This invention provides intraventricular blood pumps that are implanted by expandable stent fixation devices and also preserve function of the natural aortic valve or replace it with a prosthetic valve. Prior art includes miniature blood pumps implanted within the annulus of the aortic valve and sutured into position using a sewing cuff. The pump may be combined with a mechanical valve or a tissue valve as disclosed in Jarvik U.S. Pat. No. 7,479,102 entitled Minimally invasive transvalvular ventricular assist device or may be connected to a sewing ring so that two of the patient's natural leaflets may be preserved. The surgical techniques used to suture these devices in place within the aortic annulus require opening the aortic root to expose the natural valve and place the prosthesis. This requires cardiopulmonary bypass. In some patients who are too sick to under go bypass, particularly the elderly, devices are needed that can be implanted and fixed in position for long term use without cardiopulmonary bypass.
Jarvik U.S. Pat. No. 5,888,241, Cannula entitled pumps for temporary cardiac support and methods of their application and use discloses a small blood pump and cannula designed for insertion via a small incision in the apex of the ventricle, and placed so that the pump is located in the ventricle and the cannula transverses the aortic valve. This works well for short term use, but for permanent implantation has the problem that the natural valve leaflets can erode by contact with the cannula that passes between them.
Prior art discloses both blood pumps that may be affixed in position by means of expandable stents, and heart valves that can be retained in place by means of expandable stents. Barbut, et al., U.S. Pat. No. 7,144,364, entitled Endoscopic arterial pumps for treatment of cardiac insufficiency and venous pumps for right-sided cardiac support, discloses miniature blood pumps contained within expandable stents. Although these are suitable for fixing a pump in place within a large artery, they cannot be used to fix the pump within the ventricle itself, because the diameter of the ventricle is constantly increasing and decreasing as the heart beats. The present invention successfully achieves intraventricular pump placement and fixation by locating a stent in the aortic root or annulus of the aortic valve and using rigid or flexible connecting members, such as tubes, rods, or threads to hang the blood pump in the ventricle near the valve. Since the pump ejects blood into the aortic root, there is an opposing force on the pump tending to push it further towards the apex of the ventricle and away from the valve. The most minimal attachment necessary between the stent secured in the aortic root and the blood pump in the cavity of the ventricle would be a single flexible suture that would be in tension as it holds the pump. It is preferable to use three sutures to better stabilize the pump and hold it more stationary.
Siess discloses a small pump to be implanted in a blood vessel, U.S. Pat. No. 7,027,875, entitled Intravascular pump. The device includes a cannula and an expandable stent around the cannula used to enlarge the diameter of the cannula after insertion. This structure is not intended for fixation of the pump in position and would not be able to fix a blood pump within the ventricle unless it was so large it spanned the entire diameter of the aortic root. This would occlude the coronary arteries which would be fatal.
Seiss also discloses, in United States Patent Application 20090024212 entitled A method for performing intravascular cardiac surgery a method of dilating a stenosed aortic valve and implanting a stent mounted prosthetic tissue valve using a micro-axial pump positioned in the lumen of the valve during insertion. The micro-axial pump is not suited to long term use and is not affixed to the stent in order to be implanted permanently. Rather, the micro-axial pump and cannula is adapted to be removed after the tissue valve is deployed in place.
In U.S. Patent Application No. 20060074484, entitled Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support, Huber disclosed the use of the transapical approach to implant a stent mounted aortic valve. That general approach has been used successfully in humans by others.
Additional devices and methods are known in the prior art for implantation of stent retained prostethetic valves including Iobbi, U.S. Pat. No. 7,399,315 entitled Minimally-invasive heart valve with cusp positioners, and Schreck, U.S. Pat. No. 7,381,218, entitled System and method for implanting a two-part prosthetic heart valve.
Other related prior art includes stents with vessel piercing fixation hooks or barbs that secure the device more securely than an expanded mesh alone, such as U.S. Patent Application No. 20070179591, by Baker, entitled Intra-luminal grafting system.
None of the prior art inventions sought to provide a permanently implantable blood pump that could be positioned in the cavity of the ventricle by means of less invasive surgical techniques without the need of cardiopulmonary bypass and retained by an expandable stent rather than by suturing. None of the prior art inventions recognized that a pump supported in the ventricle and configured to expel blood into the aorta would create an axial force on the retaining device in the direction opposite to the direction of blood outflow. Thus, robust stent structures having a strong attachment are necessary and the inclusion of positive fixation members such as hooks to oppose this force is functionally important. In one embodiment of the invention, the pump is “hung” within the ventricle with its outflow opening closely adjacent to the valve leaflets but without touching them and without using any graft or cannula to cross the aortic valve. In this configuration the force of the blood stream exiting the pump holds open one or more leaflets during diastole to permit blood to be expelled throughout the cardiac cycle. During systole, the valve leaflets all open due to expulsion of blood by ventricular contraction.
In the preferred embodiment of the present invention, the pump is “hung” within the left ventricle by its outflow graft, which is made of pericardium, the same material being used for the prosthetic valve leaflets. Thus, the structure of the pump attachment member is integrated with and completely compatible with the valve structure. Placing the pump a few centimeters away from the valve provides room for a high pressure balloon used to expand the stent.
1. An object of the invention is to provide a miniature implantable blood pump suitable for long term use that can be implanted with minimally invasive surgery without the need for cardiopulmonary bypass.
2. An additional object of the invention is to provide a blood pump that can be implanted in the right or left ventricle and can be retained in place by an expandable stent placed in the pulmonary artery or aorta.
3. A further object of the invention is to provide a combined heart valve and blood pump that can be implanted in the same positions and manner described in object 1, and object 2 above.
4. It is an object of the invention to provide a blood pump that can be implanted across the aortic valve in the non-coronary cusp, of across the pulmonary artery valve, and retained there by an expandable stent placed in the aorta or pulmonary artery distal to the valve.
5. It is also an object of the invention to provide blood pumps that can be implanted in a ventricle by a trans-apical incision and then powered by a power cable exiting the heart via the apical incision.
6. It is another object of the invention to provide a less invasive heart assist device that can be used to treat elderly patients or patients who are too sick to tolerate a thoracotomy or sternoty procedure with cardiopulmonary bypass.
7. It is an object of the present invention to provide a minimally invasive heart assist device that will help patients achieve a rapid recovery and early discharge from the hospital, thus achieving overall cost savings.
The present invention provides a miniature rotary blood pump located in left ventricle and anchored to the aorta or annulus of the aortic valve. Similar configurations to those shown in
within the ventricle is in mechanical tension. Thus, the pump “hangs” from the stent by the flexible conduit. In another embodiment of the invention shown in
Referring to
Again referring to the preferred embodiment of
Additionally, rather than fixation using hooks or a stent, the three struts may have a small loop at the end, like the eye of a needle, through which fastening sutures may be placed, to suture the struts to the wall of the aorta. The ends of the struts may also include fabric coverings to permit suture attachment to the aortic or pulmonary artery wall.
In each of the embodiments illustrated, the preferred pump is a miniature axial flow pump utilizing thrombosis resistant blood immersed bearings and a hermetically sealed brushless DC motor to drive an impeller bearing rotor and thus pump the blood. Other suitable very small blood pumps including mixed flow pumps or tiny centrifugal pumps may be used.
The information disclosed in the description of the present invention is intended to be representative of the principles I have described. It will thus be seen that the objects of the invention set forth above and those made apparent from the preceding description are efficiently obtained and that certain changes may be made in the above articles and constructions without departing from the scope of the invention. It is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative but not in a limiting sense. It is also understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention which, as a matter of language, might be said to fall there between.