombus 2200 can be removed via the capture of the thrombus in the thrombus extraction device 202 via the proximal retraction of the thrombus extraction device 202 through the thrombus 2200, which proximal retraction of the thrombus extraction device 202 can be, for example, in a direction of blood flow through the blood vessel 2202 or against the direction of blood flow through the vessel 2202. In some embodiments, the proximal retraction of the thrombus extraction device 202 through the thrombus 2200 can result in the capture of the distal end 2206 of the thrombus 2200 before the capture of the proximal end 2204 of the thrombus 2200.


In some embodiments, the proximal retraction of the thrombus extraction device 202 can result in the separation and/or coring of at least a portion of the thrombus 2200 from the wall 2220 of the blood vessel 2202 by, for example, the self-expanding coring element 206 and/or the stent portion, and the capture of that separated portion of the thrombus 2200 within the expandable cylindrical portion 208. In some embodiments, the expandable cylindrical portion 208 can be formed of the braided filament mesh structure that can be, for example, a net-like filament mesh structure. In some embodiments, a portion of the thrombus can be captured within the expandable cylindrical portion 208 by entering the expandable cylindrical portion 208 via the mouth 414 of the self-expanding coring element 206 and/or via one or several of the interstices 404 of the self-expanding coring element 206.


As seen in FIG. 25-A, the distal end 2206 of the thrombus 2200 is separated and/or cored from the walls 2220 of the blood vessel 2202 by the self-expanding coring element 206 via the proximal retraction of the thrombus extraction device 202. As seen in FIG. 25-B, the distal end 2206 of the thrombus 2200 is captured in the expandable cylindrical portion 208 of the thrombus extraction device by the continued proximal retraction of the thrombus extraction device through the thrombus 2200. The separation and capture and/or coring and capture of further portions of the thrombus 2200 by the continued proximal retraction of the thrombus extraction device 202 is shown in FIGS. 25-C, 25-D, and 25-E. As seen in FIG. 25-E, the proximal end 2204 of the thrombus 2200 is cored and captured as the thrombus extraction device 202 is proximally retracted towards the self-expanding funnel 1708.


In some embodiments, the thrombus extraction device 202 can be proximally retracted until a portion of the self-expanding coring element 206 is contained within the self-expanding funnel 1708 as seen in FIG. 25-F, and specifically until the mouth 414 of the self-expanding coring element 206 is contained within the self-expanding funnel 1708. In some embodiments, the containment of the mouth 414 within the self-expanding funnel 1708 can be fluoroscopically verified. In some embodiments, the mouth 414 can be determined as wholly contained within the self-expanding funnel 1708 via fluoroscopic monitoring based on the alignment/relative positioning of the distal end 212 of the intermediate shaft 140 comprising a radiopaque marker 2450 and/or the radiopaque marker 222 with respect to the distal end 110 comprising a radiopaque marker 2452 of the elongate member 106 of the introducer sheath 102.


When the portion of the self-expanding coring element 206 is contained within the self-expanding funnel 1708, or specifically when the mouth 414 of the self-expanding coring element 206 is wholly contained within the self-expanding funnel 1708, the plunger 154 can be unlocked from the second position and can be moved from the second position to the first position to thereby move the thrombus extraction device 202 from and expanded configuration to an unexpanded configuration. In some embodiments, the unlocking of the plunger 154 from the second position can unlock and/or decouple the inner shaft 200 with respect to the intermediate shaft 140, and the moving of the plunger 154 from the second position to the first position can cause the distal advancing of the inner shaft 200 relative to the intermediate shaft 140.


In some embodiments, the thrombus extraction device 202 can be collapsed by moving the thrombus extraction device 202 from the expanded configuration to the unexpanded configuration prior to withdrawing the thrombus extraction device 202 from the patient's body so as to compress the thrombus 2200 captured by the thrombus extraction device 202. In some embodiments, the compression of the thrombus 2200 by the thrombus extraction device 202 can secure the position of the thrombus within the thrombus extraction device 202 via, in some embodiments, the engagement of one or several of the plurality of circumferential depressions 1000 with the thrombus 2200.


After the thrombus extraction device 202 has been collapsed, the thrombus extraction device 202 can be proximally retracted through the self-expanding funnel 1708 and into the elongate member 106 as depicted in FIG. 25-G. In some embodiments, the collapse of the thrombus extraction device 202 and/or the retraction of the thrombus extraction device 202 into the self-expanding funnel 1708 and/or the elongate member can result in the extrusion of all or portions of the thrombus 2200 through pores of the expandable cylindrical portion 208 of the thrombus extraction device 202 including, for example, some or all of the first plurality of pores 904 and/or the second plurality of pores 906. In some embodiments, the all or portions of the thrombus 2200 can be extruded through some or all of the second plurality of pores 906 which can be larger than the first plurality of pores 904. In some embodiments, the pores in the second plurality of pores 906 can be sized to be sufficiently small such that any thrombus portions of the thrombus 2200 extruded through the pores is sufficiently small to have little or no clinical significance. In some embodiments, these extruded all or portions of the thrombus 2200 can be captured by the self-expanding funnel 1708.


The thrombus extraction device 202 can continue to be proximally retracted as depicted in FIG. 25-H until the thrombus extraction device 202 and the captured thrombus 2200 is fully contained within the elongate member 106. In some embodiments, the seal dilator 170 can be inserted into the sealed aperture 112 and the thrombus extraction device 202 and the captured thrombus 2200 can then be withdrawn or removed from the patient's body and from the elongate member 106 via the sealed aperture 112 in the seal dilator 170. In some embodiments, thrombus captured by the self-expanding funnel 1708 can then either be guided into the elongate member 106 and specifically into the lumen 1701 of the elongate member 106 or further compressed and/or broken up by the self-expanding funnel 1708 and then allowed to pass through the self-expanding funnel 1708, and particularly through the mesh of the self-expanding funnel 1708. In some embodiments, this thrombus can be aspirated through the lumen 1701 of the elongate member 106 and the aspiration port 114. In some embodiments, the aspiration of the thrombus via the aspiration port 114 can include the opening of the aspiration valve 118. After the thrombus is captured by the self-expanding funnel 1708 has been aspirated, the introducer sheath 102 can be removed from the patient's body.


With reference now to FIGS. 26-28, introduction techniques for accessing the thrombus 2200 are shown. In some embodiments, these introduction techniques can allow the use of a larger sized introducer sheath 102 due to the larger size of the vessels in the path to the thrombus. In some embodiments, this larger size of the introducer sheath 102 can ease the removal of thrombus through the introducer sheath 102 as, in some embodiments, the size of the lumen 1701 of the introducer sheath 102 can increase as the size of the introducer sheath 102 increases. Further, in some embodiments, the user of a larger sized introducer sheath 102 can allow the removal of larger thrombus. In some embodiments, the lengths of the components of the thrombus extraction system 100, and particularly the lengths of the introducer sheath 102 and the thrombus extraction catheter 104 can vary based on the selected technique for accessing the thrombus and/or based on the location of the thrombus.


As seen in FIG. 26, the introducer sheath 102 can be inserted into the patient's body via an internal jugular access site 2500. The introducer sheath 102 can extend from the internal jugular access site 2500 to the deployment position 2502 which can be proximal to the thrombus 2200. In embodiments in which the introducer sheath 102 comprises the self-expanding funnel 1708, the self-expanding funnel 1708 can be deployed at the deployment position 2502. In the embodiment shown in FIG. 26, the introducer sheath can extend from the internal jugular access site 2500 through the superior vena cava and the inferior vena cava to the deployment position 2502 in one of the common iliac veins. In some embodiments, the deployment position 2502 can be located in, for example, the inferior vena cava, one of the iliac veins, the femoral vein, the popliteal vein, before or beyond the iliac arch, or any other location proximate to and/or proximal to the thrombus 2200. In some embodiments, the use of the internal jugular access site 2500 can allow for a larger diameter of the elongate member 106.


As seen in FIG. 27, in some embodiments, use of the internal jugular access site 2500 can be combined with use of the extension sheath 2300 that can be inserted into the blood vessel 2202 at a popliteal access site 2600. In some such embodiments, the thrombus extraction device can wholly or partially exit the patient's body while contained in the extension sheath 2300 before being retracted through the thrombus 2200.


As seen in FIG. 28, the introducer sheath can, in some embodiments, be inserted into the patient's body into an access site connected to the blood vessel 2202 containing the thrombus via the common iliac veins. In the specific embodiment shown in FIG. 28, this can be achieved via insertion into the patient's body via a femoral access site 2700. In some embodiments, use of an access site connected to the blood vessel 2202 via the common iliac veins, and specifically user of the femoral access site 2700 can be combined with user of the extension sheath 2300 that can be inserted into the blood vessel 2202 at a popliteal access site 2600. In some such embodiments, the thrombus extraction device can wholly or partially exit the patient's body while contained in the extension sheath 2300 before being retracted through the thrombus 2200.


Other variations are within the spirit of the present invention. Thus, while the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention, as defined in the appended claims.


In the previous description, various embodiments of the present invention are described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the embodiments. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details. Furthermore, well-known features may be omitted or simplified in order not to obscure the embodiment being described.


The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The term “connected” is to be construed as partly or wholly contained within, attached to, or joined together, even if there is something intervening. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments of the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.


Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.

Claims
  • 1. A clot treatment assembly, comprising: a first elongate shaft defining a lumen and having a distal portion a proximal portion;a funnel coupled to the distal portion of the first elongate shaft;a hub coupled to the proximal portion of the first elongate shaft;an aspiration source;a fluid path extending from the distal portion of the first elongate shaft, through the lumen of the elongate shaft, through the hub, and to the aspiration source; anda second elongate shaft coaxial with the first elongate shaft, wherein— the second elongate shaft includes a distal portion and a proximal portion,the proximal portion is positioned at least partially within the hub,the second elongate shaft is axially movable relative to the first elongate shaft between a first position and a second position,in the first position, the distal portion of the second elongate shaft extends over the funnel to radially constrain the funnel in a constrained configuration, andin the second position, the funnel is unconstrained by the distal portion of the second elongate shaft and configured to self-expand to an expanded configuration.
  • 2. The clot treatment assembly of claim 1 wherein the hub includes a seal configured to seal the lumen of the first elongate shaft.
  • 3. The clot treatment assembly of claim 1 wherein the hub includes a self-sealing seal configured to seal the lumen of the first elongate shaft.
  • 4. The clot treatment assembly of claim 1 wherein the hub comprises a stop portion configured to inhibit further movement of the second elongate shaft past the second position.
  • 5. The clot treatment assembly of claim 1 wherein the hub is shaped and sized to inhibit further movement of the second elongate shaft past the second position.
  • 6. The clot treatment assembly of claim 1, further comprising a valve along the fluid path between the aspiration source and the lumen of the first elongate shaft, wherein the valve is configured to control application of vacuum pressure generated by the aspiration source to the lumen of the elongate shaft.
  • 7. The clot treatment assembly of claim 6 wherein the valve is user actuatable.
  • 8. The clot treatment assembly of claim 1, further comprising a user-actuatable valve along the fluid path between the aspiration source and the lumen of the first elongate shaft, wherein the user-actuatable valve is movable between (a) a closed position in which the aspiration source is fluidly disconnected from the lumen of the first elongate shaft and (b) an open position in which the aspiration source is fluidly connected to the lumen of the first elongate shaft.
  • 9. The clot treatment assembly of claim 1 wherein the proximal portion of the first elongate shaft is fixedly coupled to the hub, and wherein the second elongate shaft is axially movable relative to the hub.
  • 10. The clot treatment assembly of claim 1 wherein the funnel extends distally from the distal portion of the first elongate shaft.
  • 11. The clot treatment assembly of claim 1 wherein the funnel has a conical shape in the expanded configuration.
  • 12. The clot treatment assembly of claim 1 wherein the funnel extends distally from the distal portion of the first elongate shaft, wherein the funnel has a conical shape in the expanded configuration, and wherein the funnel has a minimum diameter at the distal portion of the first elongate shaft in the expanded configuration.
  • 13. The clot treatment assembly of claim 1 wherein the funnel includes a laser cut metal structure defining a plurality of pores.
  • 14. The clot treatment assembly of claim 1 wherein the funnel includes a laser cut nitinol structure defining a plurality of pores.
  • 15. The clot treatment assembly of claim 1 wherein the funnel includes a laser cut tube.
  • 16. The clot treatment assembly of claim 1 wherein the funnel is impermeable to blood.
  • 17. A clot treatment assembly, comprising: a first elongate shaft defining a lumen and having a distal portion a proximal portion;a funnel coupled to the distal portion of the first elongate shaft;a hub fixedly coupled to the proximal portion of the first elongate shaft, wherein the hub includes a stop portion;an aspiration source;a fluid path extending from the distal portion of the first elongate shaft, through the lumen of the elongate shaft, through the hub, and to the aspiration source; anda second elongate shaft coaxial with the first elongate shaft, wherein— the second elongate shaft includes a distal portion and a proximal portion,the second elongate shaft is axially movable relative to the first elongate shaft in a single direction between a first position and a second position,the stop portion of the hub is configured to inhibit further movement of the second elongate shaft in the single direction past the second position,in the first position, the distal portion of the second elongate shaft extends over the funnel to radially constrain the funnel in a constrained configuration, andin the second position, the funnel is unconstrained by the distal portion of the second elongate shaft and configured to self-expand to an expanded configuration.
  • 18. The clot treatment assembly of claim 17, further comprising a user-actuatable valve along the fluid path between the aspiration source and the lumen of the first elongate shaft, wherein— the user-actuatable valve is movable between (a) a closed position in which the aspiration source is fluidly disconnected from the lumen of the first elongate shaft and (b) an open position in which the aspiration source is fluidly connected to the lumen of the first elongate shaft,the proximal portion of the first elongate shaft is fixedly coupled to the hub,the second elongate shaft is axially movable relative to the hub, andthe hub includes a seal configured to seal the lumen of the first elongate shaft.
  • 19. The clot treatment assembly of claim 17 wherein— the funnel includes a laser cut metal structure defining a plurality of pores,the funnel extends distally from the distal portion of the first elongate shaft, andthe funnel has a conical shape in the expanded configuration.
  • 20. The clot treatment assembly of claim 1 wherein the hub includes a seal configured to seal the lumen of the first elongate shaft.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/362,800, filed Jun. 29, 2021, which is a continuation of U.S. patent application Ser. No. 16/425,017, filed May 29, 2019, issued as U.S. Pat. No. 11,058,451, which is a divisional of U.S. patent application Ser. No. 15/268,406, filed Sep. 16, 2016, issued as U.S. Pat. No. 10,342,571, which is a continuation of U.S. patent application Ser. No. 15/268,296, filed Sep. 16, 2016, issued as U.S. Pat. No. 9,700,332, which claims the benefit of U.S. Provisional Patent Application No. 62/245,935, filed on Oct. 23, 2015, each of which is herein incorporated by reference in its entirety.

US Referenced Citations (884)
Number Name Date Kind
1101890 Tunstead Jun 1914 A
2784717 Thompson Mar 1957 A
2846179 Monckton Aug 1958 A
2955592 Maclean Oct 1960 A
3088363 Sparks May 1963 A
3197173 Taubenheim Jul 1965 A
3416531 Edwards Dec 1968 A
3435826 Fogarty Apr 1969 A
3438607 Williams et al. Apr 1969 A
3515137 Santomieri Jun 1970 A
3675657 Gauthier Jul 1972 A
3785380 Brumfield Jan 1974 A
3860006 Patel Jan 1975 A
3892161 Sokol Jul 1975 A
3923065 Nozick et al. Dec 1975 A
4030503 Clark, III Jun 1977 A
4034642 Iannucci et al. Jul 1977 A
4222380 Terayama Sep 1980 A
4243040 Beecher Jan 1981 A
4287808 Leonard et al. Sep 1981 A
4324262 Hall Apr 1982 A
4393872 Reznik et al. Jul 1983 A
4401107 Harber et al. Aug 1983 A
4469100 Hardwick Sep 1984 A
4523738 Raftis et al. Jun 1985 A
4551862 Haber Nov 1985 A
4604094 Shook Aug 1986 A
4611594 Grayhack et al. Sep 1986 A
4634421 Hegemann Jan 1987 A
4643184 Mobin-Uddin Feb 1987 A
4646736 Auth et al. Mar 1987 A
4650466 Luther Mar 1987 A
4776337 Palmaz Oct 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4863440 Chin et al. Sep 1989 A
4870953 DonMichael et al. Oct 1989 A
4883458 Shiber Nov 1989 A
4886062 Wiktor Dec 1989 A
4890611 Monfort et al. Jan 1990 A
4898575 Fischell et al. Feb 1990 A
4946440 Hall Aug 1990 A
4960259 Sunnanvader et al. Oct 1990 A
4978341 Niederhauser Dec 1990 A
4981478 Evard et al. Jan 1991 A
5030201 Palestrant Jul 1991 A
5059178 Ya Oct 1991 A
5100423 Fearnot Mar 1992 A
5127626 Hilal et al. Jul 1992 A
5129910 Phan et al. Jul 1992 A
5135484 Wright Aug 1992 A
5154724 Andrews Oct 1992 A
5158533 Strauss et al. Oct 1992 A
5158564 Schnepp-Pesch et al. Oct 1992 A
5192274 Bierman Mar 1993 A
5192286 Phan et al. Mar 1993 A
5192290 Hilal Mar 1993 A
5197485 Grooters Mar 1993 A
5234403 Yoda et al. Aug 1993 A
5242461 Kortenbach et al. Sep 1993 A
5244619 Burnham Sep 1993 A
5329923 Lundquist Jul 1994 A
5360417 Gravener et al. Nov 1994 A
5364345 Lowery et al. Nov 1994 A
5376101 Green et al. Dec 1994 A
5383887 Nadal Jan 1995 A
5389100 Bacich et al. Feb 1995 A
5391152 Patterson et al. Feb 1995 A
5419774 Willard et al. May 1995 A
5421824 Clement et al. Jun 1995 A
5443443 Shiber Aug 1995 A
5456667 Ham et al. Oct 1995 A
5476450 Ruggio Dec 1995 A
5484418 Quiachon et al. Jan 1996 A
5490859 Mische et al. Feb 1996 A
5496365 Sgro Mar 1996 A
5527326 Hermann et al. Jun 1996 A
5549626 Miller et al. Aug 1996 A
5591137 Stevens Jan 1997 A
5639276 Weinstock et al. Jun 1997 A
5653684 Laptewicz et al. Aug 1997 A
5662703 Yurek et al. Sep 1997 A
5746758 Nordgren et al. May 1998 A
5749858 Cramer May 1998 A
5769816 Barbut et al. Jun 1998 A
5782817 Franzel et al. Jul 1998 A
5800457 Gelbfish Sep 1998 A
5827229 Auth et al. Oct 1998 A
5846251 Hart Dec 1998 A
5860938 Lafontaine et al. Jan 1999 A
5873866 Kondo et al. Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876414 Straub Mar 1999 A
5895406 Gray et al. Apr 1999 A
5908435 Samuels Jun 1999 A
5911710 Barry et al. Jun 1999 A
5911733 Parodi Jun 1999 A
5911754 Kanesaka et al. Jun 1999 A
5941869 Patterson et al. Aug 1999 A
5947985 Imram Sep 1999 A
5954737 Lee Sep 1999 A
5971938 Hart et al. Oct 1999 A
5971958 Zhang Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5974938 Lloyd Nov 1999 A
5989233 Yoon Nov 1999 A
5993483 Gianotti Nov 1999 A
6017335 Burnham Jan 2000 A
6030397 Moneti et al. Feb 2000 A
6059814 Ladd May 2000 A
6066158 Engelson et al. May 2000 A
6068645 Tu May 2000 A
6126635 Simpson et al. Oct 2000 A
6142987 Tsugita Nov 2000 A
6146396 Konya et al. Nov 2000 A
6146403 St. Germain Nov 2000 A
6152144 Lesh et al. Nov 2000 A
6152946 Broome et al. Nov 2000 A
6156055 Ravenscroft Dec 2000 A
6159230 Samuels Dec 2000 A
6165196 Stack et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6228060 Howell May 2001 B1
6238412 Dubrul et al. May 2001 B1
6245078 Ouchi Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6254571 Hart Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6264663 Cano Jul 2001 B1
6306163 Fitz Oct 2001 B1
6322572 Lee Nov 2001 B1
6350271 Kurz et al. Feb 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6368339 Amplatz Apr 2002 B1
6383205 Samson et al. May 2002 B1
6402771 Palmer et al. Jun 2002 B1
6413235 Parodi Jul 2002 B1
6423032 Parodi Jul 2002 B2
6432122 Gilson et al. Aug 2002 B1
6451036 Heitzmann et al. Sep 2002 B1
6458103 Albert et al. Oct 2002 B1
6475236 Roubin et al. Nov 2002 B1
6485502 Don Michael Nov 2002 B2
6508782 Evans et al. Jan 2003 B1
6511492 Rosenbluth et al. Jan 2003 B1
6514273 Voss et al. Feb 2003 B1
6530923 Dubrul et al. Mar 2003 B1
6530935 Wensel et al. Mar 2003 B2
6540722 Boyle et al. Apr 2003 B1
6544276 Azizi Apr 2003 B1
6544278 Vrba et al. Apr 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6551342 Shen et al. Apr 2003 B1
6564828 Ishida May 2003 B1
6569181 Burns May 2003 B1
6575995 Huter et al. Jun 2003 B1
6589263 Hopkins et al. Jul 2003 B1
6589264 Barbut et al. Jul 2003 B1
6596011 Johnson et al. Jul 2003 B2
6602271 Adams et al. Aug 2003 B2
6605074 Zadno-azizi et al. Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6620148 Tsugita Sep 2003 B1
6620179 Brook et al. Sep 2003 B2
6620182 Khosravi et al. Sep 2003 B1
6623460 Heck Sep 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6645222 Parodi et al. Nov 2003 B1
6660013 Rabiner et al. Dec 2003 B2
6660014 Demarais et al. Dec 2003 B2
6663650 Sepetka et al. Dec 2003 B2
6692504 Kurz et al. Feb 2004 B2
6699260 Dubrul et al. Mar 2004 B2
6702830 Demarais et al. Mar 2004 B1
6719717 Johnson et al. Apr 2004 B1
6755847 Eskuri Jun 2004 B2
6767353 Shiber Jul 2004 B1
6790204 Zadno-azizi et al. Sep 2004 B2
6800080 Bates Oct 2004 B1
6818006 Douk et al. Nov 2004 B2
6824545 Sepetka et al. Nov 2004 B2
6824550 Noriega et al. Nov 2004 B1
6824553 Gene et al. Nov 2004 B1
6830561 Jansen et al. Dec 2004 B2
6846029 Ragner et al. Jan 2005 B1
6902540 Dorros et al. Jun 2005 B2
6908455 Hajianpour Jun 2005 B2
6939361 Kleshinski Sep 2005 B1
6942682 Vrba et al. Sep 2005 B2
6945977 Demarais et al. Sep 2005 B2
6960189 Bates et al. Nov 2005 B2
6960222 Vo et al. Nov 2005 B2
7004931 Hogendijk Feb 2006 B2
7004954 Voss et al. Feb 2006 B1
7036707 Aota et al. May 2006 B2
7041084 Fotjik May 2006 B2
7052500 Bashiri et al. May 2006 B2
7056328 Arnott Jun 2006 B2
7063707 Bose et al. Jun 2006 B2
7069835 Nishri et al. Jul 2006 B2
7094249 Thomas et al. Aug 2006 B1
7122034 Belhe et al. Oct 2006 B2
7128073 van der Burg et al. Oct 2006 B1
7152605 Khairkhahan et al. Dec 2006 B2
7179273 Palmer et al. Feb 2007 B1
7223253 Hogendijk May 2007 B2
7232432 Fulton, III et al. Jun 2007 B2
7244243 Lary Jul 2007 B2
7285126 Sepetka et al. Oct 2007 B2
7300458 Henkes et al. Nov 2007 B2
7306618 Demond et al. Dec 2007 B2
7320698 Eskuri Jan 2008 B2
7323002 Johnson et al. Jan 2008 B2
7331980 Dubrul et al. Feb 2008 B2
7481805 Magnusson Jan 2009 B2
7534234 Fotjik May 2009 B2
7578830 Kusleika et al. Aug 2009 B2
7621870 Berrada et al. Nov 2009 B2
7674247 Fotjik Mar 2010 B2
7678131 Muller Mar 2010 B2
7691121 Rosenbluth et al. Apr 2010 B2
7695458 Belley et al. Apr 2010 B2
7713282 Frazier et al. May 2010 B2
7722641 van der Burg et al. May 2010 B2
7763010 Evans et al. Jul 2010 B2
7766934 Pal et al. Aug 2010 B2
7775501 Kees Aug 2010 B2
7780696 Daniel et al. Aug 2010 B2
7815608 Schafersman et al. Oct 2010 B2
7837630 Nieoson et al. Nov 2010 B2
7905877 Oscar et al. Mar 2011 B1
7905896 Straub Mar 2011 B2
7938809 Lampropoulos et al. May 2011 B2
7938820 Webster et al. May 2011 B2
7967790 Whiting et al. Jun 2011 B2
7976511 Fotjik Jul 2011 B2
7993302 Hebert et al. Aug 2011 B2
7993363 Demond et al. Aug 2011 B2
8021351 Boldenow et al. Sep 2011 B2
8043313 Krolik et al. Oct 2011 B2
8052640 Fiorella et al. Nov 2011 B2
8057496 Fischer, Jr. Nov 2011 B2
8057497 Raju et al. Nov 2011 B1
8066757 Ferrera et al. Nov 2011 B2
8070694 Galdonik et al. Dec 2011 B2
8070769 Broome Dec 2011 B2
8070791 Ferrera et al. Dec 2011 B2
8075510 Aklog et al. Dec 2011 B2
8080032 van der Burg et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8092486 Berrada et al. Jan 2012 B2
8100935 Rosenbluth et al. Jan 2012 B2
8109962 Pal Feb 2012 B2
8118829 Carrison et al. Feb 2012 B2
8197493 Ferrera et al. Jun 2012 B2
8246641 Osborne et al. Aug 2012 B2
8261648 Marchand et al. Sep 2012 B1
8267897 Wells Sep 2012 B2
8298257 Sepetka et al. Oct 2012 B2
8317748 Fiorella et al. Nov 2012 B2
8337450 Fotjik Dec 2012 B2
RE43902 Hopkins et al. Jan 2013 E
8343167 Henson Jan 2013 B2
8357178 Grandfield et al. Jan 2013 B2
8361104 Jones et al. Jan 2013 B2
8409215 Sepetka et al. Apr 2013 B2
8480708 Kassab et al. Jul 2013 B2
8486105 Demond et al. Jul 2013 B2
8491539 Fotjik Jul 2013 B2
8512352 Martin Aug 2013 B2
8523897 van der Burg et al. Sep 2013 B2
8535283 Heaton et al. Sep 2013 B2
8535334 Martin Sep 2013 B2
8535343 van der Burg et al. Sep 2013 B2
8545526 Martin et al. Oct 2013 B2
8568432 Straub Oct 2013 B2
8568465 Freudenthal et al. Oct 2013 B2
8574262 Ferrera et al. Nov 2013 B2
8579915 French et al. Nov 2013 B2
8585713 Ferrera et al. Nov 2013 B2
8608754 Wensel et al. Dec 2013 B2
8647367 Kassab et al. Feb 2014 B2
8657867 Dorn et al. Feb 2014 B2
8696622 Fiorella et al. Apr 2014 B2
8715314 Janardhan et al. May 2014 B1
8721714 Kelley May 2014 B2
8753322 Hu et al. Jun 2014 B2
8771289 Mohiuddin et al. Jul 2014 B2
8777893 Malewicz Jul 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8784442 Jones et al. Jul 2014 B2
8784469 Kassab Jul 2014 B2
8795305 Martin et al. Aug 2014 B2
8795345 Grandfield et al. Aug 2014 B2
8801748 Martin Aug 2014 B2
8808259 Walton et al. Aug 2014 B2
8814927 Shin et al. Aug 2014 B2
8820207 Marchand et al. Sep 2014 B2
8826791 Thompson et al. Sep 2014 B2
8828044 Aggerholm et al. Sep 2014 B2
8833224 Thompson et al. Sep 2014 B2
8834519 van der Burg et al. Sep 2014 B2
8845621 Fotjik Sep 2014 B2
8852205 Brady et al. Oct 2014 B2
8852226 Gilson et al. Oct 2014 B2
8939991 Krolik et al. Jan 2015 B2
8945143 Ferrera et al. Feb 2015 B2
8945172 Ferrera et al. Feb 2015 B2
8956384 Berrada et al. Feb 2015 B2
8992504 Castella et al. Mar 2015 B2
9005172 Chung Apr 2015 B2
9011551 Oral et al. Apr 2015 B2
9028401 Bacich et al. May 2015 B1
9078682 Lenker et al. Jul 2015 B2
9101382 Krolik et al. Aug 2015 B2
9125683 Farhangnia et al. Sep 2015 B2
9126016 Fulton Sep 2015 B2
9149609 Ansel et al. Oct 2015 B2
9155552 Ulm, III Oct 2015 B2
9161766 Slee et al. Oct 2015 B2
9168043 van der Burg et al. Oct 2015 B2
9173668 Ulm, III Nov 2015 B2
9186487 Dubrul et al. Nov 2015 B2
9204887 Cully et al. Dec 2015 B2
9216277 Myers Dec 2015 B2
9241669 Pugh et al. Jan 2016 B2
9358037 Farhangnia et al. Jan 2016 B2
9259237 Quick et al. Feb 2016 B2
9265512 Carrison et al. Feb 2016 B2
9283066 Hopkins et al. Mar 2016 B2
9301769 Brady et al. Apr 2016 B2
9351747 Kugler et al. May 2016 B2
9439664 Sos Sep 2016 B2
9439751 White et al. Sep 2016 B2
9456834 Folk Oct 2016 B2
9463035 Greenhalgh et al. Oct 2016 B1
9463036 Brady et al. Oct 2016 B2
9526864 Quick Dec 2016 B2
9526865 Quick Dec 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9566073 Kassab et al. Feb 2017 B2
9566424 Pessin Feb 2017 B2
9579116 Nguyen et al. Feb 2017 B1
9581942 Shippert Feb 2017 B1
9616213 Furnish et al. Apr 2017 B2
9636206 Nguyen et al. May 2017 B2
9643035 Mastenbroek May 2017 B2
9662129 Galdonik et al. May 2017 B2
9700332 Marchand et al. Jul 2017 B2
9717488 Kassab et al. Aug 2017 B2
9717514 Martin et al. Aug 2017 B2
9717519 Rosenbluth et al. Aug 2017 B2
9744024 Nguyen et al. Aug 2017 B2
9757137 Krolik et al. Sep 2017 B2
9827084 Bonnette et al. Nov 2017 B2
9844386 Nguyen et al. Dec 2017 B2
9844387 Marchand et al. Dec 2017 B2
9848975 Hauser Dec 2017 B2
9849014 Kusleika Dec 2017 B2
9884387 Plha Feb 2018 B2
9962178 Greenhalgh et al. May 2018 B2
9980813 Eller May 2018 B2
9999493 Nguyen et al. Jun 2018 B2
10004531 Rosenbluth et al. Jun 2018 B2
10010335 Greenhalgh et al. Jul 2018 B2
10016266 Hauser Jul 2018 B2
10028759 Wallace et al. Jul 2018 B2
10045790 Cox et al. Aug 2018 B2
10058339 Galdonik et al. Aug 2018 B2
10098651 Marchand et al. Oct 2018 B2
10130385 Farhangnia et al. Nov 2018 B2
10183159 Nobles et al. Jan 2019 B2
10226263 Look et al. Mar 2019 B2
10238406 Cox et al. Mar 2019 B2
10271864 Greenhalgh et al. Apr 2019 B2
10327883 Yachia Jun 2019 B2
10335186 Rosenbluth et al. Jul 2019 B2
10342571 Marchand et al. Jul 2019 B2
10349960 Quick Jul 2019 B2
10383644 Molaei et al. Aug 2019 B2
10384034 Carrison et al. Aug 2019 B2
10456555 Carrison et al. Oct 2019 B2
10478535 Ogle Nov 2019 B2
10485952 Carrison et al. Nov 2019 B2
10524811 Marchand et al. Jan 2020 B2
10531883 Deville et al. Jan 2020 B1
10588655 Rosenbluth et al. Mar 2020 B2
10648268 Jaffrey et al. May 2020 B2
10695159 Hauser Jun 2020 B2
10709471 Rosenbluth et al. Jul 2020 B2
10772636 Kassab et al. Sep 2020 B2
10799331 Hauser Oct 2020 B2
10912577 Marchand et al. Feb 2021 B2
10926060 Stern et al. Feb 2021 B2
10953195 Jalgaonkar et al. Mar 2021 B2
10960114 Goisis Mar 2021 B2
11000682 Merritt et al. May 2021 B2
11013523 Arad Hadar May 2021 B2
11058445 Cox et al. Jul 2021 B2
11058451 Marchand et al. Jul 2021 B2
11065019 Chou et al. Jul 2021 B1
11147571 Cox et al. Oct 2021 B2
11154314 Quick Oct 2021 B2
11166703 Kassab et al. Nov 2021 B2
11185664 Carrison et al. Nov 2021 B2
11224450 Chou et al. Jan 2022 B2
11224721 Carrison et al. Jan 2022 B2
11259821 Buck et al. Mar 2022 B2
11305094 Carrison et al. Apr 2022 B2
11383064 Carrison et al. Jul 2022 B2
11395903 Carrison et al. Jul 2022 B2
11406801 Fojtik et al. Aug 2022 B2
11433218 Quick et al. Sep 2022 B2
11439799 Buck et al. Sep 2022 B2
11457936 Buck et al. Oct 2022 B2
11529158 Hauser Dec 2022 B2
11554005 Merritt et al. Jan 2023 B2
11559382 Merritt et al. Jan 2023 B2
11576691 Chou et al. Feb 2023 B2
11596768 Stern et al. Mar 2023 B2
11642209 Merritt et al. May 2023 B2
11648028 Rosenbluth et al. May 2023 B2
11697011 Merritt et al. Jul 2023 B2
11697012 Merritt et al. Jul 2023 B2
11744691 Merritt et al. Sep 2023 B2
11806033 Marchand et al. Nov 2023 B2
11832837 Hauser Dec 2023 B2
11832838 Hauser Dec 2023 B2
11833023 Hauser Dec 2023 B2
11839393 Hauser Dec 2023 B2
11844921 Merritt et al. Dec 2023 B2
11849963 Quick Dec 2023 B2
20010004699 Gittings et al. Jun 2001 A1
20010031981 Evans et al. Oct 2001 A1
20010041909 Tsugita et al. Nov 2001 A1
20010049486 Evans et al. Dec 2001 A1
20010051810 Dubrul et al. Dec 2001 A1
20020022858 Demond et al. Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi et al. Feb 2002 A1
20020032455 Boock et al. Mar 2002 A1
20020049452 Kurz et al. Apr 2002 A1
20020095161 Dhindsa Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020111648 Kusleika et al. Aug 2002 A1
20020120277 Hauschild et al. Aug 2002 A1
20020147458 Hiblar et al. Oct 2002 A1
20020151918 Lafontaine et al. Oct 2002 A1
20020156457 Fisher Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020169474 Kusleika Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020188276 Evans et al. Dec 2002 A1
20030023263 Krolik et al. Jan 2003 A1
20030083693 Daniel et al. May 2003 A1
20030100919 Hopkins et al. May 2003 A1
20030114875 Sjostrom Jun 2003 A1
20030116731 Hartley Jun 2003 A1
20030125663 Coleman et al. Jul 2003 A1
20030135151 Deng Jul 2003 A1
20030135230 Massey et al. Jul 2003 A1
20030135258 Andreas et al. Jul 2003 A1
20030153873 Luther et al. Aug 2003 A1
20030153973 Soun et al. Aug 2003 A1
20030168068 Poole et al. Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030191516 Weldon et al. Oct 2003 A1
20030208224 Broome Nov 2003 A1
20030216774 Larson Nov 2003 A1
20040019310 Hogendijk Jan 2004 A1
20040039351 Barrett Feb 2004 A1
20040039412 Isshiki et al. Feb 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka et al. Apr 2004 A1
20040098033 Leeflang et al. May 2004 A1
20040102807 Kusleika et al. May 2004 A1
20040122359 Wenz et al. Jun 2004 A1
20040127936 Salahieh et al. Jul 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138692 Phung et al. Jul 2004 A1
20040167567 Cano et al. Aug 2004 A1
20040199201 Kellett et al. Oct 2004 A1
20040199202 Dubrul et al. Oct 2004 A1
20040260344 Lyons et al. Dec 2004 A1
20040267272 Henniges et al. Dec 2004 A1
20050004534 Lockwood et al. Jan 2005 A1
20050033172 Dubrul et al. Feb 2005 A1
20050038468 Panetta et al. Feb 2005 A1
20050054995 Barzell et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050085769 MacMahon et al. Apr 2005 A1
20050085826 Nair et al. Apr 2005 A1
20050085846 Carrison et al. Apr 2005 A1
20050085849 Sepetka et al. Apr 2005 A1
20050119668 Teague et al. Jun 2005 A1
20050177132 Lentz et al. Aug 2005 A1
20050187570 Nguyen et al. Aug 2005 A1
20050203605 Dolan Sep 2005 A1
20050283165 Gadberry Dec 2005 A1
20050283166 Greenhalgh et al. Dec 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20060020286 Niermann Jan 2006 A1
20060042786 West Mar 2006 A1
20060047286 West Mar 2006 A1
20060074401 Ross Apr 2006 A1
20060089533 Ziegler et al. Apr 2006 A1
20060100662 Daniel et al. May 2006 A1
20060155305 Freudenthal et al. Jul 2006 A1
20060173525 Behl et al. Aug 2006 A1
20060195137 Sepetka et al. Aug 2006 A1
20060200221 Malewicz Sep 2006 A1
20060217664 Hattler et al. Sep 2006 A1
20060224177 Finitsis Oct 2006 A1
20060229645 Bonnette et al. Oct 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060253145 Lucas Nov 2006 A1
20060264905 Eskridge et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060282111 Morsi Dec 2006 A1
20060293696 Fahey et al. Dec 2006 A1
20070010787 Hackett et al. Jan 2007 A1
20070038225 Osborne Feb 2007 A1
20070093744 Elmaleh Apr 2007 A1
20070112374 Paul, Jr. et al. May 2007 A1
20070118165 DeMello et al. May 2007 A1
20070149996 Coughlin Jun 2007 A1
20070161963 Smalling Jul 2007 A1
20070179513 Deutsch Aug 2007 A1
20070191866 Palmer et al. Aug 2007 A1
20070198028 Miloslavski et al. Aug 2007 A1
20070208361 Okushi et al. Sep 2007 A1
20070208367 Fiorella et al. Sep 2007 A1
20070213753 Waller Sep 2007 A1
20070213765 Adams et al. Sep 2007 A1
20070233043 Dayton et al. Oct 2007 A1
20070255252 Mehta Nov 2007 A1
20070288054 Tanaka et al. Dec 2007 A1
20080015541 Rosenbluth et al. Jan 2008 A1
20080087853 Kees Apr 2008 A1
20080088055 Ross Apr 2008 A1
20080157017 Macatangay et al. Jul 2008 A1
20080167678 Morsi Jul 2008 A1
20080183136 Lenker et al. Jul 2008 A1
20080228209 DeMello et al. Sep 2008 A1
20080234715 Pesce et al. Sep 2008 A1
20080234722 Bonnette et al. Sep 2008 A1
20080262528 Martin Oct 2008 A1
20080269798 Ramzipoor et al. Oct 2008 A1
20080294096 Uber, III et al. Nov 2008 A1
20080300466 Gresham Dec 2008 A1
20080312681 Ansel et al. Dec 2008 A1
20090018566 Escudero et al. Jan 2009 A1
20090054918 Henson Feb 2009 A1
20090062841 Amplatz et al. Mar 2009 A1
20090069828 Martin et al. Mar 2009 A1
20090076417 Jones Mar 2009 A1
20090160112 Ostrovsky Jun 2009 A1
20090163846 Aklog et al. Jun 2009 A1
20090182362 Thompson et al. Jul 2009 A1
20090192495 Ostrovsky et al. Jul 2009 A1
20090281525 Harding et al. Nov 2009 A1
20090292307 Razack Nov 2009 A1
20090299393 Martin et al. Dec 2009 A1
20100016837 Howat Jan 2010 A1
20100030256 Dubrul et al. Feb 2010 A1
20100042136 Berrada et al. Feb 2010 A1
20100087844 Fischer, Jr. Apr 2010 A1
20100087850 Razack Apr 2010 A1
20100094201 Mallaby Apr 2010 A1
20100106081 Brandeis Apr 2010 A1
20100114017 Lenker et al. May 2010 A1
20100114113 Dubrul et al. May 2010 A1
20100121312 Gielenz et al. May 2010 A1
20100137846 Desai et al. Jun 2010 A1
20100190156 Van Wordragen et al. Jul 2010 A1
20100204712 Mallaby Aug 2010 A1
20100217276 Garrison et al. Aug 2010 A1
20100249815 Jantzen et al. Sep 2010 A1
20100268264 Bonnette et al. Oct 2010 A1
20100318178 Rapaport et al. Dec 2010 A1
20110034986 Chou et al. Feb 2011 A1
20110034987 Kennedy Feb 2011 A1
20110054405 Whiting et al. Mar 2011 A1
20110060212 Slee et al. Mar 2011 A1
20110071503 Takagi et al. Mar 2011 A1
20110118817 Gunderson et al. May 2011 A1
20110125181 Brady et al. May 2011 A1
20110144592 Wong et al. Jun 2011 A1
20110152823 Mohiuddin et al. Jun 2011 A1
20110152889 Ashland Jun 2011 A1
20110152993 Marchand et al. Jun 2011 A1
20110160742 Ferrera et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110190806 Wittens Aug 2011 A1
20110196309 Wells Aug 2011 A1
20110196414 Porter et al. Aug 2011 A1
20110213290 Chin et al. Sep 2011 A1
20110213403 Aboytes Sep 2011 A1
20110224707 Miloslavski et al. Sep 2011 A1
20110245807 Sakata et al. Oct 2011 A1
20110251629 Galdonik et al. Oct 2011 A1
20110264133 Hanlon et al. Oct 2011 A1
20110265681 Allen et al. Nov 2011 A1
20110288529 Fulton Nov 2011 A1
20110288572 Martin Nov 2011 A1
20110309037 Lee Dec 2011 A1
20110319917 Ferrera et al. Dec 2011 A1
20120059309 di Palma et al. Mar 2012 A1
20120059356 di Palma et al. Mar 2012 A1
20120083824 Berrada et al. Apr 2012 A1
20120083868 Shrivastava Apr 2012 A1
20120089216 Rapaport et al. Apr 2012 A1
20120101480 Ingle et al. Apr 2012 A1
20120101510 Lenker et al. Apr 2012 A1
20120109109 Kajii May 2012 A1
20120138832 Townsend Jun 2012 A1
20120143239 Aklog et al. Jun 2012 A1
20120165919 Cox et al. Jun 2012 A1
20120172918 Fifer et al. Jul 2012 A1
20120179181 Straub et al. Jul 2012 A1
20120197277 Stinis Aug 2012 A1
20120232655 Lorrison et al. Sep 2012 A1
20120271105 Nakamura et al. Oct 2012 A1
20120271231 Agrawal Oct 2012 A1
20120277788 Cattaneo Nov 2012 A1
20120310166 Huff Dec 2012 A1
20130030460 Marks et al. Jan 2013 A1
20130035628 Garrison et al. Feb 2013 A1
20130046332 Jones et al. Feb 2013 A1
20130066348 Fiorella et al. Mar 2013 A1
20130092012 Marchand et al. Apr 2013 A1
20130096571 Massicotte et al. Apr 2013 A1
20130102996 Strauss Apr 2013 A1
20130116708 Ziniti et al. May 2013 A1
20130116721 Takagi et al. May 2013 A1
20130126559 Cowan et al. May 2013 A1
20130144326 Brady et al. Jun 2013 A1
20130150793 Beissel et al. Jun 2013 A1
20130165871 Fiorella et al. Jun 2013 A1
20130184703 Shireman et al. Jul 2013 A1
20130190701 Kirn Jul 2013 A1
20130197454 Shibata et al. Aug 2013 A1
20130197567 Brady et al. Aug 2013 A1
20130204297 Melsheimer et al. Aug 2013 A1
20130226196 Smith Aug 2013 A1
20130270161 Kumar et al. Oct 2013 A1
20130281788 Garrison Oct 2013 A1
20130289608 Tanaka et al. Oct 2013 A1
20130317589 Martin et al. Nov 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140005712 Martin Jan 2014 A1
20140005713 Bowman Jan 2014 A1
20140005715 Castella et al. Jan 2014 A1
20140005717 Martin et al. Jan 2014 A1
20140025048 Ward Jan 2014 A1
20140031856 Martin Jan 2014 A1
20140046133 Nakamura et al. Feb 2014 A1
20140046243 Ray et al. Feb 2014 A1
20140052161 Cully et al. Feb 2014 A1
20140074144 Shrivastava et al. Mar 2014 A1
20140121672 Folk May 2014 A1
20140155830 Bonnette et al. Jun 2014 A1
20140155980 Turjman Jun 2014 A1
20140180055 Glynn et al. Jun 2014 A1
20140180397 Gerberding et al. Jun 2014 A1
20140155908 Rosenbluth et al. Jul 2014 A1
20140188127 Dubrul et al. Jul 2014 A1
20140188143 Martin et al. Jul 2014 A1
20140222070 Belson et al. Aug 2014 A1
20140236219 Dubrul et al. Aug 2014 A1
20140243882 Ma Aug 2014 A1
20140257253 Jemison Sep 2014 A1
20140257363 Lippert Sep 2014 A1
20140276403 Follmer et al. Sep 2014 A1
20140296868 Garrison et al. Oct 2014 A1
20140303658 Bonnette et al. Oct 2014 A1
20140318354 Thompson et al. Oct 2014 A1
20140324091 Rosenbluth et al. Oct 2014 A1
20140330286 Wallace et al. Nov 2014 A1
20140336691 Jones et al. Nov 2014 A1
20140343593 Chin et al. Nov 2014 A1
20140364896 Consigny Dec 2014 A1
20140371779 Vale et al. Dec 2014 A1
20150005781 Lund-Clausen et al. Jan 2015 A1
20150005792 Ahn Jan 2015 A1
20150018859 Quick et al. Jan 2015 A1
20150018860 Quick Jan 2015 A1
20150018929 Martin et al. Jan 2015 A1
20150025555 Sos Jan 2015 A1
20150032144 Holloway Jan 2015 A1
20150059908 Mollen Mar 2015 A1
20150088190 Jensen Mar 2015 A1
20150127035 Trapp et al. May 2015 A1
20150133990 Davidson May 2015 A1
20150150672 Ma Jun 2015 A1
20150164523 Brady et al. Jun 2015 A1
20150164666 Johnson et al. Jun 2015 A1
20150173782 Garrison et al. Jun 2015 A1
20150190155 Ulm, III Jul 2015 A1
20150190156 Ulm, III Jul 2015 A1
20150196380 Berrada et al. Jul 2015 A1
20150196744 Aboytes Jul 2015 A1
20150209058 Ferrera et al. Jul 2015 A1
20150209165 Grandfield et al. Jul 2015 A1
20150238207 Cox et al. Aug 2015 A1
20150250578 Cook et al. Sep 2015 A1
20150265299 Cooper et al. Sep 2015 A1
20150305756 Rosenbluth Oct 2015 A1
20150305859 Eller Oct 2015 A1
20150352325 Quick Dec 2015 A1
20150360001 Quick Dec 2015 A1
20150374391 Quick Dec 2015 A1
20160022293 Dubrul et al. Jan 2016 A1
20160030708 Casiello et al. Feb 2016 A1
20160038267 Allen et al. Feb 2016 A1
20160058540 Don Michael Mar 2016 A1
20160074627 Cottone Mar 2016 A1
20160106353 Schuetz et al. Apr 2016 A1
20160106448 Brady et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113664 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160113666 Quick Apr 2016 A1
20160135829 Holoehwost et al. May 2016 A1
20160143721 Rosenbluth May 2016 A1
20160151605 Welch et al. Jun 2016 A1
20160192912 Kassab et al. Jul 2016 A1
20160206344 Bruzzi et al. Jul 2016 A1
20160008014 Rosenbluth Aug 2016 A1
20160220741 Garrison et al. Aug 2016 A1
20160228134 Martin et al. Aug 2016 A1
20160262774 Honda Sep 2016 A1
20160262790 Rosenbluth et al. Sep 2016 A1
20160287276 Cox et al. Oct 2016 A1
20160367285 Sos Dec 2016 A1
20170014560 Minskoff et al. Jan 2017 A1
20170021130 Dye Jan 2017 A1
20170037548 Lee Feb 2017 A1
20170042571 Levi Feb 2017 A1
20170049942 Conlan et al. Feb 2017 A1
20170056032 Look et al. Mar 2017 A1
20170058623 Jaffrey et al. Mar 2017 A1
20170079672 Quick Mar 2017 A1
20170086864 Greenhalgh et al. Mar 2017 A1
20170100142 Look et al. Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170105745 Rosenbluth et al. Apr 2017 A1
20170112514 Marchand et al. Apr 2017 A1
20170113005 Linder et al. Apr 2017 A1
20170143359 Nguyen et al. May 2017 A1
20170143880 Luxon et al. May 2017 A1
20170143938 Ogle et al. May 2017 A1
20170172591 Ulm, III Jun 2017 A1
20170112513 Marchand et al. Jul 2017 A1
20170189041 Cox et al. Jul 2017 A1
20170196576 Long et al. Jul 2017 A1
20170233908 Kroczynski et al. Aug 2017 A1
20170252057 Bonnette et al. Sep 2017 A1
20170265878 Marchand et al. Sep 2017 A1
20170281204 Garrison et al. Oct 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170319221 Chu Nov 2017 A1
20170325839 Rosenbluth et al. Nov 2017 A1
20170340867 Accisano, II Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20180042623 Batiste Feb 2018 A1
20180042624 Greenhalgh et al. Feb 2018 A1
20180042626 Greenhalgh et al. Feb 2018 A1
20180055999 Bare et al. Mar 2018 A1
20180064453 Garrison et al. Mar 2018 A1
20180064454 Losordo et al. Mar 2018 A1
20180070968 Wallace et al. Mar 2018 A1
20180092652 Marchand et al. Apr 2018 A1
20180104404 Ngo-Chu Apr 2018 A1
20180105963 Quick Apr 2018 A1
20180125512 Nguyen et al. May 2018 A1
20180184912 Al-Ali Jul 2018 A1
20180193043 Marchand et al. Jul 2018 A1
20180236205 Krautkremer et al. Aug 2018 A1
20180250498 Stern et al. Sep 2018 A1
20180256177 Cooper et al. Sep 2018 A1
20180256178 Cox et al. Sep 2018 A1
20180296240 Rosenbluth et al. Oct 2018 A1
20180344339 Cox et al. Dec 2018 A1
20180361116 Quick et al. Dec 2018 A1
20190000492 Casey et al. Jan 2019 A1
20190015298 Beatty et al. Jan 2019 A1
20190046219 Marchand et al. Feb 2019 A1
20190070401 Merritt et al. Mar 2019 A1
20190117244 Wallace et al. Apr 2019 A1
20190133622 Wallace et al. May 2019 A1
20190133623 Wallace et al. May 2019 A1
20190133624 Wallace et al. May 2019 A1
20190133625 Wallace et al. May 2019 A1
20190133626 Wallace et al. May 2019 A1
20190133627 Wallace et al. May 2019 A1
20190150959 Cox et al. May 2019 A1
20190231373 Quick Aug 2019 A1
20190239910 Brady et al. Aug 2019 A1
20190321071 Marchand et al. Oct 2019 A1
20190336142 Torrie et al. Nov 2019 A1
20190336148 Greenhalgh et al. Nov 2019 A1
20190365395 Tran et al. Dec 2019 A1
20190366036 Jalgaonkar et al. Dec 2019 A1
20200022711 Look et al. Jan 2020 A1
20200046368 Merritt et al. Feb 2020 A1
20200046940 Carrison et al. Feb 2020 A1
20200113412 Jensen Apr 2020 A1
20200121334 Galdonik et al. Apr 2020 A1
20210022843 Hauser Jan 2021 A1
20210038385 Popp et al. Feb 2021 A1
20210113224 Dinh Apr 2021 A1
20210128182 Teigen et al. May 2021 A1
20210137667 Sonnette et al. May 2021 A1
20210138194 Carrison et al. May 2021 A1
20210186541 Thress Jun 2021 A1
20210205577 Jalgaonkar et al. Jul 2021 A1
20210236148 Marchand et al. Aug 2021 A1
20210290925 Merritt et al. Sep 2021 A1
20210315598 Buck et al. Oct 2021 A1
20210316127 Buck et al. Oct 2021 A1
20210330344 Rosenbluth et al. Oct 2021 A1
20210378694 Thress et al. Dec 2021 A1
20210393278 O'Malley et al. Dec 2021 A1
20210404464 Patoskie Dec 2021 A1
20220000505 Hauser Jan 2022 A1
20220000506 Hauser Jan 2022 A1
20220000507 Hauser Jan 2022 A1
20220015798 Marchand et al. Jan 2022 A1
20220022898 Cox et al. Jan 2022 A1
20220033888 Schnall-Levin et al. Feb 2022 A1
20220039815 Thress et al. Feb 2022 A1
20220125451 Hauser Apr 2022 A1
20220142638 Enright et al. May 2022 A1
20220151647 Dolendo et al. May 2022 A1
20220152355 Dolendo et al. May 2022 A1
20220160381 Hauser May 2022 A1
20220160382 Hauser May 2022 A1
20220160383 Hauser May 2022 A1
20220211400 Cox et al. Jul 2022 A1
20220211992 Merritt et al. Jul 2022 A1
20220240959 Quick Aug 2022 A1
20220346800 Merritt et al. Nov 2022 A1
20220346813 Quick Nov 2022 A1
20220346814 Quick Nov 2022 A1
20220347455 Merritt et al. Nov 2022 A1
20220362512 Quick et al. Nov 2022 A1
20220370761 Chou et al. Nov 2022 A1
20230046775 Quick Feb 2023 A1
20230059721 Chou et al. Feb 2023 A1
20230062809 Merritt et al. Mar 2023 A1
20230070120 Cox et al. Mar 2023 A1
20230122587 Chou et al. Apr 2023 A1
20230200970 Merritt et al. Jun 2023 A1
20230218310 Scheinblum et al. Jul 2023 A1
20230218313 Rosenbluth et al. Jul 2023 A1
20230218383 Merritt et al. Jul 2023 A1
20230233311 Merritt et al. Jul 2023 A1
20230240705 Rosenbluth et al. Aug 2023 A1
20230240706 Rosenbluth et al. Aug 2023 A1
20230241302 Merritt et al. Aug 2023 A1
20230248380 Long et al. Aug 2023 A1
20230270991 Merritt et al. Aug 2023 A1
20230310137 Merritt et al. Oct 2023 A1
20230310138 Merritt et al. Oct 2023 A1
20230310751 Merritt et al. Oct 2023 A1
20230320834 Merritt et al. Oct 2023 A1
20230329734 Marchand et al. Oct 2023 A1
20230338130 Merritt et al. Oct 2023 A1
20230338131 Merritt et al. Oct 2023 A1
20230355256 Dinh Nov 2023 A1
20230355938 Merritt et al. Nov 2023 A1
20230363776 Quick Nov 2023 A1
20230363883 Merritt et al. Nov 2023 A1
20230389932 Ozenne et al. Dec 2023 A1
20230390045 Merritt et al. Dec 2023 A1
Foreign Referenced Citations (106)
Number Date Country
2015210338 Aug 2015 AU
102186427 Sep 2011 CN
103764049 Apr 2014 CN
103932756 Jul 2014 CN
104068910 Oct 2014 CN
106178227 Dec 2016 CN
108348319 Jul 2018 CN
110652645 Jan 2020 CN
111281482 Jun 2020 CN
102017004383 Jul 2018 DE
1254634 Nov 2002 EP
1867290 Feb 2013 EP
2942624 Nov 2015 EP
3583972 Dec 2019 EP
3589348 Jan 2020 EP
3620204 Mar 2020 EP
3013404 Apr 2020 EP
4137070 Feb 2023 EP
1588072 Apr 1981 GB
2498349 Jul 2013 GB
H6190049 Jul 1994 JP
H07323090 Dec 1995 JP
2001522631 May 1999 JP
2004097807 Apr 2004 JP
2005-095242 Jun 2005 JP
2005230132 Sep 2005 JP
2005323702 Nov 2005 JP
2006094876 Apr 2006 JP
2011526820 Jan 2010 JP
WO1997017889 May 1997 WO
WO9833443 Aug 1998 WO
WO9838920 Sep 1998 WO
WO9839053 Sep 1998 WO
WO9851237 Nov 1998 WO
WO1999044542 Sep 1999 WO
WO0032118 Jun 2000 WO
WO2000053120 Sep 2000 WO
WO0202162 Jan 2002 WO
WO03015840 Feb 2003 WO
WO2004018916 Mar 2004 WO
WO2004093696 Nov 2004 WO
WO2005046736 May 2005 WO
WO2006029270 Mar 2006 WO
WO2006110186 Oct 2006 WO
WO2006124307 Nov 2006 WO
WO2007092820 Aug 2007 WO
WO2009082513 Jul 2009 WO
WO2009086482 Jul 2009 WO
WO2009155571 Dec 2009 WO
WO2010002549 Jan 2010 WO
WO2010010545 Jan 2010 WO
WO2010023671 Mar 2010 WO
WO2010049121 May 2010 WO
WO2010102307 Sep 2010 WO
WO2011032712 Mar 2011 WO
WO2011054531 May 2011 WO
WO2011073176 Jun 2011 WO
WO2012009675 Jan 2012 WO
WO2012011097 Jan 2012 WO
WO2012049652 Apr 2012 WO
WO2012065748 May 2012 WO
WO2012120490 Sep 2012 WO
WO2012162437 Nov 2012 WO
WO2014047650 Mar 2014 WO
WO2014081892 May 2014 WO
WO2015006782 Jan 2015 WO
WO2015061365 Apr 2015 WO
WO2015121424 Aug 2015 WO
WO2015179329 Nov 2015 WO
WO2015189354 Dec 2015 WO
WO2015191646 Dec 2015 WO
WO2016014955 Jan 2016 WO
WO2017024258 Feb 2017 WO
WO2017058280 Apr 2017 WO
WO2017070702 Apr 2017 WO
WO2017106877 Jun 2017 WO
WO2017189535 Nov 2017 WO
WO2017189550 Nov 2017 WO
WO2017189591 Nov 2017 WO
WO2017189615 Nov 2017 WO
WO2017210487 Dec 2017 WO
WO2018049317 Mar 2018 WO
WO2018065092 Apr 2018 WO
WO2018080590 May 2018 WO
WO2018148174 Aug 2018 WO
WO2019010318 Jan 2019 WO
WO2019050765 Mar 2019 WO
WO2019075444 Apr 2019 WO
WO2019094456 May 2019 WO
WO2019173475 Sep 2019 WO
WO2019222117 Nov 2019 WO
WO2019246240 Dec 2019 WO
WO2020036809 Feb 2020 WO
WO2021067134 Apr 2021 WO
WO2021076954 Apr 2021 WO
WO2021127202 Jun 2021 WO
WO2021248042 Dec 2021 WO
WO2022032173 Feb 2022 WO
WO2022103848 May 2022 WO
WO2022109021 May 2022 WO
WO2022109034 May 2022 WO
WO2023137341 Jul 2023 WO
WO2023147353 Aug 2023 WO
WO2023154612 Aug 2023 WO
WO2023192925 Oct 2023 WO
WO2023215779 Nov 2023 WO
Non-Patent Literature Citations (61)
Entry
Gibbs, et al., “Temporary Stent as a bail-out device during percutaneous transluminal coronary angioplasty: preliminary clinical experience,” British Heart Journal, 1994, 71:372-377, Oct. 12, 1993, 6 pgs.
Gupta, S. et al., “Acute Pulmonary Embolism Advances in Treatment”, JAPI, Association of Physicians India, Mar. 2008, vol. 56, 185-191.
International Search Report and Written Opinion for International App. No. PCT/US13/61470, dated Jan. 17, 2014, 7 pages.
International Search Report and Written Opinion for International App. No. PCT/US2014/046567, dated Nov. 3, 2014, 13 pages.
International Search Report and Written Opinion for International App. No. PCT/US2014/061645, dated Jan. 23, 2015, 15 pages.
International Search Report for International App. No. PCT/US13/71101, dated Mar. 31, 2014, 4 pages.
Konstantinides, S. et al., “Pulmonary embolism hotline 2012—Recent and expected trials”, Thrombosis and Haemostasis, Jan. 9, 2013:33; 43-50.
Konstantinides, S. et al., “Pulmonary embolism: risk assessment and management”, European Society of Cardiology; European Heart Journal, Sep. 7, 2012:33, 3014-3022.
Kucher, N. et al., “Percutaneous Catheter Thrombectomy Device for Acute Pulmonary Embolism: In Vitro and in Vivo Testing”, Circulation, Sep. 2005:112:e28-e32.
Kucher, N., “Catheter Interventions in Massive Pulmonary Embolism”, Cardiology Rounds, Mar. 2006 vol. 10, Issue 3, 6 pages.
Kucher, N. et al., “Management of Massive Pulmonary Embolism”, Radiology, Sep. 2005:236:3 852-858.
Kucher, N. et al., “Randomized, Controlled Trial of Ultrasound-Assisted Catheter-Directed Thrombolysis for Acute Intermediate-Risk Pulmonary Embolism.” Circulation, 2014, 129, pp. 9 pages.
Kuo, W. et al., “Catheter-directed Therapy for the Treatment of Massive Pulmonary Embolism: Systematic Review and Meta-analysis of Modern Techniques”, Journal of Vascular and Interventional Radiology, Nov. 2009:20:1431-1440.
Kuo, W. et al., “Catheter-Directed Embolectomy, Fragmentation, and Thrombolysis for the Treatment of Massive Pulmonary Embolism After Failure of Systemic Thrombolysis”, American College of Chest Physicians 2008: 134:250-254.
Kuo, W. MD, “Endovascular Therapy for Acute Pulmonary Embolism”, Continuing Medical Education Society of Interventional Radiology (“CME”); Journal of Vascular and Interventional Radiology, Feb. 2012: 23:167-179.
Lee, L. et al, “Massive pulmonary embolism: review of management strategies with a focus on catheter-based techniques”, Expert Rev. Cardiovasc. Ther. 8(6), 863-873 (2010).
Liu, S. et al, “Massive Pulmonary Embolism: Treatment with the Rotarex Thrombectomy System”, Cardiovascular Interventional Radiology; 2011: 34:106-113.
Muller-Hulsbeck, S. et al. “Mechanical Thrombectomy of Major and Massive Pulmonary Embolism with Use of the Amplatz Thrombectomy Device”, Investigative Radiology, Jun. 2001:36:6:317-322.
Reekers, J. et al., “Mechanical Thrombectomy for Early Treatment of Massive Pulmonary Embolism”, CardioVascular and Interventional Radiology, 2003: 26:246-250.
Schmitz-Rode et al., “New Mesh Basket for Percutaneous Removal of Wall-Adherent Thrombi in Dialysis Shunts,” Cardiovasc Intervent Radiol 16:7-10 1993 4 pgs.
Schmitz-Rode et al., “Temporary Pulmonary Stent Placement as Emergency Treatment of Pulmonary Embolism,” Journal of the American College of Cardiology, vol. 48, No. 4, 2006 (5 pgs.).
Schmitz-Rode, T. et al., “Massive Pulmonary Embolism: Percutaneous Emergency Treatment by Pigtail Rotation Catheter”, JACC Journal of the American College of Cardiology, Aug. 2000:36:2:375-380.
Spiotta, A. et al., “Evolution of thrombectomy approaches and devices for acute stroke: a technical review.” J NeuroIntervent Surg 2015, 7, pp. 7 pages.
Svilaas, T. et al., “Thrombus Aspiration During Primary Percutaneous Coronary Intervention.” The New England Journal of Medicine, 2008, vol. 358, No. 6, 11 pages.
Tapson, V., “Acute Pulmonary Embolism”, The New England Journal of Medicine, Mar. 6, 2008:358:2037-52.
The Penumbra Pivotal Stroke Trial Investigators, “The Penumbra Pivotal Stroke Trial: Safety and Effectiveness of a New Generation of Mechanical Devices for Clot Removal in Intracranial Large Vessel Occlusive Disease.” Stroke, 2009, 40: p. 9 pages.
Truong et al., “Mechanical Thrombectomy of Iliocaval Thrombosis Using a Protective Expandable Sheath,” Cardiovasc Intervent Radiol27-254-258, 2004, 5 pgs.
Turk et al., “Adapt Fast study: a direct aspiration first pass technique for acute stroke thrombectomy.” J NeuroIntervent Surg, vol. 6, 2014, 6 pages.
Uflacker, R., “Interventional Therapy for Pulmonary Embolism”, Journal of Vascular and Interventional Radiology, Feb. 2001: 12:147-164.
Verma, R., MD et al. “Evaluation of a Newly Developed Percutaneous Thrombectomy Basket Device in Sheep With Central Pulmonary Embolisms”, Investigative Radiology, Oct. 2006, 41, 729-734.
International Search Report and Written Opinion for International App. No. PCT/US2015/034987 filed Jun. 9, 2015, Applicant: Inceptus Medical, LLC, dated Sep. 17, 2015, 12 pages.
International Search Report and Written Opinion for International App. No. PCT/US2016/067628 filed Dec. 19, 2016, Applicant: Inari Medical, Inc., dated Apr. 10, 2017, 11 pages.
Goldhaber, S. et al. “Percutaneous Mechanical Thrombectomy for Acute Pulmonary Embolism—A Double-Edged Sword,” American College of Chest Physicians, Aug. 2007, 132:2, 363-372.
Goldhaber, S., “Advanced treatment strategies for acute pulmonary embolism, including thrombolysis and embolectomy,” Journal of Thrombosis and Haemostasis, 2009: 7 (Suppl. 1): 322-327.
International Search Report and Written Opinion for International App. No. PCT/US2017/029696, Date of Filing: Apr. 26, 2017, Applicant: Inari Medical, Inc., dated Sep. 15, 2017, 19 pages.
International Search Report and Written Opinion for International App. No. PCT/US2016/058536, Date of Filing: Oct. 24, 2016, Applicant: Inari Medical, Inc., dated Mar. 13, 2017, 14 pages.
International Search Report and Written Opinion for International App. No. PCT/US2018/048786, Date of Filing: Aug. 30, 2018, Applicant: Inari Medical, Inc., dated Dec. 13, 2018, 12 pages.
International Search Report and Written Opinion for International App. No. PCT/US2018/055780, Date of Filing: Oct. 13, 2018, Applicant: Inceptus Medical LLC., dated Jan. 22, 2019, 8 pages.
International Search Report and Written Opinion for International App. No. PCT/US2019/045794, Date of Filing: Aug. 8, 2019, Applicant: Inari Medical, Inc., dated Nov. 1, 2019, 17 pages.
International Search Report and Written Opinion for International App. No. PCT/US2020/056067, Date of Filing: Oct. 16, 2020; Applicant: Inari Medical, Inc., dated Jan. 22, 2021, 8 pages.
International Search Report and Written Opinion for International App. No. PCT/US2020/055645, Date of Filing: Dec. 17, 2020; Applicant: Inari Medical, Inc., dated Apr. 14, 2021, 12 pages.
Vorwerk, D. MD, et al., “Use of a Temporary Caval Filter to Assist Percutaneous Iliocaval Thrombectomy: Experimental Results.” SCVIR, 1995, 4 pages.
Wikipedia; Embolectomy; retrieved from the internet: https://en.wikipedia.org/wiki/Embolectomy; 4 pgs.; retrieved/printed: Mar. 24, 2016.
O'Sullivan; Thrombolysis versus thrombectomy in acute deep vein thrombosis; Interventional Cardiology; 3(5); pp. 589-596; Oct. 2011.
Capture Vascular Systems; (company website); retrieved from the internet: http://www.capturevascular.com; 3 pgs.; retrieved/printed: Mar. 24, 2016.
Edwards Lifesciences; Fogarty® Occlusion Catheters (product brochure); retrieved from the internet: http://web.archive.org/web/20150228193218/http://www.edwards.com/products/vascular/atraumaticocclusion/pages/occlusioncatheter.aspx; © 2011; 2 pgs.; retrieved/printed: Mar. 24, 2011.
Boston Scientific; Fetch(TM) 2 Aspiration Catheter (product information); retrieved from the internet: http://www.bostonscientific.com/en-US/products/thrombectomy-systems/fetch2-aspiration-catheter.html; 2 pgs.; retrieved/printed: Mar. 24, 2016.
Penumbra, Inc.; Indigo® System (product information); retrieved from the internet: http://www.penumbrainc.com/peripherallpercutaneous-thromboembolectomy/indigo-system; 7 pgs.; retrieved/printed: Mar. 24, 2016.
YouTube; Merci Retrieval System X Series Animation; uploaded Mar. 16, 2009 (product information); posted on May 7, 2009 by SSMDePAUL, time 1:09, retrieved from the internet: https://www.youtube.com/watch?v=MGX7deuFkhc; 3 pgs.; retrieved/printed: Mar. 24, 2016.
Covidien; Solitaire(TM) AS Neurovascular Remodeling Device (product information); retrieved from the internet: http://www.ev3.net/neuro/intl/remodeling-devices/solitaire-ab. htm; © 2015; 2 pgs.; retrieved/printed: Mar. 24, 2016.
International Search Report and Written Opinion for International App. No. PCT/US21/35965, Date of Filing: Jun. 4, 2021, Applicant: Inari Medical, Inc., dated Sep. 28, 2021, 12 pages.
International Search Report and Written Opinion for International App. No. PCT/US21/45072 Date of Filing: Aug. 6, 2021, Applicant: Inari Medical, Inc., dated Jan. 20, 2022, 10 pages.
International Search Report and Written Opinion for International App. No. PCT/US21/58793; Date of Filing: Nov. 10, 2021, Applicant: Inari Medical, Inc., dated Mar. 16, 2022, 13 pages.
International Search Report and Written Opinion for International App. No. PCT/US21/59718; Date of Filing: Nov. 17, 2021, Applicant: Inari Medical, Inc., dated Mar. 22, 2022, 13 pages.
International Search Report and Written Opinion for International App. No. PCT/US21/59735; Date of Filing: Nov. 17, 2021, Applicant: Inari Medical, Inc., dated Mar. 22, 2022, 11 pages.
International Search Report and Written Opinion for International App. No. PCT/US23/60502; Date of Filing: Jan. 11, 2023, Applicant: Inari Medical, Inc., dated May 25, 2023, 9 pages.
International Search Report and Written Opinion for International App. No. PCT/US23/61256; Date of Filing: Jan. 25, 2023, Applicant: Inari Medical, Inc., dated Jun. 7, 2023, 8 pages.
Gross et al., “Dump the pump: manual aspiration thrombectomy (MAT) with a syringe is technically effective, expeditious, and cost-efficient,” J NeuroIntervent Surg, 2018, 4 pages.
International Search Report and Written Opinion for International App. No. PCT/US23/60927; Date of Filing: Jan. 19, 2023, Applicant: Inari Medical, Inc., dated Jul. 20, 2023, 12 pages.
Extended European Search Report issued for EP Application No. 20877370.5, dated Oct. 17, 2023, 11 pages.
International Search Report and Written Opinion for International App. No. PCT/US23/65128; Date of Filing: Mar. 30, 2023, Applicant: Inari Medical, Inc., dated Nov. 14, 2023, 14 pages.
Related Publications (1)
Number Date Country
20230355259 A1 Nov 2023 US
Provisional Applications (1)
Number Date Country
62245935 Oct 2015 US
Divisions (1)
Number Date Country
Parent 15268406 Sep 2016 US
Child 16425017 US
Continuations (3)
Number Date Country
Parent 17362800 Jun 2021 US
Child 18351307 US
Parent 16425017 May 2019 US
Child 17362800 US
Parent 15268296 Sep 2016 US
Child 15268406 US