Intravenous fluid container stand and methods for making same

Information

  • Patent Grant
  • 8313066
  • Patent Number
    8,313,066
  • Date Filed
    Wednesday, June 25, 2008
    16 years ago
  • Date Issued
    Tuesday, November 20, 2012
    12 years ago
Abstract
According to one embodiment, an intravenous stand for supporting an intravenous fluid container includes a hanger configured to support one or more intravenous fluid containers. A pole, having a first end and a second end, is coupled to the hanger at the first end and a base at the second. A plurality of casters are releasably coupled to the base via a plurality of quick-release members.
Description
FIELD OF THE INVENTION

The present invention relates generally to intravenous container stands and, in particular, to transportable intravenous container stands having releasably coupled casters.


BACKGROUND

For many years, patients receiving intravenous (“IV”) fluid transfusions have been able to remain ambulatory during such transfusions by using mobile IV stands. While walking or moving in a wheelchair, the patient rolls the IV stand alongside him or her within reach of tubings through which intravenous fluids flow from one or more medication containers. However, as explained in more detail below, conventional IV stands have many problems.


Typically, conventional IV stands have casters or wheels that are permanently fixed to a pole base via nuts and bolts. The casters often become defective due to normal wear-and-tear, misuse, accidents, or other factors. For example, contaminants (such as dirt or dust) can accumulate on rotational components of the casters, interfering with the proper multi-directional movement of the IV stand. As a result, the casters lose mobility and tend to be oriented in opposing directions such that the IV stand becomes difficult to control. Often, only a single caster requires replacement to correct this problem. To replace the caster, the IV stand is typically sent to a separate maintenance department, where a designated maintenance worker uses appropriate tools to replace the caster.


The typical procedure for replacing a defective caster presents several problems that are caused by the permanent attachment of the caster to the pole base. One problem is that it is sometimes not feasible to remove the IV stand while it is coupled to a patient. Thus, the replacement of a defective caster must be delayed until the IV stand is no longer required by the patient, or until an appropriate replacement is located.


The delay in replacing the defective caster can have potentially disastrous consequences. For example, if the patient attempts to move, the IV stand can tip over and cause severe injury to the patient by pulling out catheters inserted in the patient's body and coupled to IV containers (e.g., medication bags) supported by the IV stand. Similarly, a falling IV stand can cause damage and/or injury to other nearby objects and people.


Although the defective IV stand can be replaced with a properly functioning IV stand, this presents additional problems. For example, replacing the IV stand presents the risk that an IV bag may be dropped and, potentially, break. In some cases, there can be multiple IV tubes from multiple IV bags connected to a patient. Further complicating IV stand replacement, other equipment such as pumps and monitors are often attached to the IV stand and need to be turned on and off to be properly transferred from one IV stand to another.


The increased labor requirements for repairing broken casters and/or transferring IV bags and equipment from one IV stand to another IV stand greatly increases medical costs. In addition, valuable hospital space is wasted to store more IV stands than are truly necessary, and patient safety is potentially risked every time IV bags are transferred from a defective IV stand to another IV stand.


Another problem associated with conventional IV stands is that they typically include multiple pole sections that can rotate relative to one another. As a result, the tubes extending from the IV containers to the patient can become entangled or wrapped around the pole, reducing the slack of the tubes between the patient and the IV stand. Eventually, the tubes can pull on the patient causing discomfort or pain where the IV is inserted into the patient. Worse still, the tubes may be accidentally and painfully removed from the patient.


Thus, a need exists for an IV stand with casters that can be quickly replaced, without the use of tools. Another need exists to prevent the relative rotation between pole sections of an IV stand.


SUMMARY

According to one embodiment, an intravenous stand for supporting an intravenous fluid container includes a hanger configured to support one or more intravenous fluid containers. A pole, having a first end and a second end, is coupled to the hanger at the first end and a base at the second. A plurality of casters are releasably coupled to the base via a plurality of quick-release members.


According to another embodiment, an intravenous stand for supporting an intravenous fluid container includes a hanger configured to support one or more intravenous fluid containers and an upper pole, having a first end and a second end, coupled to the hanger at the first end of the upper pole. The intravenous stand further includes a lower pole having a first end and a second end. The second end of the upper pole is coupled to the first end of the lower pole by an insert. The insert has a shape that is configured to prevent rotational movement between the upper pole and the lower pole. A base is coupled to the second end of the lower pole and a plurality of casters are releasably coupled to the base.


In yet another embodiment, a method of making an intravenous stand for supporting an intravenous fluid container with quickly releasable casters includes providing a hanger that is configured to support one or more intravenous fluid containers and coupling a pole to the hanger at a first end of the pole. The method of making an intravenous stand further includes coupling a base to the pole at a second end of the pole and releasably coupling a plurality of casters to the base via a plurality of quick-release members.


The above summary of the present invention is not intended to represent each embodiment or every aspect of the present invention. The detailed description and Figures will describe many of the embodiments and aspects of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.



FIG. 1 is a perspective view of an intravenous stand according to one embodiment.



FIG. 2 is an exploded side view illustrating a caster releasably attached to a base of the intravenous stand of FIG. 1.



FIG. 3 is an exploded side view illustrating a caster releasably attached to a base of the intravenous stand of FIG. 1 according to an alternative embodiment.



FIG. 4 is an exploded side view illustrating a caster releasably attached to a base of the intravenous stand of FIG. 1 according to another alternative embodiment.



FIG. 5
a is an exploded side view illustrating a caster releasably attached to a base of the intravenous stand of FIG. 1 according to yet another alternative embodiment.



FIG. 5
b is an exploded side view illustrating a caster releasably attached to a base of the intravenous stand of FIG. 1 according to still another alternative embodiment.



FIG. 6 is a perspective view illustrating the caster of FIG. 2 in an assembled position.



FIG. 7 is an exploded side view illustrating a caster releasably attached to a base of the intravenous stand according to another alternative embodiment.



FIG. 8 is an exploded side view illustrating a caster releasably attached to a base of the intravenous stand according to yet another alternative embodiment.



FIG. 9 is an exploded perspective view of an intravenous stand according to another embodiment.



FIG. 10 is an exploded perspective view illustrating a coupling between an intermediate pole and a lower pole of the intravenous stand of FIG. 9.





While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.


DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

As shown in FIG. 1, an intravenous (hereinafter “IV”) stand 10 includes a base 12 having a plurality of casters 14, a pole 16 securely coupled to and extending generally upwardly from the base 12, and a hanger 18 configured to support one or more intravenous fluid containers (not shown) such as, for example, an IV medication bag. The hanger 18 may comprise any suitable means for supporting intravenous fluid containers, including, e.g., one or more hooks 20 radially extending from a cap 22 secured to the top end of the pole 16 as shown in FIG. 1. The pole 16 may be configured to support additional intravenous equipment (not shown) such as, for example, pumps or monitors.


The base 12 is configured to have a shape, size, and weight that sufficiently stabilizes the IV stand 10 when stationary or during transport. For example, as shown in FIG. 1, the base 12 can include six equally spaced base legs 24 extending outwardly from a base hub 26. It is contemplated that any other number of legs 24 may be provided or any other suitable base 12 configuration may be utilized to stabilize the IV stand 10. The base legs 24 can be integrally formed with the base hub 26 or coupled to the base hub 26 by any suitable means such as, for example, welds, bolts, screws, steel casting, extrusion, blow molding, and/or the like.


Referring to FIG. 2, according to one embodiment, each caster 14 is releasably coupled to a caster connector 28a (which is threaded inside a mounting head 32 of the base leg 24) via a quick-release member 30. As used herein, the term “releasably coupled” refers to a state of coupling between two components (e.g., between the quick-release member 30 and the caster connector 28a) such that one component (e.g., the quick-release member 30) may be quickly removed from or attached to the other component (e.g., the caster connector 28a) without the aid of tools, but when attached the components are secured such that simply pulling with force will not uncouple the components. Thus, the quick-release member 30 allows quick and easy replacement of a defective caster 14, without the use of tools or special expertise.


It will be appreciated by one skilled in the art that a caster 14, a caster connector 28a, and a quick-release member 30 is provided for each of the plurality of base legs 24. For simplicity, the assembly of a single caster 14, caster connector 28a, base leg 24, and quick-release member 30 will be described; however, it will be appreciated that the principles described are equally applicable to each caster 14, each caster connector 28a, each base leg 24, and each quick-release member 30 of the IV stand 10.


A mounting head 32 is located, optionally, at a distal portion of the base leg 24 relative to the base hub 26. The mounting head 32 includes a threaded bore 34 into which the caster connector 28a is coupled. The caster connector 28a is generally tubular with an exteriorly threaded portion 36 at its upper end and a flange portion 38 at its lower end. Accordingly, the threaded portion 36 of the caster connector 28a is configured to be threadedly engaged with the threaded bore 34 of the mounting head 32.


The caster 14 includes a wheel 40 and a mounting element 42. The mounting element 42 has a mounting aperture 44 therein of a diameter approximately equal to the diameter of an axial aperture 46 within the caster connector 28a. Prior to releasable coupling, the caster connector 28a is screwed into the threaded bore 34 in the base leg 24 and the mounting aperture 44 in the mounting element 42 of the caster 14 is axially aligned with the axial aperture 46 in the caster connector 28a.


The quick-release member 30 is generally a quick-release bolt having a stem 50, a flange portion 52, a push button 54, and at least one radially retractable ball 56 that is spring biased to at least partially protrude from the stem 50. The push button 54 is spring biased in the released position, causing the retractable ball(s) 56 to at least partially extend from the stem 50. When the push button 54 is depressed, the retractable balls 56 retract into the stem 50. The quick-release member 30 can be inserted through the mounting element 42 of the caster 14 and into the caster connector 28a by depressing the push button 54 and thereby causing the retractable balls 56 to retract. A further description of the quick-release member 30 is provided below in reference to FIG. 3 and FIG. 6.


The caster connector 28a and the quick-release member 30 may each have a length such that when the quick-release member 30 is fully inserted, the flange portion 52 of the quick-release member 30 is held in contact with a bottom surface of the mounting element 42. Likewise, a top surface of the mounting element 42 may be held in contact with a bottom surface of the flanged portion 38 of the caster connector 28a. It is contemplated that the length of each component may be designed to allow sufficiently tight contact such that the casters 14 are firmly supported, yet still permit quick and easy coupling/decoupling of the casters 14.


The threaded bore 34 within the mounting head 32 has a diameter and depth such that a portion of the quick-release member 30 can extend into the threaded bore 34 beyond an inner lip 58 of the caster connector to permit the retractable balls 56 to extend from the stem 50. To quickly uncouple a caster 14, a user simply depresses the push button 54 (to permit the retractable balls 56 to retract inside the stem 50) and pulls the caster 14 (along with the quick-release member 30) away from the caster connector 28a and base 12.


Alternative caster connectors may be used in some alternative embodiments of the IV stand 10. For example, FIG. 3 shows an alternative caster connector 28b having grooves 62 circumferentially cut into the tubular interior surface 64 of the caster connector 28b. When the quick-release member 30 is inserted through the mounting element 42 and into the caster connector 28b, the push button 54 is released causing the retractable balls 56 to extend into the grooves 62. The grooves 62 can be of sufficient depth and width to allow the retractable balls 56 to extend into the grooves 62 with minimal clearance. The grooves 62 can be positioned in the caster connector 28b to allow the retractable balls 56 to extend into the grooves 62 when the quick-release member 30 is fully inserted into the caster connector 28b such that the flange portion 52 of the quick-release member 30 causes the top surface of the mounting element 42 to be tightly pressed against the flange portion 38 of the caster connector 28b. Accordingly, if these grooves 62 are included in the caster connector 28b, it is unnecessary for the bore 34 within the mounting head 32 to allow additional space for a portion of the quick-release member 30 to extend beyond the caster connector 28b.


As another example of an alternative caster connector, FIG. 4 shows a caster connector 28c having a shape and size that is configured to allow threaded engagement with the threaded bore 34 at an upper end 66 and insertion through the mounting aperture 44 at a lower end 68. The lower end 68 can have a diameter and depth such that it may be inserted within the mounting aperture 44 in the mounting element 42 with minimal clearance.


It is contemplated that according to further alternative embodiments, the threaded portion of the caster connector is an exteriorly smooth surface, i.e., a threadless surface. Accordingly, the caster connector may be integrally formed or attached to the base by means other than threaded engagement, e.g., welding, adhesive, steel casting, extrusion, blow molding, etc. According to still further alternative embodiments, each caster may be connected to the base without a caster connector. For example, a groove 70 (FIG. 5a) or an inner lip 72 (FIG. 5b) may be provided within the bore 34 of the mounting head 32 and configured to receive the retractable balls 56 as previously described above.


Referring to FIG. 6, the quick-release member 30 extends axially through the center of the mounting aperture 44 in the mounting element 42 of the caster 14 and into the axial aperture 46 within the caster connector 28a. The quick-release member 30 has a diameter that allows the quick-release member 30 to slide into the caster connector 28a with minimal clearance to maintain a firm coupling and minimize wobbling. The quick-release member 30 may be any suitable means for coupling a caster 14 to the base 12 such that the caster 14 can be removed from or attached to the base 12 quickly and without the aid of tools. However, the quick-release member 30 must not uncouple simply by pulling the quick-release member 30 from the caster connector 28a.


When the quick-release member 30 is fully inserted through the mounting element 42 and into the caster connector 28a, the push button 54 is released causing the retractable balls 56 to extend with minimal clearance adjacent an inner lip 58 of the caster connectors 28a. The retractable balls 56 radially extend from the stem 50 past the inner lip 58 by a sufficient distance to hold the quick-release member 30 in place.


It is contemplated that any other suitable quick-release member may be provided. For example, the quick-release member may be square, triangular or octagonal shaped instead of circular or the quick-release member may include a release lever instead of a push button. Also, in addition to and/or instead of casters, wheels (which may rotate, but may not swivel to change a direction of movement) can be included within or attached to the exterior of the base.


It is further contemplated that the quick-release member can releasably couple a caster to the base in any other suitable configuration. For example, the bore 34 in the mounting head 32 illustrated in FIGS. 1-6 is substantially perpendicular to a floor surface 78; however, it is contemplated that the bore 34 in the mounting head 32 can be angled or parallel to the floor surface 78 as illustrated in FIG. 7. The mounting element 42 of the caster 14 can be appropriately modified to permit releasable coupling via a quick-release member 30 inserted through the mounting element 42 and the angled or parallel bore 34 of the mounting head 32. As another example, the mounting head can have two bores instead of one as illustrated in FIG. 8. The first bore 76 being substantially perpendicular to the floor surface 78 and the second bore 80 being substantially parallel to the floor surface 78. A caster 14 having a stem 82 extending from the mounting element 42 of the caster 14 can be inserted through the first bore 76 and a quick-release member 30 can be inserted through the second bore 80 to releasably couple the caster 14 to the mounting head 32. Specifically, the quick-release member 30 can be inserted through an aperture 84 in the caster stem 82 to releasably couple the caster 14 to the mounting head 32.


According to some of the embodiments described above, the IV stand may be made or assembled by providing a hanger that is configured to support one or more intravenous fluid containers, coupling a pole to the hanger at one end of the pole, coupling a base to the other end of the pole, and releasably coupling a plurality of casters to the base via a plurality of quick-release members.


Referring to FIG. 9, the pole 16 optionally includes an upper member 16a, an intermediate member 16b, and a lower member 16c. The top end of the upper member 16a is secured to the hanger 18. The bottom end of the upper member 16a telescopes into the intermediate member 16b and can be locked in a selected height position by a clamping device 64. Any suitable clamping device 64 can be provided including, but not limited to, a threaded locking knob mated with a hole tapped through the intermediate member 16b. According to an alternative embodiment, the height of the upper member 16a can be adjusted to suit the needs of an individual patient or the upper member 16a may be easily removed from the intermediate member 16b and inserted into a socket of a gurney or wheel chair if desired.


The intermediate member 16b is coupled to the lower member 16c via a configuration that prevents relative rotation between the intermediate and lower pole members 16b, 16c. This obviates problems often encountered where the intravenous tubing becomes entangled or wrapped around the pole. Additionally, preventing rotation of the intermediate 16b and lower 16c members can reduce wear and tear on the IV stand 10.


According to one configuration, the intermediate member 16b includes an insert 66 extending from its bottom end. The insert 66 can be integrally formed with the intermediate member 16b or can be a separate member fixedly secured within the intermediate member 16b. If the insert 66 comprises a separate member, any suitable means may be provided for fixedly securing the insert 66 to the intermediate member 16b.


For example, referring to FIG. 10, a fitting sleeve 68 can be received telescopically in the bottom end of the intermediate member 16b and fixed therein rigidly by suitable means such as, for example, a cross pin or rivet 70, which is engaged through registering apertures of the intermediate member 16b. The insert 66 can, then, be fixed centrally within the fitting sleeve 68 such that a portion of the insert 66 extends beyond the fitting sleeve 68.


The lower member 16c may be tubular or otherwise have a centrally located opening 72 at its top end. The opening 72 is sized and shaped to receive the cross section of the insert 66 such that the insert 66 may be closely slid within the opening 72 with minimal clearance. The opening 72 may be integrally formed with the top end of the lower member 16c or the opening 72 may be formed by a receiver sleeve 74 located within the top end of the lower member 16c. The receiver sleeve 74 can be fixed concentrically within the top end of the lower member 16c by suitable means such as, for example, the cross pin 70. Additionally, the insert 66 and opening 72 can each have a length and depth, respectively, to allow the bottom end of the intermediate member 16b to be flush with the top end of the lower member 16c. The insert 66 can be secured within the lower member 16c by any suitable means. For example, a locking pin (not shown) can be received through a radial aperture in the lower pole and an aligned aperture in the insert.


To prevent rotation of the intermediate member 16b relative to the lower member 16c, the insert 66 and the opening 72 have non-circular or asymmetric cross sections. For example, the insert 66 and the opening 72 can be D-shaped (as shown in FIG. 5), rectangular, hexagonal, triangular, or the like. The insert 66 and the opening 72 can be any suitable size.


It is contemplated that, according to alternative embodiments, the insert 66 may be secured to the lower member 16c and the opening 72 may instead be provided in the intermediate member 16b.


While the present invention has been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present invention. Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the claimed invention, which is set forth in the following claims.

Claims
  • 1. An intravenous stand for supporting an intravenous fluid container, comprising: a hanger configured to support one or more intravenous fluid containers;a pole having a first end and a second end, the pole being coupled to the hanger at the first end;a base coupled to the pole at the second end;a plurality of casters releasably coupled to the base via a plurality of quick-release members; anda plurality of caster connectors having an axial aperture therein, each of the plurality of caster connectors having a surface configured to be mounted to a corresponding bore in the base and an inner lip at an upper end of the surface such that a portion of the quick-release member is extended beyond the inner lip and into the corresponding bore,wherein each of the plurality of casters includes a mounting element with a mounting aperture therein, each of the plurality of quick-release members being configured to releasably couple a corresponding caster to the base by insertion through the mounting aperture and the axial aperture to provide sufficient contact for supporting the plurality of casters.
  • 2. The intravenous stand of claim 1, wherein each quick-release member includes a stem, a push button, and at least one radially retractable ball that is spring biased to at least partially protrude from the stem.
  • 3. The intravenous stand of claim 2, wherein the push button is coupled to the at least one radially retractable ball such that the push button causes the at least one radially retractable ball to retract at least partially within the stem when the push button is depressed.
  • 4. The intravenous stand of claim 1 wherein, each of the plurality of caster connectors has a threaded exterior surface configured to be mounted in a corresponding threaded bore in the base.
  • 5. The intravenous stand of claim 2, wherein upon insertion of the quick-release member, the at least one retractable ball extends away from the stem and adjacent to the inner lip of the caster connector.
  • 6. The intravenous stand of claim 4, wherein the base includes a base hub and a plurality of base legs extending outwardly from the base hub, the base being coupled to the second end of the pole at the base hub, and the plurality of threaded bores being located at a distal portion of the plurality of base legs relative to the base hub.
  • 7. The intravenous stand of claim 1, wherein the pole comprises at least a first member and a second member, the first member being coupled to the second member via a D-shaped insert to prevent rotational movement between the first member and the second member.
  • 8. The intravenous stand of claim 7, wherein the D-shaped insert is integral with one of the first member or the second member.
  • 9. The intravenous stand of claim 7, wherein the D-shaped insert extends from the first member and the second member has an opening configured to receive the D-shaped insert.
US Referenced Citations (93)
Number Name Date Kind
2313883 Lowther Mar 1943 A
2350630 Melcher Jun 1944 A
2373083 Brewster Apr 1945 A
2393587 Bugg et al. Jan 1946 A
2902592 Cole et al. Sep 1959 A
2957187 Raia Oct 1960 A
3117484 Myers Jan 1964 A
3183586 Sellers May 1965 A
3486185 Lange Dec 1969 A
3596554 Low et al. Aug 1971 A
3709556 Allard et al. Jan 1973 A
3752493 McWhorter Aug 1973 A
4190224 LeBlanc et al. Feb 1980 A
D264379 Slinkard May 1982 S
4392690 Anderson Jul 1983 A
4477121 Atkins Oct 1984 A
4511157 Wilt, Jr. Apr 1985 A
4511158 Varga et al. Apr 1985 A
4541596 Price Sep 1985 A
4572536 Doughty Feb 1986 A
4582448 Costello et al. Apr 1986 A
4666111 Schuler May 1987 A
4681495 Crespin et al. Jul 1987 A
4719663 Termini Jan 1988 A
4725027 Bekanich Feb 1988 A
4788741 Hilborn Dec 1988 A
4805941 Downing et al. Feb 1989 A
4832294 Eidem May 1989 A
4901980 Hansen Feb 1990 A
4966340 Hunter Oct 1990 A
4969768 Young Nov 1990 A
5083807 Bobb et al. Jan 1992 A
5094418 McBarnes, Jr. et al. Mar 1992 A
5112019 Metzler et al. May 1992 A
5135191 Schmuhl Aug 1992 A
5149036 Sheehan Sep 1992 A
5219139 Hertzler et al. Jun 1993 A
5230496 Shillington et al. Jul 1993 A
5236213 Trickett Aug 1993 A
5344169 Pryor et al. Sep 1994 A
5347681 Wattron et al. Sep 1994 A
5355539 Boettger Oct 1994 A
5358205 Starkey et al. Oct 1994 A
5374074 Smith Dec 1994 A
5458305 Woodward Oct 1995 A
5476275 Baechler et al. Dec 1995 A
5551105 Short Sep 1996 A
5594974 Wattron et al. Jan 1997 A
5699988 Boettger et al. Dec 1997 A
5704577 Gordon Jan 1998 A
5727850 Masclet Mar 1998 A
5740584 Hodge et al. Apr 1998 A
5742977 Hoofe, III Apr 1998 A
5772162 Lin Jun 1998 A
5776105 Corn Jul 1998 A
5820086 Hoftman et al. Oct 1998 A
5857685 Phillips et al. Jan 1999 A
5924658 Shiery et al. Jul 1999 A
6079678 Schott et al. Jun 2000 A
6182662 McGhee Feb 2001 B1
6193323 Lin Feb 2001 B1
6253891 Miller Jul 2001 B1
6267452 Lin Jul 2001 B1
6279926 Taube et al. Aug 2001 B1
6375133 Morrow Apr 2002 B1
6386789 Chausse et al. May 2002 B1
6390311 Belokin May 2002 B1
6619599 Elliott et al. Sep 2003 B2
6634665 Hargroder Oct 2003 B2
6708991 Ortlieb Mar 2004 B1
6722711 Kitzis Apr 2004 B2
6796001 Finkelstein Sep 2004 B1
6810561 Liu Nov 2004 B1
6969031 Ugent et al. Nov 2005 B2
7011321 Hargroder Mar 2006 B2
7207532 Roberts et al. Apr 2007 B1
7281691 Adelman Oct 2007 B2
7314200 Bally et al. Jan 2008 B2
7431531 Carnevali Oct 2008 B2
7552508 Underwood Jun 2009 B2
7594874 Meissner Sep 2009 B2
7731465 Stapulionis et al. Jun 2010 B2
20020038843 Footitt et al. Apr 2002 A1
20020096608 Cedarberg, III Jul 2002 A1
20020104934 Elliott et al. Aug 2002 A1
20050116126 Ugent et al. Jun 2005 A1
20070023587 Eggleston et al. Feb 2007 A1
20070176063 Heimbrock et al. Aug 2007 A1
20070221796 Silverman et al. Sep 2007 A1
20070267550 Blankenship et al. Nov 2007 A1
20070267551 Townsend Nov 2007 A1
20080011907 Jacobsma Jan 2008 A1
20080054132 Muncie Mar 2008 A1
Foreign Referenced Citations (2)
Number Date Country
WO 8702754 May 1987 WO
WO 0209632 Feb 2002 WO
Related Publications (1)
Number Date Country
20090321589 A1 Dec 2009 US