Intravascular ventriculocoronary bypass via a septal passageway

Information

  • Patent Grant
  • 6976990
  • Patent Number
    6,976,990
  • Date Filed
    Thursday, January 25, 2001
    24 years ago
  • Date Issued
    Tuesday, December 20, 2005
    19 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Bennett; Henry
    • Ragonese; Andrea M.
    Agents
    • Finnegan, Henderson, Farabow, Garrett & Dunner LLP
Abstract
A method for performing a bypass procedure utilizes the patient's vascular system for accessing or reaching a desired location within the patient's body. The method may also provide a direct flow path from a heart chamber to a coronary vessel via a septal passageway.
Description
TECHNICAL FIELD

The present invention relates generally to a method for performing a coronary artery bypass procedure and, more particularly, to a method for performing an intravascular coronary artery bypass procedure providing a direct flow path from a heart chamber to the coronary artery.


BACKGROUND

Coronary artery disease (e.g., the accumulation of arteriosclerotic plaque within a coronary artery) is the leading cause of premature death in industrialized societies. Modern medical science has developed several procedures for treating coronary artery disease. For example, one method for treating coronary artery disease involves harvesting a saphenous vein or other venous or arterial conduit from elsewhere in the body, or using an artificial conduit, such as one made of expanded polytetrafluoroethylene (ePTFE) tubing, and connecting this conduit as a bypass graft from a viable artery or a chamber of the heart to the coronary artery downstream of the blockage or narrowing. While such treatments are well-established medical procedures, they are not without shortcomings. For example, the number of bypass conduits available for harvesting from the patient is limited. Furthermore, these procedures typically cause significant tissue damage to the patient at the harvest site as well as at the patient's chest.


In addition to the bypass procedures mentioned above, several intravascular methods exist that allow surgeons to re-open the diseased artery, such as, angioplasty or atherectomy. Angioplasty involves the intravascular introduction of a balloon-equipped catheter into the diseased blood vessel. Once the catheter is guided to the appropriate location, the balloon is inflated compressing the arteriosclerotic plaque against the wall of the blood vessel. Atherectomy results in the physical desolution of plaque within the diseased blood vessel using a catheter equipped with a removal tool (e.g., a cutting blade or high-speed rotating tip). While these procedures are less-invasive and are effective in treating the diseased blood vessel, there are shortcomings with these procedures. For example, many existing intravascular procedures do not allow the surgeon to bypass the obstruction. Instead, separate catheter devices are typically inserted in the patient to achieve, for example, revascularization of the blood vessel at a location downstream from the obstruction.


Improvements in intravascular procedures used for treating coronary artery disease are, therefore, sought.


SUMMARY

The present invention relates generally to a method for performing a coronary artery bypass procedure. More particularly, the present invention relates to a method for performing an intravascular coronary artery bypass procedure providing a direct flow path from a heart chamber to the coronary artery. The method of the present disclosure is preferably utilized where the patient's vascular system is used as a conduit for accessing or reaching a desired location within the patient's body.


In one aspect of the disclosure, a method for supplementing a flow of blood to a portion of the cardiovascular system of a patient is disclosed. The method can comprise inserting a catheter device into the vasculature of the patient and advancing the catheter device to a first location within a first coronary vessel within the cardiovascular system; guiding the catheter device through an interstitial passageway formed between the first location and a second location within a second coronary vessel that is distal to an obstruction in the second coronary vessel; forming a blood flow path from a heart chamber directly to the second coronary vessel; and occluding the interstitial passageway between the first coronary vessel and the second coronary vessel to prevent blood flow through the interstitial passageway. In this aspect, the second coronary vessel is a coronary artery, such as, the left anterior descending coronary artery. Similarly, the first coronary vessel is a coronary vein proximate to the coronary artery, such as, the great cardiac vein.


Further to this aspect, forming a blood flow path from the heart chamber directly to the second coronary vessel can include placing a conduit in a heart wall between the heart chamber and the second coronary vessel. Moreover, placing a conduit in a heart wall between the heart chamber and the second coronary vessel can include placing a conduit in a septal passageway extending into the heart wall between the heart chamber and the second coronary vessel.


Still further in this aspect, the interstitial passageway is formed through a wall of the first coronary vessel and through a wall of the second coronary vessel between the first and second locations. In so doing, occluding the interstitial passageway can include deploying an embolization substance at the wall of the first vessel and at the wall of the second vessel. Alternatively, occluding the interstitial passageway includes deploying an embolization device within the interstitial passageway.


In another aspect of the invention, the method can comprise inserting a catheter device into the vasculature of the patient and advancing the catheter device to a first location within a first coronary vessel within the cardiovascular system; guiding the catheter device through a first interstitial passageway formed between the first location and a second location within a second coronary vessel within the cardiovascular system; advancing the catheter device to a third location within the second coronary vessel; guiding the catheter device through a second interstitial passageway formed between the third location and a fourth location within the first coronary vessel that is distal to an obstruction in the first coronary vessel; forming a blood flow path from a heart chamber directly to the first coronary vessel; and occluding the first and second interstitial passageways between the first coronary vessel and the second coronary vessel to prevent blood flow through either of the first or second passageways. In this aspect, the first coronary vessel is a coronary artery, such as, the left anterior descending coronary artery. Similarly, the second coronary vessel is a coronary vein proximate to the coronary artery, such as, the great cardiac vein.


Further to this aspect, forming a blood flow path from the heart chamber directly to the first coronary vessel can include placing a conduit in a heart wall between the heart chamber and the first coronary vessel. Moreover, placing a conduit in a heart wall between the heart chamber and the first coronary vessel can include placing a conduit in a septal passageway extending into the heart wall between the heart chamber and the first coronary vessel.


Still further in this aspect, the first interstitial passageway is formed through a wall of the first coronary vessel and through a wall of the second coronary vessel between the first and second locations. Likewise, the second interstitial passageway is formed through a wall of the second coronary vessel and through a wall of the first coronary vessel between the third and fourth locations. In so doing, occluding the first and second interstitial passageways can include deploying an embolization substance at the wall of the first coronary vessel and at the wall of the second coronary vessel at the first interstitial passageway; and deploying an embolization substance at the wall of the first coronary vessel and at the wall of the second coronary vessel at the second interstitial passageway. Alternatively, occluding the first and second interstitial passageways can include deploying an embolization device within each of the first and second passageways.


In still another aspect of the invention, the method can comprise inserting a catheter device into the vasculature of the patient and advancing the catheter device to a first location within a coronary vessel within the cardiovascular system that is proximate to an obstruction within the coronary vessel; advancing the catheter device through the obstruction to a second position distal to the obstruction; guiding the catheter device through an interstitial passageway extending into a heart wall between a heart chamber and the coronary vessel; and placing a conduit in the interstitial passageway extending into the heart wall between the heart chamber and the coronary vessel. In this aspect, the coronary vessel can be a coronary artery.


Further in this aspect, the method can further comprise distending the obstruction within the coronary vessel. Accordingly, distending the obstruction within the coronary vessel can include inflating a balloon at the obstruction within the coronary vessel. Moreover, the interstitial passageway can include a septal passageway extending into the heart wall between the heart chamber and the coronary vessel.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:



FIG. 1 is a high-level schematic illustration of an intravascular catheter being advanced throughout a patient's vascular system in accordance with the principles of the present disclosure;



FIGS. 2A-2G depict one possible embodiment of the method for performing an intravascular coronary artery bypass procedure in accordance with the principles of the present disclosure;



FIGS. 3A-3E depict a second possible embodiment of the method for performing an intravascular coronary artery bypass procedure in accordance with the principles of the present disclosure; and



FIGS. 4A-4E depict a third possible embodiment of the method for performing an intravascular coronary artery bypass procedure in accordance with the principles of the present disclosure;





While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION

Various embodiments of the present invention will be described in detail with reference to the drawings, wherein like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the present invention, which is limited only by the scope of the claims attached hereto.


The following discussion is intended to provide a brief, general description of a method of intravascular treatment of a diseased blood vessel within a patient's vascular system. The method of the present disclosure may be implemented during any intravascular surgical procedure where it is desirous to utilize the patient's vascular system as a conduit for accessing or reaching a desired location within the patient's body to effect an appropriate medical intervention.


As will become apparent from the discussion below in connection with the accompanying drawings, the present disclosure has particularized applicability to the treatment of diseased blood vessels within the patient's cardiovascular system. However, it will be appreciated by those having skill in the art that the present disclosure is not limited to the specific embodiments discussed below. Rather, the present disclosure has general applicability to situations where it is desirable to treat a diseased blood vessel by utilizing the patient's vascular system as a conduit for accessing or reaching a desired location within the patient's body.


Moreover, in the most preferred embodiments, the left ventricle is the chamber of the heart utilized. There are two reasons for this selection. First, the left ventricle normally provides blood to the coronary arteries, because it pumps blood into the aorta from which the coronary arteries branch. Therefore, the magnitude of the blood pressure peak generated by the left ventricle is most similar to the blood pressure peak the proximal coronary artery would normally experience. Second, the blood which flows into the left ventricle is returning from the lungs. In the lungs, the blood acquires oxygen and loses carbon dioxide. Thus, the blood available by shunting from the chambers of the left side of the heart will have a higher oxygen and lower carbon dioxide content than blood within the right-side chambers.


Now referring to FIG. 1, an exemplary intravascular coronary artery bypass procedure will be described. As described above, such procedures allow surgeons to effectively treat a diseased blood vessel with minimal invasiveness to the patient 100 being treated. The phrase “diseased blood vessel” is generally meant to include any blood vessel having a diminished blood flow capacity due to, for example, a build-up or accumulation of arteriosclerotic plaque within the vessel. Moreover, because these procedures are performed using catheters that are introduced remotely, normal tissue injury associated with other procedures can be minimized.


As shown in FIG. 1, an intracoronary catheter device 102 is inserted into a patient 100 via an incision. In the illustrated embodiment, the catheter device 102 can be a guide catheter capable of atraumatically advancing through the patient's 100 arterial system. Alternatively, as is commonly understood in the art, the catheter device 102 can include (or used in conjunction with) any catheter device capable of effecting a desired medical or therapeutic intervention. For example, the catheter device 102 can be equipped with (or used in conjunction with separate catheters that are equipped with) ablation devices, endoscopic devices, surgical tools, such as, needles, cannula, catheter scissors, graspers, or biopsy devices, and energy delivery devices, such as, laser fibers, bipolar and monopolar radio frequency (“RF”) conductors, microwave antennae, radiation delivery devices, and thermal delivery devices.


As shown in FIG. 1, the catheter 102 can be inserted via an incision located at or near the groin 104 and advanced through the patient's 100 arterial system towards the diseased blood vessel. While many paths through the patient's 100 arterial system are contemplated, as shown in the embodiment illustrated in FIG. 1, the catheter 102 can be advanced towards the diseased blood vessel within the patient's cardiovascular 111 system via the femoral artery 106. Through continued advancement within the descending aorta 108 and the ascending aorta 110, the patient's 100 cardiovascular system 111 is entered. The catheter 102 is advanced through the cardiovascular system 111 until it is positioned within the diseased coronary blood vessel proximate to the treatment zone or diseased portion 113 of the cardiovascular system 111.


As discussed above, the present disclosure provides a method for utilizing the patient's 100 vascular system as a conduit for accessing or reaching to a desired location with the patient's 100 body. The desired location within the patient's 100 vascular system can be determined through standard radiographic techniques well-known to those having ordinary skill in the art. Once at the desired location (e.g., the treatment zone or diseased portion 113), a surgeon can treat the diseased coronary blood vessel by revascularizing the diseased blood vessel. In particular, the method of the present disclosure provides for the transmycardial revascularization of the diseased blood vessel by establishing a channel leading from a chamber of the patient's 100 heart into the diseased blood vessel. This will be described in greater detail below.


Now referring to FIGS. 2A-2G, the catheter device 102 is advanced through the patient's 100 (FIG. 1) arterial system into the cardiovascular system 111 (FIG. 1). As is commonly understood, the catheter device 102 can be guided through the patient's 100 vascular system over a guide wire 103. The guide wire 103 permits the atraumatic advancement of the catheter 102 and/or additional instrumentation (e.g., ablation devices, etc.) into the diseased coronary vessel. As shown in FIG. 2A, the catheter device 102 is advanced into the cardiovascular system 111 and positioned within a first coronary blood vessel 112. In the illustrated embodiment, the first blood vessel 112 is a diseased coronary blood vessel, such as, a diseased coronary artery. More particularly, the first blood vessel 112 can be the Left Anterior Descending coronary artery. As is commonly understood, the first blood vessel 112 (e.g., the coronary artery) proceeds along the surface of the heart proximate to or adjacent to a second coronary blood vessel 116. In the illustrated embodiment, the second coronary blood vessel 116 is a coronary vein, such as, the Great Cardiac Vein. Due to the arrangement and/or proximity of the first blood vessel 112 (e.g., the coronary artery) with respect to the second blood vessel 116 (e.g., the coronary vein), either of two can be used as a conduit for accessing or reaching a desired location within the other.


The wall 114 of the first blood vessel 112 (e.g., the coronary artery) defines a lumen 115 that serves to deliver oxygenated blood to the patient's 100 heart muscle (e.g., the myocardium 152). The blood flow through the first blood vessel 112 flows in the direction of arrow A. Moreover, as shown throughout FIGS. 2A-2G, arteriosclerotic plaque has accumulated at the treatment zone 113 to form an obstruction 122. The obstruction 122 acts to reduce the volume of blood flow through the first blood vessel 112 (e.g., the coronary artery) along the direction of arrow A. Similarly, the wall 118 of the second blood vessel 116 (e.g., the coronary vein) defines a lumen 119 that serves to return oxygen depleted blood to the right atrium. The blood flow through the second blood vessel 116 flows in the direction of arrow A′. While the illustrated embodiments show the first and second blood vessels 112, 116 being separated, it should be understood that this is for illustrative purposes and that such a separation may not exist. Instead, for example, the wall 114 of the first coronary blood vessel 112 may be immediately adjacent to or in contact with the wall 118 of the second coronary blood vessel 116.


In accordance with the method of the present disclosure, the catheter device 102 can be advanced within the patient's 100 vascular system to a first location 130 within the first blood vessel 112 (e.g., the coronary artery). In the illustrated embodiment, the first location 130 is situated proximate to the obstruction 122. As discussed above, it is often desirous to treat the diseased blood vessel (e.g., via revascularization or any other suitable technique or medical intervention) by situating the catheter 102 downstream or distal to the obstruction 122. In one possible embodiment, this can be accomplished by diverting the catheter 102 around the obstruction 122. In particular, as will be discussed in connection with FIGS. 2B-2G, the catheter 102 can be diverted from within the first blood vessel 112 into the second blood vessel 116, thereby, allowing the catheter 102 to be advanced to a location distal to the obstruction 122 without advancing through the obstruction 122. However, one skilled in the art will readily appreciate that the catheter 102 can be situated downstream or distal to the obstruction 122 by advancing the catheter 102 through the obstruction 122 (as will be described in connection with FIGS. 4A-4E).


In one possible embodiment, the catheter 102 can be guided to a location distal to the obstruction 122 by being diverted from within the first coronary vessel 112 (e.g., the coronary artery) into the second coronary blood vessel 116 (e.g., the coronary vein). To accomplish this, as shown in FIG. 2B, the catheter device 102 can be equipped with (or used in conjunction with a catheter equipped with) an ablation device, for example, an ablation tip (not shown) capable of ablating or otherwise creating a first interstitial passageway or channel 140 between the first coronary vessel 112 and the second coronary vessel 116. Ablation devices are well-known in the art and typically operate using any suitable power source, such as, laser, radio frequency, or any other similar power source. Moreover, as is commonly understood in the art, power to the ablating tip (not shown) can be synchronized such that the ablation occurs at a recurring aspect of the cardiac cycle. The first interstitial passageway 140 provides a path of communication between the first coronary vessel 112 and the second coronary vessel 116. In one possible embodiment, the first interstitial passageway 140 is formed through the wall 114 of the first coronary vessel 112 and through the wall 118 of the second coronary vessel 116 between the first location 130 and a second location 132 within the second coronary vessel 116. Once the first interstitial passageway 140 has been formed, the catheter device 102 can be guided over the guide wire 103 into the second coronary vessel 116.


Once the catheter device 102 is positioned within the second coronary vessel 116 (e.g., the coronary vein), the catheter 102 can be guided through the lumen 119 as shown in FIG. 2C to a third location 134 within the second coronary vessel 116. In the illustrated embodiment, the third location 134 is situated at a location downstream or distal to the obstruction 122 within the first coronary vessel 112 (e.g., the coronary artery). Once at the third location 134, the catheter 102 can be diverted from within the second coronary blood vessel 116 such that it returns to the first coronary vessel 112. In particular, as shown in FIG. 2D and as discussed above, the catheter device 102 can be equipped with (or used in conjunction with a catheter equipped with) an ablation device, for example, an ablation tip (not shown) capable of ablating or otherwise creating a second interstitial passageway or channel 142 between the second coronary vessel 116 and the first coronary vessel 112. The second interstitial passageway 142 provides a path of communication between the second coronary vessel 116 and the first coronary vessel 112 distal to the obstruction 122. In one possible embodiment, the second interstitial passageway 142 is formed through the wall 118 of the second coronary vessel 116 and through the wall 114 of the first coronary vessel 112 between the third location 134 and a fourth location 136 within the first coronary vessel 112. Once the second interstitial passageway 142 has been formed, the catheter device 102 can be guided over the guide wire 103 into the first coronary vessel 112.


While the first and second interstitial passageways 140, 142 are illustrated as having been created substantially perpendicular to the first and second coronary blood vessels 112, 116, it will be appreciated by those having skill in the art that the first and second interstitial passageways 140, 142 can be formed at any angle suitable for providing a path of communication between the first and second coronary vessels 112, 116, thereby, allowing the catheter device 102 to be diverted into or out of either of the coronary blood vessels 112, 116.


As shown in FIG. 2D, the fourth location 136 is situated downstream or distal to the obstruction 122. Accordingly, the amount of blood flow through the first coronary vessel 112 (e.g., the coronary artery) is reduced due to the obstruction 122. Several methods exist that allow surgeons to treat the diseased blood vessel by supplementing the blood flow through the first coronary vessel 112. In particular, the method of the present disclosure treats the diseased blood vessel by creating a channel that leads directly from a chamber 150 of the heart through the myocardium 152. Various methods and devices for transmyocardial revascularization have been described in U.S. Pat. No. 5,944,019 to Knudson et al., entitled “CLOSED CHEST CORONARY BYPASS,” the entire disclosure of which is, hereby, incorporated by reference.


For example, as shown in FIG. 2E, once the catheter 102 is situated at the fourth location 136 within the first coronary vessel 112 (e.g., the coronary artery), a channel 143 can be established between the heart chamber 150 and the first coronary vessel 112. In particular, as shown in FIG. 2E and as discussed above, the catheter device 102 can be equipped with (or used in conjunction with a catheter equipped with) an ablation device, for example, an ablation tip (not shown) capable of ablating or otherwise creating the channel 143 between the first coronary vessel 112 and the heart chamber 150.


Once the channel 143 is formed, a transmyocardial implant 146 (e.g., a conduit) can be deployed within the channel 143. In certain embodiments, the transmyocardial implant 146 can include a tubular reinforcing structure (e.g., a mesh and/or coild tube, a tube defined by a plurality of circumferential and axial struts/supports, etc.) that is expandable from an undeployed state to a deployed state. In the undeployed state, the transmyocardial implant 146 has a reduce diameter sized for allowing the implant to be directed through the patient's 100 vasculature. In the deployed state, the implant has an expanded diameter sized for allowing the transmyocardial implant 146 to be securely held within the channel 143. The reinforcing structure of the transmyocardial implant 146 can be expanded by known techniques (e.g., the structure can be balloon expandable or self expanding). Additionally, some embodiments of the transmyocardial implant 146 can include a liner for preventing thrombosis as shown in U.S. patent application Ser. No. 09/141,284, filed 27 Aug. 1999, the entire disclosure of which is, hereby, incorporated by reference.


During installation, the transmyocardial implant 146 can be positioned within the channel 143 in its undeployed state. Once properly positioned, the transmyocardial implant 146 can be deployed. In it deployed state, the transmyocardial implant 146 is sized to be retained within the formed channel 143. Moreover, once in place, the transmyocardial implant 146 creates a permanent transmyocardial channel between the heart chamber 150 and the coronary artery 112.


In addition to deployment of the transmyocardial implant 146, the first and second interstitial passageways 140, 142 can be blocked or occluded to prevent blood flow through the first and second interstitial passageways 140, 142. In so doing, the method of the present disclosure restores and/or ensures normal coronary aterial and veinous blood flow. To accomplish this, one or more embolization devices can be deployed within each of the first and second interstitial passageways 140, 142. In the embodiment illustrated in FIG. 2G, at least two embolization devices are deployed within each of the first and second interstitial passageways 140, 142. For example, the embolization devices 138a, 138d can be deployed within the first coronary vessel 112 (e.g., the coronary artery) proximate to the wall 114. Similarly, the embolization devices 138b, 138c can deployed within the second coronary vessel 116 (e.g., the coronary vein) proximate to the wall 118. The embolization devices 138a-138d can include any device and/or material capable preventing blood flow through the first and second interstitial passageways 140, 142. For example, the embolization devices 138a-138d can include detachable balloons, coils, strands of coagulation producing material, microfibrillar collagen, collagen sponge, cellulose gel or sponge, such as Gelfoam™, surgical glue, such as, Tissel™ or Genzyme™, special stents, or other similar embolization devices.


An alternative method for treating a diseased blood vessel by utilizing the patient's 100 vascular system as a conduit for accessing or reaching a desired location within the patient's body will now be described in connection with FIGS. 3A-3E. In this embodiment, the catheter device 102 is advanced through the patient's 100 (FIG. 1) arterial system into the cardiovascular system 111 (FIG. 1) and is positioned within the second coronary blood vessel 116 (e.g., the coronary vein). The catheter device 102 can be advanced within the patient's 100 vascular system to a first location 130′ within the second coronary blood vessel 116 (e.g., the coronary vein). In the illustrated embodiment, the first location 130′ is situated at a location downstream or distal to the obstruction 122 within the first coronary vessel 112 (e.g., the coronary artery).


Once at the first location 130′, the catheter 102 can be diverted from within the second coronary blood vessel 116 such that it returns to the first coronary vessel 112. In particular, as shown in FIG. 3B and as discussed above, the catheter device 102 can be equipped with (or used in conjunction with a catheter equipped with) an ablation device, for example, an ablation tip (not shown) capable of ablating or otherwise creating an interstitial passageway or channel 140′ between the second coronary vessel 116 and the first coronary vessel 112. The second interstitial passageway 142 provides a path of communication between the second coronary vessel 116 and the first coronary vessel 112 distal to the obstruction 122. In one possible embodiment, the interstitial passageway 140′ is formed through the wall 118 of the second coronary vessel 116 and through the wall 114 of the first coronary vessel 112 between the first location 130′ and a second location 132′ within the first coronary vessel 112. Once the interstitial passageway 142 has been formed, the catheter device 102 can be guided over the guide wire 103 into the first coronary vessel 112.


While the interstitial passageway 140′ is illustrated as having been created substantially perpendicular to the first and second coronary blood vessels 112, 116, it will be appreciated by those having skill in the art that the interstitial passageway 140′ can be formed at any angle suitable for providing a path of communication between the first and second coronary vessels 112, 116, thereby, allowing the catheter device 102 to be diverted into or out of either of the coronary blood vessels 112, 116.


As shown in FIG. 3B, the second location 132′ is situated downstream or distal to the obstruction 122. Accordingly, the amount of blood flow through the first coronary vessel 112 (e.g., the coronary artery) is reduced due to the obstruction 122. As discussed above, several methods exist that allow surgeons to treat the diseased blood vessel by supplementing the blood flow through the first coronary vessel 112. In particular, the method of the present disclosure treats the diseased blood vessel by creating a channel that leads directly from a chamber 150 of the heart through the myocardium 152. For example, as shown in FIG. 3C, once the catheter 102 is situated at the second location 132′ within the first coronary vessel 112 (e.g., the coronary artery), a channel 143′ can be established between the heart chamber 150 and the first coronary vessel 112. In particular, as shown in FIG. 3C and as discussed above, the catheter device 102 can be equipped with (or used in conjunction with a catheter equipped with) an ablation device, for example, an ablation tip (not shown) capable of ablating or otherwise creating the channel 143′ between the first coronary vessel 112 and the heart chamber 150.


Once the channel 143′ is formed, a transmyocardial implant 146′ (e.g., a conduit) can be deployed within the channel 143′. In certain embodiments, the transmyocardial implant 146′ can include a tubular reinforcing structure (e.g., a mesh and/or coild tube, a tube defined by a plurality of circumferential and axial struts/supports, etc.) that is expandable from an undeployed state to a deployed state. In the undeployed state, the transmyocardial implant 146′ has a reduce diameter sized for allowing the implant to be directed through the patient's 100 vasculature. In the deployed state, the implant has an expanded diameter sized for allowing the transmyocardial implant 146′ to be securely held within the channel 143′. The reinforcing structure of the transmyocardial implant 146′ can be expanded by known techniques (e.g., the structure can be balloon expandable or self expanding) and can include a liner for preventing thrombosis as discussed above.


During installation, the transmyocardial implant 146′ can be positioned within the channel 143′ in its undeployed state. Once properly positioned, the transmyocardial implant 146′ can be deployed. In it deployed state, the transmyocardial implant 146′ is sized to be retained within the formed channel 143′. Moreover, once in place, the transmyocardial implant 146′ creates a permanent transmyocardial channel between the heart chamber 150 and the coronary artery 112.


In addition to deployment of the transmyocardial implant 146′, the interstitial passageway 140′ can be blocked to restore and/or ensure normal coronary aterial and veinous blood flow. To accomplish this, one or more embolization devices can be deployed within the interstitial passageways 140′. In the embodiment illustrated in FIG. 3E, at least two embolization devices are deployed within the interstitial passageway 140′. For example, the embolization device 138a′ can be deployed within the first coronary vessel 112 (e.g., the coronary artery) proximate to the wall 114. Similarly, the embolization device 138b′ can be deployed within the second coronary vessel 116 (e.g., the coronary vein) proximate to the wall 118. The embolization devices 138a′, 138b′ can include any device and/or material capable preventing blood flow through the interstitial passageway 140′. For example, the embolization devices 138a′, 138b′ can include detachable balloons, coils, strands of coagulation producing material, microfibrillar collagen, collagen sponge, cellulose gel or sponge, such as Gelfoam™, surgical glue, such as, Tissel™ or Genzyme™, special stents, or other similar embolization devices.


Still yet another possible method for treating a diseased blood vessel by utilizing the patient's 100 vascular system as a conduit for accessing or reaching a desired location within the patient's body will now be described in connection with FIGS. 4A-4E. In this embodiment, the catheter device 102 is advanced through the patient's 100 (FIG. 1) arterial system into the cardiovascular system 111 (FIG. 1) and is positioned within the first coronary blood vessel 112 (e.g., the coronary artery). The catheter device 102 can be advanced within the patient's 100 vascular system to a first location 130″ within the first coronary blood vessel 112 (e.g., the coronary vein). In the illustrated embodiment, the first location 130″ is situated proximate to the obstruction 122. As discussed above, it is often desirous to treat the diseased blood vessel (e.g., via revascularization or any other suitable technique or medical intervention) by situating the catheter 102 downstream or distal to the obstruction 122. However, in the embodiment illustrated in FIGS. 4A-4E, the catheter 102 can be positioned at a location downstream or distal to the obstruction 122 by advancing the catheter 102 through the obstruction 122.


As shown in FIG. 4B, the guide wire 103 can be advanced through the obstruction 122 to a second location 132″ distal to the obstruction 122. As shown in FIG. 4C, the catheter device 102 can be equipped with (or used in conjunction with a catheter equipped with) a balloon or other similar device capable of mechanically compressing the arteriosclerotic plaque against the wall 114 of the first coronary blood vessel 112 as is commonly understood in the art. In so doing, the amount of blood flow through the first coronary blood vessel 112 can be increased. Furthermore, additional medical devices and/or surgical tools can be advanced to the second location 132″ distal to the obstruction 122.


Once the catheter 102 is situated at the second location 132″ within the first coronary vessel 112 (e.g., the coronary artery), a channel can be established between the heart chamber 150 and the first coronary vessel 112. In the particular embodiment illustrated in FIGS. 4A-4E, the catheter device 102 can be directed towards the heart chamber 150 using an existing passageway from the first coronary vessel 112. For example, the catheter 102 can be directed towards the heart chamber 150 via a septal opening or branch 160, 162 formed through the wall 114 of the first coronary blood vessel 112. Alternatively, the catheter 102 can form a channel to the heart chamber 150 without advancing through an existing opening.


In situations where an existing opening is used, such as, the septal branches 160, 162, the pathway to the heart chamber 150 must be extended to establish communication with the heart chamber 150. For example, as shown in FIG. 4D, a pathway extension 163 can be formed to complete the path to the heart chamber 150. To accomplish this, the catheter device 102 can be equipped with (or used in conjunction with a catheter equipped with) an ablation device, for example, an ablation tip (not shown) capable of ablating or otherwise creating the channel the pathway extension 163 between either of the septal branches 160, 162 into the heart chamber 150. The existing septal branch 162 and the pathway extension 163 combine to define an interstitial passageway or channel 165 between the first coronary vessel 112 and the heart chamber 150.


As shown in FIG. 4E and as discussed above, once the channel 165 is formed, a transmyocardial implant 166 can be deployed in the channel 165. Additionally, a stent forming device 168 can be deployed within the first coronary blood vessel 112 adjacent to the channel 165. As can be seen in FIG. 4E, the transmyocardial implant 166 and the stent forming device 168 cooperate to create a permanent transmyocardial channel between the heart chamber 150 and the coronary artery 112.


The various embodiments described above are provided by way of illustration only and should not be construed to limit the invention. Those skilled in the art will readily recognize the various modifications and changes which may be made to the present invention without strictly following the exemplary embodiments illustrated and described herein, and without departing from the true spirit and scope of the present invention, which is set forth in the following claims.

Claims
  • 1. A method for supplementing a flow of blood to a portion of the cardiovascular system of a patient; the method comprising: inserting a catheter device into the vasculature of the patient and advancing the catheter device to a first location within a first coronary vessel within the cardiovascular system; and forming a blood flow path from a heart chamber directly to the first coronary vessel via a preexisting natural septal opening extending into the heart wall between the heart chamber and the first coronary vessel.
  • 2. The method according to claim 1, wherein forming a blood flow path from the heart chamber directly to the first coronary vessel includes placing a conduit in a heart wall between the heart chamber and the first coronary vessel.
  • 3. The method according to claim 2, wherein placing a conduit in a heart wall between the heart chamber and the first coronary vessel includes placing a conduit in the preexisting natural septal opening.
  • 4. The method according to claim 1, wherein the first coronary vessel is a coronary artery.
  • 5. The method according to claim 4, wherein the coronary artery is a left anterior descending coronary artery.
  • 6. The method according to claim 1, further comprising advancing the catheter device to a second location within a second coronary vessel within the cardiovascular system; and guiding the catheter device through an interstitial passageway formed between the first location and the second location, wherein the first location within the first coronary vessel is distal to an obstruction in the first coronary vessel.
  • 7. The method according to claim 6, wherein the interstitial passageway is formed through a wall of the first coronary vessel and through a wall of the second coronary vessel between the first and second locations.
  • 8. The method according to claim 6, further comprising occluding the interstitial passageway between the first coronary vessel and the second coronary vessel to prevent blood flow through the interstitial passageway.
  • 9. The method according to claim 8, wherein occluding the interstitial passageway includes deploying an embolization substance at a wall of the first vessel and at a wall of the second vessel.
  • 10. The method according to claim 8, wherein occluding the interstitial passageway includes deploying an embolization device within the interstitial passageway.
  • 11. The method according to claim 6, wherein the second coronary vessel is a coronary vein proximate to the coronary artery.
  • 12. The method according to claim 11, wherein the second coronary vessel is a great cardiac vein.
  • 13. The method according to claim 1, further comprising guiding the catheter device through a first interstitial passageway formed between the first location and a second location within a second coronary vessel within the cardiovascular system; advancing the catheter device to a third location within the second coronary vessel; and guiding the catheter device through a second interstitial passageway formed between the third location and a fourth location within the first coronary vessel, the fourth location being distal to an obstruction in the first coronary vessel.
  • 14. The method according to claim 13, wherein: the first interstitial passageway is formed through a wall of the first coronary vessel and through a wall of the second coronary vessel between the first and second locations; and the second interstitial passageway is formed through a wall of the second coronary vessel and through a wall of the first coronary vessel between the third and fourth locations.
  • 15. The method according to claim 13, further comprising occluding the first and second interstitial passageways between the first coronary vessel and the second coronary vessel to prevent blood flow through either of the first or second passageways.
  • 16. The method according to claim 15, wherein occluding the first and second interstitial passageways includes deploying an embolization device within each of the first and second passageways.
  • 17. The method according to claim 15, wherein occluding the first and second interstitial passageways includes: deploying an embolization substance at a wall of the first coronary vessel and at a wall of the second coronary vessel at the first interstitial passageway; and deploying an embolization substance at a wall of the first coronary vessel and at a wall of the second coronary vessel at the second interstitial passageway.
  • 18. The method according to claim 13, wherein the first coronary vessel is a coronary artery.
  • 19. The method according to claim 18, wherein the second coronary vessel is a coronary vein proximate to the coronary artery.
  • 20. The method according to claim 19, wherein the first coronary vessel is a great cardiac vein.
  • 21. The method according to claim 18, wherein the coronary artery is a left anterior descending coronary artery.
  • 22. A method for supplementing a flow of blood to a portion of the cardiovascular system of a patient, the method comprising: (a) inserting a catheter device into the vasculature of the patient and advancing the catheter device to a first location within a coronary vessel within the cardiovascular system, the first location being proximate to an obstruction within the coronary vessel; (b) advancing the catheter device through the obstruction to a second position distal to the obstruction; (c) guiding the catheter device through an interstitial passageway extending into a heart wall between a heart chamber and the coronary vessel; and (d) placing a conduit in the interstitial passageway extending into the heart wall between the heart chamber and the coronary vessel, wherein the interstitial passageway includes a preexisting natural septal opening extending into the heart wall between the heart chamber and the coronary vessel.
  • 23. The method according to claim 22, wherein the coronary vessel is a coronary artery.
  • 24. The method according to claim 22 further comprising distending the obstruction within the coronary vessel.
  • 25. The method according to claim 24, wherein distending the obstruction within the coronary vessel includes inflating a balloon at the obstruction within the coronary vessel.
US Referenced Citations (337)
Number Name Date Kind
4953553 Tremulis Sep 1990 A
5193546 Shaknovich Mar 1993 A
5254113 Wilk Oct 1993 A
5258008 Wilk Nov 1993 A
5287861 Wilk Feb 1994 A
5330486 Wilk Jul 1994 A
5344426 Lau et al. Sep 1994 A
5385528 Wilk Jan 1995 A
5389096 Aita et al. Feb 1995 A
5409019 Wilk Apr 1995 A
5425757 Tiefenbrun et al. Jun 1995 A
5425765 Tiefenbrun et al. Jun 1995 A
5429144 Wilk Jul 1995 A
5470320 Tiefenbrun et al. Nov 1995 A
5554119 Harrison et al. Sep 1996 A
5593434 Williams Jan 1997 A
5618299 Khosravi et al. Apr 1997 A
5662124 Wilk Sep 1997 A
5733267 Del Toro Mar 1998 A
5755682 Knudson et al. May 1998 A
5758663 Wilk et al. Jun 1998 A
5800334 Wilk Sep 1998 A
5807384 Mueller Sep 1998 A
5810836 Hussein et al. Sep 1998 A
5824071 Nelson et al. Oct 1998 A
5830222 Makower Nov 1998 A
5876373 Giba et al. Mar 1999 A
5878751 Hussein et al. Mar 1999 A
5885259 Berg Mar 1999 A
5908028 Wilk Jun 1999 A
5908029 Knudson et al. Jun 1999 A
5922022 Nash et al. Jul 1999 A
5925012 Murphy-Chutorian et al. Jul 1999 A
5931848 Saadat Aug 1999 A
5935161 Robinson et al. Aug 1999 A
5938632 Ellis Aug 1999 A
5944019 Knudson et al. Aug 1999 A
5968064 Selmon et al. Oct 1999 A
5971911 Wilk Oct 1999 A
5971993 Hussein et al. Oct 1999 A
5976155 Foreman et al. Nov 1999 A
5980533 Holman Nov 1999 A
5980548 Evans et al. Nov 1999 A
5984956 Tweden et al. Nov 1999 A
5997525 March et al. Dec 1999 A
5999678 Murphy-Chutorian et al. Dec 1999 A
6004261 Sinofsky et al. Dec 1999 A
6004347 McNamara et al. Dec 1999 A
6007543 Ellis et al. Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6026814 LaFontaine et al. Feb 2000 A
6029672 Vanney et al. Feb 2000 A
6035856 LaFontaine et al. Mar 2000 A
6036677 Javier, Jr. et al. Mar 2000 A
6036697 DiCaprio Mar 2000 A
6045565 Ellis et al. Apr 2000 A
6053924 Hussein Apr 2000 A
6053942 Eno et al. Apr 2000 A
6056743 Ellis et al. May 2000 A
6067988 Mueller May 2000 A
6068638 Makower May 2000 A
6071292 Makower et al. Jun 2000 A
6076529 Vanney et al. Jun 2000 A
6080163 Hussein et al. Jun 2000 A
6080170 Nash et al. Jun 2000 A
6090063 Makower et al. Jul 2000 A
6092526 LaFontaine et al. Jul 2000 A
6093166 Knudson et al. Jul 2000 A
6093177 Javier, Jr. et al. Jul 2000 A
6093185 Ellis et al. Jul 2000 A
6102941 Tweden et al. Aug 2000 A
6113630 Vanney et al. Sep 2000 A
6113823 Eno Sep 2000 A
6120520 Saadat et al. Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6126649 VanTassel et al. Oct 2000 A
6126654 Giba et al. Oct 2000 A
6132451 Payne et al. Oct 2000 A
6139541 Vanney et al. Oct 2000 A
6155264 Ressemann et al. Dec 2000 A
6155968 Wilk Dec 2000 A
6156031 Aita et al. Dec 2000 A
6157852 Selmon et al. Dec 2000 A
6159225 Makower Dec 2000 A
6165185 Shennib et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6171251 Mueller et al. Jan 2001 B1
6182668 Tweden et al. Feb 2001 B1
6186972 Nelson et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6193726 Vanney Feb 2001 B1
6193734 Bolduc et al. Feb 2001 B1
D438618 Solem Mar 2001 S
6196230 Hall et al. Mar 2001 B1
6197050 Eno et al. Mar 2001 B1
6197324 Crittenden Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
6203556 Evans et al. Mar 2001 B1
6213126 LaFontaine et al. Apr 2001 B1
6214041 Tweden et al. Apr 2001 B1
6217527 Selmon et al. Apr 2001 B1
6217549 Selmon et al. Apr 2001 B1
6217575 DeVore et al. Apr 2001 B1
6221049 Selmon et al. Apr 2001 B1
6223752 Vanney et al. May 2001 B1
6224584 March et al. May 2001 B1
6231546 Milo et al. May 2001 B1
6231551 Barbut May 2001 B1
6231587 Makower May 2001 B1
6235000 Milo et al. May 2001 B1
6237607 Vanney et al. May 2001 B1
6238406 Ellis et al. May 2001 B1
6241667 Vetter et al. Jun 2001 B1
6248112 Gambale et al. Jun 2001 B1
6250305 Tweden Jun 2001 B1
6251079 Gambale et al. Jun 2001 B1
6251104 Kesten et al. Jun 2001 B1
6251116 Shennib et al. Jun 2001 B1
6251418 Ahern et al. Jun 2001 B1
6253768 Wilk Jul 2001 B1
6253769 LaFontaine et al. Jul 2001 B1
6254564 Wilk et al. Jul 2001 B1
6258021 Wilk Jul 2001 B1
6258052 Milo Jul 2001 B1
6258119 Hussein et al. Jul 2001 B1
6261304 Hall et al. Jul 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6283983 Makower et al. Sep 2001 B1
6285903 Rosenthal et al. Sep 2001 B1
6287317 Makower et al. Sep 2001 B1
6290709 Ellis et al. Sep 2001 B1
6290728 Phelps et al. Sep 2001 B1
6302685 Lobel et al. Oct 2001 B1
6302875 Makower et al. Oct 2001 B1
6302892 Wilk Oct 2001 B1
6322548 Payne et al. Nov 2001 B1
6330884 Kim Dec 2001 B1
6344027 Goll Feb 2002 B1
6350248 Knudson et al. Feb 2002 B1
6352543 Cole Mar 2002 B1
6361519 Knudson et al. Mar 2002 B1
6363938 Saadat et al. Apr 2002 B2
6363939 Wilk Apr 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6379319 Garibotto et al. Apr 2002 B1
6387119 Wolf et al. May 2002 B2
6390098 LaFontaine et al. May 2002 B1
6395208 Herweck et al. May 2002 B1
6402740 Ellis et al. Jun 2002 B1
6406488 Tweden et al. Jun 2002 B1
6406491 Vanney Jun 2002 B1
6409697 Eno et al. Jun 2002 B2
6409751 Hall et al. Jun 2002 B1
6416490 Ellis et al. Jul 2002 B1
6423089 Gingras et al. Jul 2002 B1
6432119 Saadat Aug 2002 B1
6432126 Gambale et al. Aug 2002 B1
6432127 Kim et al. Aug 2002 B1
6432132 Cottone et al. Aug 2002 B1
6443158 LaFontaine et al. Sep 2002 B1
6447522 Gambale et al. Sep 2002 B2
6447539 Nelson et al. Sep 2002 B1
6454760 Vanney Sep 2002 B2
6454794 Knudson et al. Sep 2002 B1
6458092 Gambale et al. Oct 2002 B1
6458140 Akin et al. Oct 2002 B2
6458323 Boekstegers Oct 2002 B1
6464709 Shennib et al. Oct 2002 B1
6475226 Belef et al. Nov 2002 B1
6475244 Herweck et al. Nov 2002 B2
6482220 Mueller Nov 2002 B1
6491689 Ellis et al. Dec 2002 B1
6491707 Makower et al. Dec 2002 B2
6506408 Palasis Jan 2003 B1
6508824 Flaherty Jan 2003 B1
6508825 Selmon et al. Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6514217 Selmon et al. Feb 2003 B1
6514271 Evans et al. Feb 2003 B2
6517527 Gambale et al. Feb 2003 B2
6517558 Gittings et al. Feb 2003 B2
6524323 Nash et al. Feb 2003 B1
6524324 Mueller et al. Feb 2003 B1
6530914 Mickley Mar 2003 B1
6533779 Kinsella et al. Mar 2003 B2
6544230 Flaherty et al. Apr 2003 B1
6559132 Holmer May 2003 B1
6561998 Roth et al. May 2003 B1
6565528 Mueller May 2003 B1
6565594 Herweck et al. May 2003 B1
6569145 Shmulewitz et al. May 2003 B1
6569147 Evans et al. May 2003 B1
6573311 Martakos et al. Jun 2003 B1
6575168 LaFontaine et al. Jun 2003 B2
6579311 Makower Jun 2003 B1
6582444 Wilk Jun 2003 B2
6582463 Mowry et al. Jun 2003 B1
6585650 Solem Jul 2003 B1
6587718 Talpade Jul 2003 B2
6589164 Flaherty Jul 2003 B1
6599304 Selmon et al. Jul 2003 B1
6602241 Makower et al. Aug 2003 B2
6605053 Kamm et al. Aug 2003 B1
6605113 Wilk Aug 2003 B2
6610100 Phelps et al. Aug 2003 B2
6613026 Palasis et al. Sep 2003 B1
6613081 Kim et al. Sep 2003 B2
6616626 Crank et al. Sep 2003 B2
6616675 Evard et al. Sep 2003 B1
6635214 Rapacki et al. Oct 2003 B2
6638237 Guiles et al. Oct 2003 B1
6638247 Selmon et al. Oct 2003 B1
6638293 Makower et al. Oct 2003 B1
6641610 Wolf et al. Nov 2003 B2
6651670 Rapacki et al. Nov 2003 B2
6652540 Cole et al. Nov 2003 B1
6652546 Nash et al. Nov 2003 B1
6655386 Makower et al. Dec 2003 B1
6660003 DeVore et al. Dec 2003 B1
6660024 Flaherty et al. Dec 2003 B1
6669691 Taimisto Dec 2003 B1
6669709 Cohn et al. Dec 2003 B1
6685648 Flaherty et al. Feb 2004 B2
6685716 Flaherty et al. Feb 2004 B1
6694983 Wolf et al. Feb 2004 B2
6709425 Gambale et al. Mar 2004 B2
6709427 Nash et al. Mar 2004 B1
6709444 Makower Mar 2004 B1
6719770 Laufer et al. Apr 2004 B2
20010000041 Selmon et al. Mar 2001 A1
20010003985 Lafontaine et al. Jun 2001 A1
20010004683 Gambale et al. Jun 2001 A1
20010004690 Gambale et al. Jun 2001 A1
20010004699 Gittings et al. Jun 2001 A1
20010008969 Evans et al. Jul 2001 A1
20010012924 Milo et al. Aug 2001 A1
20010012948 Vanney Aug 2001 A1
20010014813 Saadat et al. Aug 2001 A1
20010016700 Eno et al. Aug 2001 A1
20010018596 Selmon et al. Aug 2001 A1
20010020172 Selmon et al. Sep 2001 A1
20010025643 Foley Oct 2001 A1
20010027287 Shmulewitz et al. Oct 2001 A1
20010029385 Shennib et al. Oct 2001 A1
20010034547 Hall et al. Oct 2001 A1
20010037117 Gambale et al. Nov 2001 A1
20010037149 Wilk Nov 2001 A1
20010039426 Makower et al. Nov 2001 A1
20010039445 Hall et al. Nov 2001 A1
20010041902 Lepulu et al. Nov 2001 A1
20010044631 Akin et al. Nov 2001 A1
20010047165 Makower et al. Nov 2001 A1
20010047197 Foley Nov 2001 A1
20010049523 DeVore et al. Dec 2001 A1
20010053932 Phleps et al. Dec 2001 A1
20020002349 Flaherty et al. Jan 2002 A1
20020004662 Wilk Jan 2002 A1
20020004663 Gittings et al. Jan 2002 A1
20020007138 Wilk et al. Jan 2002 A1
20020029079 Kim et al. Mar 2002 A1
20020032476 Gambale et al. Mar 2002 A1
20020032478 Boekstegers et al. Mar 2002 A1
20020033180 Solem Mar 2002 A1
20020045928 Boekstegers Apr 2002 A1
20020049486 Knudson et al. Apr 2002 A1
20020049495 Kutryk et al. Apr 2002 A1
20020058897 Renati May 2002 A1
20020062146 Makiwer et al. May 2002 A1
20020065478 Knudson et al. May 2002 A1
20020072699 Knudson et al. Jun 2002 A1
20020072758 Reo et al. Jun 2002 A1
20020077566 Laroya et al. Jun 2002 A1
20020077654 Javier, Jr. et al. Jun 2002 A1
20020082546 Crank et al. Jun 2002 A1
20020092535 Wilk Jul 2002 A1
20020092536 LaFontaine et al. Jul 2002 A1
20020095110 Vanney et al. Jul 2002 A1
20020095111 Tweden et al. Jul 2002 A1
20020095206 Addonizio et al. Jul 2002 A1
20020099392 Mowry et al. Jul 2002 A1
20020100484 Hall et al. Aug 2002 A1
20020103459 Sparks et al. Aug 2002 A1
20020103495 Cole Aug 2002 A1
20020103534 Vanney et al. Aug 2002 A1
20020111672 Kim et al. Aug 2002 A1
20020123698 Garibotto et al. Sep 2002 A1
20020138087 Shennib et al. Sep 2002 A1
20020143285 Eno et al. Oct 2002 A1
20020143289 Ellis et al. Oct 2002 A1
20020143347 Cole et al. Oct 2002 A1
20020144696 Sharkawry et al. Oct 2002 A1
20020161383 Akin et al. Oct 2002 A1
20020161424 Rapacki et al. Oct 2002 A1
20020165479 Wilk Nov 2002 A1
20020165606 Wolf et al. Nov 2002 A1
20020179098 Makower et al. Dec 2002 A1
20020183716 Herweck et al. Dec 2002 A1
20020193782 Ellis et al. Dec 2002 A1
20030015816 Rapacki et al. Jan 2003 A1
20030018379 Knudson et al. Jan 2003 A1
20030044315 Boekstegers Mar 2003 A1
20030045828 Wilk Mar 2003 A1
20030055371 Wilk et al. Mar 2003 A1
20030062650 Martakos et al. Apr 2003 A1
20030073973 Evans et al. Apr 2003 A1
20030078561 Gambale et al. Apr 2003 A1
20030078562 Makower et al. Apr 2003 A1
20030097172 Shalev et al. May 2003 A1
20030100920 Akin et al. May 2003 A1
20030105514 Phelps et al. Jun 2003 A1
20030114872 Mueller et al. Jun 2003 A1
20030120195 Milo et al. Jun 2003 A1
20030120259 Mickley Jun 2003 A1
20030149474 Becker Aug 2003 A1
20030158573 Gittings et al. Aug 2003 A1
20030181938 Roth et al. Sep 2003 A1
20030191449 Nash et al. Oct 2003 A1
20030195457 LaFontaine et al. Oct 2003 A1
20030195458 Phelps et al. Oct 2003 A1
20030195606 Davidson et al. Oct 2003 A1
20030204160 Kamm et al. Oct 2003 A1
20030212413 Wilk Nov 2003 A1
20030216679 Wolf et al. Nov 2003 A1
20030229366 Reggie et al. Dec 2003 A1
20030236542 Makower Dec 2003 A1
20040006298 Wilk Jan 2004 A1
20040006301 Sell et al. Jan 2004 A1
20040015225 Kim et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040044392 Von Oepen Mar 2004 A1
20040059280 Makower et al. Mar 2004 A1
20040073157 Knudson et al. Apr 2004 A1
20040073238 Makower Apr 2004 A1
20040077987 Rapacki et al. Apr 2004 A1
20040077988 Tweden et al. Apr 2004 A1
20040077990 Knudson et al. Apr 2004 A1
20040092976 Mowry et al. May 2004 A1
Foreign Referenced Citations (174)
Number Date Country
757647 Feb 2003 AU
0 515 867 Dec 1992 EP
0 732 088 Sep 1996 EP
0 815 798 Jul 1997 EP
0 829 239 Aug 1997 EP
0 792 624 Sep 1997 EP
0 797 957 Oct 1997 EP
0 797 958 Oct 1997 EP
0 799 604 Oct 1997 EP
0 801 928 Oct 1997 EP
0 836 834 Oct 1997 EP
0 876 796 May 1998 EP
0 853 921 Jul 1998 EP
0 858 779 Aug 1998 EP
0 876 803 Nov 1998 EP
0 888 750 Jan 1999 EP
0 895 752 Feb 1999 EP
0 934 728 Aug 1999 EP
1 020 166 Jul 2000 EP
1 027 870 Aug 2000 EP
1 088 564 Apr 2001 EP
1 097 676 May 2001 EP
1 166 721 Jan 2002 EP
0 959 815 Dec 2002 EP
1 112 097 Jun 2003 EP
2 316 322 Feb 1998 GB
2026640 Jan 1995 RU
1754128 Aug 1992 SU
WO 9300868 Jan 1993 WO
WO 9535065 Dec 1995 WO
WO 9600033 Jan 1996 WO
WO 9604854 Feb 1996 WO
WO 9605773 Feb 1996 WO
WO 9632972 Oct 1996 WO
WO 9635469 Nov 1996 WO
WO 9639962 Dec 1996 WO
WO 9639964 Dec 1996 WO
WO 9639965 Dec 1996 WO
WO 9713463 Apr 1997 WO
WO 9713471 Apr 1997 WO
WO 9727893 Aug 1997 WO
WO 9727897 Aug 1997 WO
WO 9727898 Aug 1997 WO
WO 9732551 Sep 1997 WO
WO 9743961 Nov 1997 WO
WO 9803118 Jan 1998 WO
WO 9806356 Feb 1998 WO
WO 9808456 Mar 1998 WO
WO 9810714 Mar 1998 WO
WO 9816161 Apr 1998 WO
WO 9824373 Jun 1998 WO
WO 9825533 Jun 1998 WO
WO 9838916 Sep 1998 WO
WO 9838925 Sep 1998 WO
WO 9838939 Sep 1998 WO
WO 9838941 Sep 1998 WO
WO 9839038 Sep 1998 WO
WO 9846115 Oct 1998 WO
WO 9846119 Oct 1998 WO
WO 9849964 Nov 1998 WO
WO 9857590 Dec 1998 WO
WO 9857591 Dec 1998 WO
WO 9857592 Dec 1998 WO
WO 9907296 Feb 1999 WO
WO 9908624 Feb 1999 WO
WO 9915220 Apr 1999 WO
WO 9917671 Apr 1999 WO
WO 9917683 Apr 1999 WO
WO 9921490 May 1999 WO
WO 9921510 May 1999 WO
WO 9922655 May 1999 WO
WO 9922658 May 1999 WO
WO 9925273 May 1999 WO
WO 9927985 Jun 1999 WO
WO 9935977 Jul 1999 WO
WO 9935979 Jul 1999 WO
WO 9935980 Jul 1999 WO
WO 9936000 Jul 1999 WO
WO 9936001 Jul 1999 WO
WO 9938459 Aug 1999 WO
WO 9940853 Aug 1999 WO
WO 9940868 Aug 1999 WO
WO 9940963 Aug 1999 WO
WO 9944524 Sep 1999 WO
WO 9948545 Sep 1999 WO
WO 9948549 Sep 1999 WO
WO 9949793 Oct 1999 WO
WO 9949910 Oct 1999 WO
WO 9951162 Oct 1999 WO
WO 9953863 Oct 1999 WO
WO 9955406 Nov 1999 WO
WO 9960941 Dec 1999 WO
WO 9962430 Dec 1999 WO
WO 0009195 Feb 2000 WO
WO 0012029 Mar 2000 WO
WO 0013722 Mar 2000 WO
WO 0015146 Mar 2000 WO
WO 0015147 Mar 2000 WO
WO 0015148 Mar 2000 WO
WO 0015149 Mar 2000 WO
WO 0015275 Mar 2000 WO
WO 0018302 Apr 2000 WO
WO 0018323 Apr 2000 WO
WO 0018325 Apr 2000 WO
WO 0018326 Apr 2000 WO
WO 0018331 Apr 2000 WO
WO 0018462 Apr 2000 WO
WO 0021436 Apr 2000 WO
WO 0021461 Apr 2000 WO
WO 0021463 Apr 2000 WO
WO 0024449 May 2000 WO
WO 0033725 Jun 2000 WO
WO 0035376 Jun 2000 WO
WO 0036997 Jun 2000 WO
WO 0041632 Jul 2000 WO
WO 0041633 Jul 2000 WO
WO 0043051 Jul 2000 WO
WO 0045711 Aug 2000 WO
WO 0045886 Aug 2000 WO
WO 0049952 Aug 2000 WO
WO 0049954 Aug 2000 WO
WO 0049956 Aug 2000 WO
WO 0054660 Sep 2000 WO
WO 0054661 Sep 2000 WO
WO 0056224 Sep 2000 WO
WO 0056225 Sep 2000 WO
WO 0056387 Sep 2000 WO
WO 0066007 Nov 2000 WO
WO 0066009 Nov 2000 WO
WO 0066035 Nov 2000 WO
WO 0069345 Nov 2000 WO
WO 0069504 Nov 2000 WO
WO 0071195 Nov 2000 WO
WO 0108566 Feb 2001 WO
WO 0108602 Feb 2001 WO
WO 0110340 Feb 2001 WO
WO 0110341 Feb 2001 WO
WO 0110347 Feb 2001 WO
WO 0110348 Feb 2001 WO
WO 0110349 Feb 2001 WO
WO 0110350 Feb 2001 WO
WO 0117440 Mar 2001 WO
WO 0117456 Mar 2001 WO
WO 0123016 Apr 2001 WO
WO 0141657 Jun 2001 WO
WO 0149187 Jul 2001 WO
WO 0168158 Sep 2001 WO
WO 0170133 Sep 2001 WO
WO 0172239 Oct 2001 WO
WO 0178801 Oct 2001 WO
WO 0182803 Nov 2001 WO
WO 0182837 Nov 2001 WO
WO 02011647 Feb 2002 WO
WO 02011807 Feb 2002 WO
WO 02013698 Feb 2002 WO
WO 02013699 Feb 2002 WO
WO 02013703 Feb 2002 WO
WO 02013704 Feb 2002 WO
WO 02024108 Mar 2002 WO
WO 02024247 Mar 2002 WO
WO 02024248 Mar 2002 WO
WO 02026310 Apr 2002 WO
WO 02026462 Apr 2002 WO
WO 02030325 Apr 2002 WO
WO 02030326 Apr 2002 WO
WO 02030330 Apr 2002 WO
WO 02032330 Apr 2002 WO
WO 02034323 May 2002 WO
WO 02045598 Jun 2002 WO
WO 02049695 Jun 2002 WO
WO 02056937 Jul 2002 WO
WO 02058567 Aug 2002 WO
WO 03008005 Jan 2003 WO
WO 03017870 Mar 2003 WO
Related Publications (1)
Number Date Country
20020099404 A1 Jul 2002 US