Not Applicable.
Not Applicable
Not Applicable.
The present invention may relate to intravenous ports associated with a radio frequency identification (“RFID”) capability. More particularity to those intravenous ports having associated RFID circuitry that may be used with other RFID instrumentalities to locate the position, orientation, depth and alike factors of a subcutaneous mounted intravenous (IV) port to increase the likelihood of a proper coupling of an external IV needle to the subcutaneous IV port.
The medical procedure known as “infusion therapy” substantially provides liquid or fluid delivery to a patient's blood system (e.g., via a blood vein) through repeated intravenous (IV) connections for those patients undergoing chemotherapy, dialysis or the like. In such circumstances, repeated direct injections in the patient's veins can lead to serious health issues such as vein collapse, systematic infection exposures, necrosis of surrounding tissue (e.g., the chemotherapy pharmaceuticals may cause damage to the patient's tissue when the pharmaceuticals directly contact the tissue.) To offset such issues, the patient may host an artificial injection site such a subcutaneously (e.g., under the patient's skin) located intravenous (IV) port. As substantially shown in
The septum 16 may be directed towards the top of the skin 4 so that an external IV needle may pass through the skin 4 and septum 16 to continuously connect to the hollow interior 18. The external IV needle 26 may further feature a Huber or IV needle held by a grip skin pad 30, the pad 30 maybe used for maneuvering the external IV needle 26. This system further allows the contents of an IV bag 34 to be connected by an IV tube 32 to the external IV needle 26. The combination of the IV port 10 and external IV needle 26 allows the liquid contents of the IV bag 34 to be indirectly delivered to the vein 2, sparing the vein 2 the repeated needle puncturing that is otherwise handled by the IV port 10.
Although the subcutaneous IV port generally avoids the issues associated with long term repeated direct vein connection to the IV delivery system, the subcutaneous IV port systems are not without their own set of issues. One possible problem may be the inability to consistently and properly identify the septum's location, orientation, and depth to ensure proper IV needle penetration of the IV port. Lacking proper IV needle contact with the IV port may result in the misplacement or leakage of IV fluid into the tissues surrounding the IV port. In the case of chemotherapy pharmaceutics, this action may also cause necrotic damage to the surrounding tissues and further allowing dislocation of the IV port.
Another possible IV port problem is that the medical treatment being provide through the IV port may cause a physical changes in the patient. A patient's weight change may subsequently causing the amount of skin, adipose tissue or both that are located over the IV port to generally change or may otherwise shift the IV port away from the IV port's original and correct placement under the skin. This physical change could disrupt the IV port's original depth, placement, and orientation to make it harder for the healthcare professionals to properly place the external IV needle into the IV port.
What could be needed is the present invention may be a radio frequency identification (RFID) alignment system and method. Such a system may provide a IV port that is associated with a RFID microchip generally providing the resonance capacitor, a power conditioning circuit, a microcontroller and a coil shunting circuit functionalities (not shown) linked to a carrier-receive/data-transmit coil (e.g., coiled antenna.) A separate RF interrogator (e.g., an RF type transponder) that may be used to detect the subcutaneously located RF IV port could comprise a power source, at least one carrier-transmit/data-receive coil, a resonance capacitor, a carrier transmit drive circuit, an applied data-receive signal detection circuit, various applied data-receive signal filters, various applied data-receive signal amplifier circuits, and various logic devices and/or a microcontroller.
When the RF interrogator power ups its carrier-transmit/data-receive coil(s) could create a first electromagnetic field of flux at a predetermined frequency. When the RF interrogator (and hence first electromagnetic field of flux at a predetermined frequency) the moves proximate to the RF IV port, the RF IV Port's RF microchip becomes passively energized through the first electromagnetic field of flux and self oscillates to create a secondary electromagnetic (EM) field of flux through at a predetermined frequency issued through the RF IV port's carrier-receive/data-transmit coil(s). As the RF interrogator's carrier-transmit/data-receive coil(s) become impressed with RF IV port's return signal (e.g., the secondary electromagnetic field of flux), the RF interrogator's first electromagnetic field of flux is altered. This alteration(s) or backscattering of the first electromagnetic field of flux can be detected by the RF interrogator circuitry to inform the system operator as to closeness of the RF interrogator to the location, orientation and distance to the RF IV port.
Advantages of One or More Embodiments of the Present Invention
The various embodiments of the present invention may, but do not necessarily, achieve one or more of the following advantages:
to provide a IV port with RFID (Radio Frequency Identification) capacity to generate an electromagnetic field of flux that can be utilized to direct an IV needle into the IV port;
the ability to charge an RF (Radio Frequency) microchip with RF energy to create an electromagnetic field of flux proximate to an IV port;
to provide an interrogator to read an electromagnetic field of flux as generated by an IV port to guide the proper intersection of an IV needle into the IV port;
the ability to RF power a RF microchip attached to an IV port to be to create a magnetic induction field with a wire antenna connected to the RF microchip;
to provide an IV port that can be energized by RF energy to create an electromagnetic field whose flux may be used by an RF interrogator to correctly guide place an external IV needle into proper contact with a subcutaneously mounted IV port; and
the ability to determine the location, orientation, position and relative distance of a subcutaneous placed IV port using RFID based means to guide an external IV needle into subcutaneous placed IV port.
These and other advantages may be realized by reference to the remaining portions of the specification, claims, and abstract.
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings, which form a part of this application. The drawings show, by way of illustration, specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
The present invention 8 may be a non-contact RF transducer alignment function and system utilizing Radio Frequency Identification (“RFID”) technology. The system could comprise an RF (Radio Frequency) IV (IntraVenous) port 40 (as substantially shown in
As substantially shown in
The underside of the portal 44 could form a recess 66 to accommodate the placement of the RF microchip 46 connected to a carrier-receive/data-transmit coil 48. A snap-fit disc cover 66 could lock into the recess 67 to otherwise generally enclose and hold the suitable RF microchip 46 and its associated carrier-receive/data-transmit coil 48 in place in the recess 67. The RF microchip 46 could comprise semiconductor functionalities (not shown) of a resonance capacitor, a power conditioning circuit, a microcontroller, and a coil shunting circuit.
As substantially shown in
Many if not all of the materials used in the RF IV port 40 could be bio-compatible with the patient's tissue. For example, the septum 42 could be made out of a silicone material while rigid components of the RF IV port 40 could be formed from polycarbonate or other suitable polymers used in implantation.
As substantially shown in
In one possible embodiment, the remainder RF interrogator circuitry (not shown) could further include a power source (e.g., battery [DC], wall socket [AC] or other) for powering RF transponder device, at least one carrier-transmit/data-receive coil, a resonance capacitor, a carrier transmit drive circuit, an applied data-receive signal detection circuit, various applied data-receive signal filters, various applied data-receive signal amplifier circuits, and various logic devices and/or a microcontroller wherein the RF IV port 40 and RF interrogator 90 act together, create a non-contact, RF transducer alignment function and system.
In one possible embodiment as substantially shown in
One possible embodiment of the mutual angling apparatus 120 could be an axle-gear box combination 122. In this manner, each carrier-transmit/data-receive coil 100 is connected to and moved by a respective gear box 124. These gearboxes 124 could be connected together by a set of axles 126, with one of the axles being further geared to interact with a geared knob 128 as movably supported by the RF interrogator's case. Rotation movement applied to the geared knob 128 could be imparted to geared axle 130 to be passed along to gear boxes 124 and remaining axles 126 enabling them to change the positioning of the carrier-transmit/data-receive coils' orientations in synchronized way. In this manner, the centerlines 102 of the carrier-receive/data-transmit coil 100 can angle downward to the intersect point 132 to generally form an intersecting tip of a pyramid extending from four pyramid corners are presented by the location of respective carrier-transmit/data-receive coils 100 of the RF interrogator 90. Case markings that are proximate to the geared knob 128, can be used with the geared knob rotation to indicate when the proper intercept point-to-plane distance length 136 is set relative to the selected external IV needle's operative length 94. In another version not shown, each carrier-transmit/data-receive coil may be connected to and moved by a respective servo whose activation and movement are controlled by the interrogator's circuitry.
In one possible detection method embodiment, the geared knob is adjusted to set the distance sensitivity upon which the RF interrogator that will activate the LEDs in proximity to the subcutaneous RF IV port. RF interrogator's carrier transmit/data receive coils produces a first electromagnetic field of flux at a predetermined frequency. When the first electromagnetic field of flux moves to close proximity the RF IV port, the RF IV portal energizes or “powers up”. As the RF IV port's RFID microchip is passively charged-up in this manner, the RFID microchip may cause the associated the carrier-receive/data-transmit coil to emit a second electromagnetic field of flux. The second electromagnetic field of flux at a predetermined frequency interacts with and alters first electromagnetic field of flux at a predetermined frequency to create a backscattering. The RF interrogator circuitry may read the backscattering to determine the position, orientation and distance of the subcutaneous RF IV port relative to the current position of the RF interrogator. The RF interrogator circuitry may also substantially relay these parameters to the system operator by activating the lights in a manner that the operator can understand where the RF interrogator's position in relation to a subcutaneously mounted RF IV port. Through the light transmission (e.g., moving from a blinking to solid on illumination), the RF interrogator can guide the operator's movement of the RF interrogator to locate the RF interrogator directly over the subcutaneous RF IV port so the operator can place the external IV needle into the RF IV portal receiving dock to locate the tip of the IV needle to penetrate into the septum and connect with the hollow receiving interior.
Although the description above contains many specifications, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents rather than by the examples given.
Number | Date | Country | |
---|---|---|---|
62507563 | May 2017 | US |