Described herein are various implementations of systems, devices and methods for accessing bone (e.g., vertebral bodies of the spine) using a curveable, or steerable, introducer drill to facilitate access to target treatment locations within bone along a curved trajectory, especially in “hard” bone, or bone having a high or normal (e.g., non-osteoporotic or non-osteopenic) bone mass density.
Back pain is a very common health problem worldwide and is a major cause for work-related disability benefits and compensation. At any given time, low back pain impacts nearly 30% of the US population, leading to 62 million annual visits to hospitals, emergency departments, outpatient clinics, and physician offices. Back pain may arise from strained muscles, ligaments, or tendons in the back and/or structural problems with bones or spinal discs. The back pain may be acute or chronic. Existing treatments for chronic back pain vary widely and include physical therapy and exercise, chiropractic treatments, injections, rest, pharmacological therapy such as opioids, pain relievers or anti-inflammatory medications, and surgical intervention such as vertebral fusion, discectomy (e.g., total disc replacement), or disc repair. Existing treatments can be costly, addictive, temporary, ineffective, and/or can increase the pain or require long recovery times. In addition, existing treatments do not provide adequate relief for the majority of patients and only a small percentage are surgically eligible.
Applicant's existing technology (the Intracept® procedure by Relievant®) offers a safe and effective minimally invasive procedure that targets the basivertebral nerve for the relief of chronic vertebrogenic low back pain. As disclosed herein, several embodiments provide adjunct technologies to facilitate access to target treatment locations within bone (e.g., within one or more vertebral bodies of a spine of a human or veterinary subject) that are only accessible (or that are more feasibly accessible) using a curved trajectory, especially target treatment locations in “hard” bone, or bone having a high or normal (e.g., non-osteoporotic or non-osteopenic) bone mass density.
Several implementations described herein are directed to systems and methods for accessing target treatment or diagnostic locations within bone (e.g., a vertebral body). In some embodiments, an intraosseous nerve (e.g., basivertebral nerve) within a bone (e.g., vertebral body) of the spine is accessed using a steerable, or curveable, introducer drill so as to facilitate treatment, or prevention of, back pain (e.g., chronic low back pain, acute back pain, or other ailments or conditions associated with the spine (e.g., vertebral fractures, spinal tumors, scoliosis, spondylosis)). The introducer drill may advantageously form a passageway within bone to facilitate insertion of additional instruments to the target treatment location or diagnostic location within bone. However, the introducer drill may also advantageously function as both an access and treatment instrument in some embodiments. In some embodiments, the introducer drill may advantageously facilitate access to locations within bone (e.g., posterior portions of a vertebral body) that may be difficult to access using straight instruments alone or using pre-curved instruments.
In accordance with several embodiments, a kit or system of access tools (and optionally one or more treatment or diagnostic instruments) may include a steerable, or curveable, introducer drill. The steerable, or curveable, introducer drill may advantageously facilitate access to a target treatment location of a terminus of a basivertebral nerve located in a posterior half of the vertebral body and within a region approximately 0%-50% (e.g., 5%-15%, 5%-25%, 10%-30%, 10%-40%, 20%-50%, 10%-35%, 20%-40%, overlapping ranges thereof, or any value within the recited ranges) of the distance between posterior and anterior walls of the vertebral body and approximately aligned with a sagittal plane or a central spinous process of the vertebral body). The steerable, or curveable, introducer drill may access the target treatment location along a curved trajectory after using a transpedicular (i.e., through a pedicle) access approach. However, other approaches (e.g., anterior, lateral, posterior lateral, anterior lateral, non-transpedicular) are possible. The kit or system may include a radiofrequency energy delivery device (e.g., a bipolar radiofrequency energy delivery probe configured to be operatively coupled to a radiofrequency generator or a battery-operated radiofrequency energy delivery device).
The steerable, or curveable, introducer drill may advantageously be used in hard bone. Hard bone may be determined based on bone mass density testing, compressive strength determinations, compressive modulus determinations, imaging modalities, or based on tactile feel by the operator as access instruments are being advanced. In some implementations, hard bone may be determined as bone having a bone mineral density score within a standard deviation of a normal healthy young adult (e.g., a T score greater than or equal to −1). In some implementations, hard bone may be identified as bone having a compressive strength of greater than 4 MPa and/or a compressive modulus of greater than 80 MPa for cancellous bone and greater than 5.5 MPa and/or a compressive modulus of greater than 170 MPa for cortical bone.
In accordance with several embodiments, a curveable introducer drill configured to access a target treatment region within hard bone along a curved trajectory includes a drive shaft comprising a proximal rotational member (e.g., paddle, handle, knob, crank), a distal drill tip, and an elongate shaft portion extending from the proximal rotational member to the distal drill tip. The distal drill tip is sharp and includes cutting flutes (e.g., top and/or side cutting flutes). The curveable introducer drill further includes an outer tube surrounding the drive shaft. A distal end portion of the outer tube includes a segmented tube section configured to facilitate controlled bending of the segmented tube section of the outer tube. The introducer drill also includes an actuator operably coupled to the drive shaft and adapted to apply tension to the drive shaft which, in turn, causes the segmented tube section of the outer tube, and thus the entire distal end portion of the introducer drill, to bend.
The outer tube may comprise a shape memory material (e.g., nitinol or other metallic alloy or a shape-memory polymer) that is shape set to have a straight configuration when unconstrained. The outer tube may include a proximal housing at its proximal end and the proximal rotational member may extend out of a proximal end of the proximal housing of the outer tube. In some embodiments, one side (e.g., one and only one side) of a distal end portion of the outer tube comprises a segmented tube section or zone comprised of tube segments and slits, gaps, apertures, or slots configured to facilitate controlled bending of the segmented tube section of the outer tube in a single known direction (as opposed to uncontrolled bending in any direction). The slits, gaps, apertures, or slots may be formed by laser cutting, for example. In some implementations, the drive shaft (upon application of tension by the actuator) exerts a lateral force on the segmented tube section of the outer tube to cause the controlled bending of the segmented tube section in the single known direction. In some embodiments, the drive shaft can generate a lateral force of between 0.25 pounds and 10 pounds (between 0.25 pounds and 1.5 pounds, between 0.5 pounds and 2.5 pounds, between 1 pound and 5 pounds, between 2 pounds and 8 pounds, between 4 pounds and 10 pounds, overlapping ranges thereof, or any value within the recited ranges, such as 0.25 pounds, 0.5 pounds, 1 pound, 1.5 pounds, 2 pounds, 2.5 pounds, 3 pounds, 3.5 pounds, 4 pounds, 4.5 pounds, 5 pounds, 5.5 pounds, 6 pounds, 6.5 pounds, 7 pounds, 7.5 pounds, 8 pounds, 8.5 pounds, 9 pounds, 9.5 pounds, 10 pounds, or more) by activating the actuator.
The proximal housing of the outer tube may include an indicator (e.g., arrow, line, dot, or other visual indicia or marking) configured to indicate the single known direction of bending or curving. The introducer drill may further include a compression spring mechanically coupled to a proximal end of the outer tube. The introducer drill may also include a bushing and/or thrust bearing and/or roller bearing positioned between a distal edge of the outer tube and a proximal edge of the distal drill tip.
The actuator may include a lever. In such implementations, the lever may be operably coupled to the drive shaft (e.g., via a cam assembly) and be adapted to apply tension to the drive shaft which, in turn, exerts a lateral force on the segmented tube section of the outer tube to cause the controlled bending of the segmented tube section in the single known direction. The actuator may alternatively not include a lever actuator and may instead comprise a pull wire assembly, a slider, or a rotational member, such as a wheel, crank, or knob. The actuator may be actuated by a single finger (e.g., thumb, index, or middle finger) or multiple fingers working together. In several embodiments, the introducer drill may be adapted for single-hand operation (e.g., advancement and actuation using a single hand).
The outer tube may comprise a conductive portion configured or adapted to form a proximal electrode of a bipolar electrode pair with the drill tip functioning as a distal electrode of the bipolar electrode pair when radiofrequency energy is applied to the drill tip via one or more electrically conductive wires or leads coupled between the drill tip and a radiofrequency generator. At least a portion of the outer tube may comprise a conformal, anodized coating. The coating may not be electrically conductive (e.g., may provide an insulation function). The introducer drill may be configured to be advanced through a previously-introduced introducer cannula. The introducer cannula may have a distal opening at its tip. The distal opening may be an axial opening or a radial side window.
In some implementations, the introducer drill may include an inner tube coupled (e.g., attached, welded, bonded) to the distal end of the drive shaft and the inner tube may be configured to apply compressive force to cause lateral bending of the segmented tube section of the outer tube instead of the drive shaft, thereby allowing the drive shaft to be focused on controlling the distal drill tip and the drilling function. The inner tube may be comprised of shape memory material (e.g., nitinol or other metallic alloy).
In accordance with several embodiments, a method of accessing a target treatment location within a vertebral body includes inserting at least a distal drill tip of a steerable, or curveable, introducer drill along a straight path through at least a portion of a pedicle of the vertebral body. The introducer drill may include a drive shaft including a proximal rotational member, the distal drill tip, and an elongate shaft portion extending from the proximal rotational member to the distal drill tip. The introducer drill may also include an outer tube surrounding the drive shaft, the outer tube comprising a proximal housing, with the proximal rotational member extending out of a proximal end of the proximal housing of the outer tube. In some embodiments, one (e.g., one and only one) side of a distal end portion of the outer tube comprises a segmented tube section comprised of tube segments and slits configured to facilitate controlled bending of the segmented tube section of the outer tube in a single known direction. The introducer also includes an actuator operably coupled to the drive shaft and adapted to apply tension to the drive shaft which, in turn, causes the segmented tube section of the outer tube to bend in the single known direction. The method further includes advancing the introducer drill within the vertebral body while actuating the actuator so as to facilitate advancement of the distal drill tip along a curved trajectory toward a target treatment region within a posterior half of the vertebral body.
In some embodiments, inserting at least the distal drill tip of the curveable introducer drill along the straight path through at least the portion of the pedicle of the vertebral body comprises inserting the curveable introducer drill through a straight introducer cannula that was previously inserted. The method (or steps thereof) may be performed under fluoroscopy or other imaging modality. The further advancing step may include adjusting a radius of curvature using the actuator as the introducer drill is advanced. The method may further include applying radiofrequency energy to the target treatment region using the curveable introducer drill, wherein the distal drill tip is configured to act as a distal electrode of a bipolar electrode pair and a conductive portion of the outer tube is configured to act as a proximal electrode of the bipolar electrode pair. In some embodiments, the applied radiofrequency energy is sufficient to modulate (e.g., ablate, denervate) an intraosseous nerve (e.g., basivertebral nerve) within the vertebral body. In some embodiments, the radiofrequency energy is applied by a separate radiofrequency energy delivery probe (e.g., bipolar radiofrequency energy delivery device operatively coupled to a radiofrequency generator) that is inserted (e.g., through an introducer cannula) within the vertebral body along a path formed by the introducer drill after removal of the introducer drill.
The method may optionally include sensing or detecting the presence of nerves during insertion of the introducer drill via one or more sensors located along the introducer drill. For example, nerves within or adjacent a pedicle may be sensed upon insertion of the drill through a pedicle or through bone via another insertion approach. A basivertebral nerve location may be sensed or detected upon advancement of the drill within the cancellous bone portion of the vertebral body. The method may include determining whether ablation of a nerve within the bone (e.g., basivertebral nerve within a vertebral body) has been successful (e.g., through stimulation and monitoring via the one or more sensors, which may include one or more stimulation and/or sensory electrodes).
In some embodiments, the introducer drill may be operably coupled to a robotic system configured to control advancement and steering, or bending, of the introducer drill in a fully-automated or semi-automated manner. Fully-automated may mean without any physical user interaction (other than initiating the fully-automated procedure by starting a computer-executable program of stored instructions on a non-transitory storage medium) and semi-automated may mean that the movement is carried out by a user manipulating a controller (e.g., joystick) that directs or controls the robotic movement of the introducer drill.
Several embodiments of the invention have one or more of the following advantages: (i) increased treatment accuracy; (ii) increased efficacy and enhanced safety; (iii) increased efficiency as a result of fewer instruments to access and/or treat a target treatment location or ability to access vertebrae having differing bone anatomy or bone density; (iv) increased precision; (v) an integrated access and treatment instrument; (vi) ability to access locations in dense bone; and/or (vii) ease of use.
For purposes of summarizing the disclosure, certain aspects, advantages, and novel features of embodiments of the disclosure have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the disclosure provided herein. Thus, the embodiments disclosed herein may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other advantages as may be taught or suggested herein.
The methods summarized above and set forth in further detail below describe certain actions taken by a practitioner; however, it should be understood that they can also include the instruction of those actions by another party. For example, actions such as “applying thermal energy” include “instructing the applying of thermal energy.” Further aspects of embodiments of the disclosure will be discussed in the following portions of the specification. With respect to the drawings, elements from one figure may be combined with elements from the other figures.
Several embodiments of the disclosure will be more fully understood by reference to the following drawings which are for illustrative purposes only:
Several implementations described herein are directed to systems and methods for accessing target treatment and/or diagnostic locations within bone (e.g., a vertebral body). In some implementations, an intraosseous nerve (e.g., basivertebral nerve) within a bone (e.g., vertebral body) of the spine is accessed so as to facilitate treatment, or prevention of, back pain or other ailments or conditions associated with the spine (e.g., vertebral fractures, spinal tumors, scoliosis, spondylosis). The vertebral body may be located in any level of the vertebral column (e.g., cervical, thoracic, lumbar and/or sacral).
In accordance with several implementations, the systems and methods of accessing target treatment locations within bone described herein can be performed without surgical resection, without general anesthesia, without cooling, without performing vertebroplasty or injecting flowable material such as bone cement, and/or with virtually no blood loss. In accordance with several implementations, successful treatment can be performed in challenging or difficult-to-access locations and access can be varied depending on bone structure (e.g., differing bone mass density) or differing bone anatomy. One or more of these advantages also apply to access within bone outside of the spine (e.g., other orthopedic applications or other tissue).
In some embodiments, cooling may be optionally used to, for example, reduce an extent of heating within the bone or within a device that is generated by friction from rotation of a component of the device within the bone or by application of energy using the device.
Various methods of access may be used to access a vertebral body or other bone. In some implementations, the vertebral body is accessed transpedicularly (through one or both pedicles). In other implementations, the vertebral body is accessed extrapedicularly (e.g., without traversing through a pedicle). In some implementations, the vertebral body is accessed using an extreme lateral approach or a transforaminal approach, such as used in XLIF and TLIF interbody fusion procedures. In some implementations, an anterior approach is used to access the vertebral body.
Access tools used in conjunction with the introducer drill may include an introducer assembly including an outer cannula and a sharpened stylet, an inner cannula configured to be introduced through the outer cannula, and/or one or more additional stylets, curettes, or drills to facilitate access to an intraosseous location within a vertebral body or other bone. The access tools (e.g., outer cannula, inner cannula, stylets, curettes, drills) may have pre-curved distal end portions or may be actively steerable or curveable. Any of the access tools may have beveled or otherwise sharp tips or they may have blunt or rounded, atraumatic distal tips. Any of the access tools may be inserted in a minimally-invasive manner (e.g., percutaneously or laparoscopically).
In some implementations, an outer cannula assembly (e.g., introducer assembly) includes a straight outer cannula and a straight stylet configured to be received within the outer cannula. The outer cannula assembly may be inserted first to penetrate an outer cortical shell of a bone and provide a conduit for further access tools (e.g., steerable, or curveable, introducer drill) to the inner cancellous bone. An inner cannula assembly may include a cannula having a pre-curved or steerable distal end portion and a stylet having a corresponding pre-curved or steerable distal end portion. Multiple stylets having distal end portions with different curvatures may be provided in a kit and selected from by a clinician. The inner cannula assembly may alternatively be configured to remain straight and non-curved.
In accordance with several embodiments, a kit or system of access tools may include a steerable, or curveable, introducer drill. The steerable, or curveable, introducer drill may advantageously facilitate access to a target treatment location of a terminus of a basivertebral nerve located approximately mid-body in a vertebral body (e.g., approximately 30%-50% across the sagittal vertebral body width and in a posterior half of the vertebral body or encompassing a geometric center of the vertebral body) along a curved trajectory after using a transpedicular access approach. The steerable, or curveable, introducer drill may advantageously be used in hard bone.
Hard bone may be determined based on bone mass density testing, compressive strength determinations, compressive modulus determinations, imaging modalities, or based on tactile feel by the operator as access instruments are being advanced. In some implementations, hard bone may be determined as bone having a bone mineral density score within a standard deviation of a normal healthy young adult (e.g., a T score greater than or equal to −1). In some implementations, hard bone may be identified as bone having a compressive strength of greater than 4 MPa and/or a compressive modulus of greater than 80 MPa for cancellous bone and greater than 5.5 MPa and/or a compressive modulus of greater than 170 MPa for cortical bone. Hard bone may be defined as non-osteopenic bone or non-osteoporotic bone.
In accordance with several embodiments, a target treatment region to be accessed for modulation (e.g., ablation, denervation, stimulation) of the basivertebral nerve 122 is located within the cancellous bone region 124 at a location posterior to a terminus or trunk (labeled as point “A” in
In one approach for accessing the basivertebral nerve, the patient's skin is penetrated with a surgical instrument which is then used to access the desired basivertebral nerves, i.e., percutaneously. In one embodiment, a transpedicular approach is used for penetrating the vertebral cortex to access the basivertebral nerve 122. A passageway 140 is created between one of the transverse processes 134 and the spinous process 136 through the pedicle 138 into the cancellous bone region 124 of the vertebral body 126 to access the target treatment region at or proximate to the terminus of the basivertebral nerve 122. In some vertebral bodies (e.g., vertebral bodies having hard bone or high-density bone or vertebral bodies at the lower lumbar levels or sacral levels) accessed transpedicularly, it may be difficult to obtain a curved trajectory to get to a desired target treatment region of the vertebral body 124 with instruments having pre-curved distal ends that are advanced through straight introducers and that cannot be actively steered or with straight access instruments. Accordingly, it may be advantageous according to several embodiments to include a steerable or curveable drill in a kit or system of access instruments to facilitate steeper curved trajectories to the targeted treatment region (for example, if the operator can tell that the density of the bone is going to be sufficiently dense or hard that additional steps and/or tools will be needed to obtain a desired curved trajectory to access a posterior portion (e.g., posterior half) of the vertebral body).
In accordance with several embodiments, the introducer drill 350 may comprise a single device configured to both penetrate a cortical outer shell of a bone along a straight trajectory and channel a path toward a target treatment location within an inner cancellous bone portion along a curved trajectory that can be adjusted or manipulated in real time. The illustrated embodiment of the drill 350 comprises a drill tip 352, a bushing 354, an outer tube 355, a drive shaft 356, a compression spring 357, an actuator 358, a rotational member 359, and a proximal housing 360. The illustrated drill tip 352 is pointed and includes top and/or side cutting flutes. The cutting flutes may have varying spacing, pitch, and widths as desired and/or required to facilitate bone drilling. A proximal end of the drill tip 352 is connected to the drive shaft 356. The drill tip 352 and drive shaft 256 may be made as a single integrated unitary component so as to prevent likelihood of separation or may comprise two separate components that are coupled or connected to each other during manufacturing (e.g., via welding, adhesive, and/or the like). The flutes may advantageously provide open volume for bone chips, fragments, or shards to be received therein. In some embodiments, the distal drill tip 352 is not a blade.
The bushing 354 is positioned between a proximal edge or surface of the drill tip 352 and a distal edge or surface of the outer tube 355. The bushing 354 may be adapted to guide, position and support the drive shaft 356 as it is rotated and curved, or bent, under compression and to protect the drive shaft 356 and pointed drill tip 352 from abrasion during bending and rotating. The drive shaft 356 may have a circular cross-sectional shape. The drive shaft 356 may have an elliptical cross-sectional shape. The bushing 354 may be made of steel or other high carbon metal or bronze or plastic (e.g., nylon). In some embodiments, the bushing 354 is substituted by or replaced with (or included in addition to) a thrust bearing and/or roller bearing. A thrust bearing (e.g., thrust ball bearing) may facilitate reduced wear on adjacent components and may help support axial loads. A roller bearing may include cylindrical- or barrel-shaped rolling elements as opposed to ball bearings to support loads (e.g., radial loads) and reduce friction. In some embodiments, the roller bearing comprises any cylindrical or spherical object that facilitates movement of and/or reduces wear from two adjacent components. The bushing 354 may cause rotation of the drive shaft 356 or may remain stationary with respect to rotation of the drive shaft 356.
The outer tube 355 concentrically and/or coaxially surrounds the drive shaft 356. A distal end portion 362 of the outer tube 355 comprises a segmented tube profile. The segmented tube portion 362 of the distal end portion of the outer tube 355 may include notches, slits, slots or apertures aligned on one side of the outer tube 355 and spaced apart and arranged so as to facilitate bending, steering, or articulating in a single, known, controlled direction. Accordingly, the outer tube 355 may advantageously bend or arc in one and only one lateral direction and such that the segmented tube portion 365 bends or arcs in a distal to proximal direction. The slots or slits may comprise transverse slots or slits. In other embodiments, the notches or slits or slots may be aligned on more than one side to facilitate bending in multiple directions (e.g., 2 opposite directions or omnidirectionally).
The proximal housing 360 of the outer tube 355 may include a visible indicator 361 (e.g., arrow head, marking) to indicate to the operator the single, known direction that the drill will bend or curve. A close-up side view of the segmented tube profile of the segmented tube portion 362 of the outer tube 355 is illustrated in
The compression spring 357 surrounds the drive shaft 356 and is mechanically coupled to the proximal end of the outer tube 355 and may be located within the housing 360 attached to the proximal end of the outer tube 355. The housing 360 may also include at least a portion of the actuator 358 operatively coupled to the drive shaft 356 that is adapted to add tension to or remove tension from the drive shaft 356. The actuator 358 may comprise a lever or other mechanism (e.g., pull wire assembly, slider, trigger, rotational member), adapted to add or remove tension to facilitate bending or curving of the segmented tube portion 362 of the outer tube 355, and thus the entire drill 350.
A pull wire assembly may include one or more pull wires extending from the proximal handle 360 to a distal end of the outer tube 355. The one or more pull wires may be tensioned to cause bending and relaxed to allow the outer tube 355 to straighten. The pull wires may provide axial force toward the proximal handle 360. The one or more pull wires may be adhered or welded to the distal end of the outer tube 355. A slider may be operably coupled to the segmented tube portion 362 such that sliding of the slide in one direction causes bending of the segmented tube portion 362 and sliding of the slider in the opposite direction causes straightening of the segmented tube portion 362. A trigger may be operably coupled to the segmented tube portion 362 such that actuation of the trigger (e.g., pressing or pulling the trigger) causes bending of the segmented tube portion 362 and releasing the trigger causes straightening of the segmented tube portion 362. A rotational member (e.g. thumb or finger wheel, crank, or knob) may be operably coupled to the segmented tube portion 362 such that rotation of the rotational member in a first rotational direction (e.g., clockwise) causes bending of the segmented tube portion 362 and rotation of the rotational member in an opposite rotational direction (e.g., counter-clockwise) causes straightening of the segmented tube portion 362. In some implementations, the slider, trigger, or rotational member may be used in conjunction with a pull wire assembly.
The proximal end of the drive shaft 356 is mechanically coupled to the rotational paddle 359 or other structural member adapted to be acted upon to cause rotation of the drive shaft 356. The rotational member 359 may comprise a paddle, wheel, crank, knob, handle, enlarged tip, or other structure adapted to be rotated manually by an operator (e.g., a clinician or surgeon) or automatically (e.g., via a motor of a robotic system) without manual operator contact. In some embodiments, the drive shaft 356 does not have a lumen and does not include a stiffening wire adapted for insertion within the lumen of the drive shaft. In some embodiments, the drive shaft has a lumen to facilitate introduction or circulation of cooling fluid via closed loop fluid circulation system.
The drill 350 may be initially inserted into bone (e.g., a vertebral body) through an introducer cannula (not shown) in a default straight configuration with no tension applied on the drive shaft 356. The insertion may be performed while rotating the rotational member 359. Because the outer tube 355 is shape set in a straight configuration, the drill 350 should naturally hold this straight configuration even when unconstrained. Once the drill tip 352 has been initially inserted into the bone (e.g., vertebral body), the actuator 358 may be actuated to provide tension on the drive shaft 356, which causes compression on the segmented tube portion 362 of the outer tube 355. This action causes the drill 350 to attempt to collapse the segments of the segmented tube portion 362 of the outer tube 355 and lean (e.g., bend, arc, steer, or articulate) into a curved shape (e.g., in a distal-to-proximal configuration). The compression spring 357 takes up lateral forces that are unable to be used to curve the drill 350 (such as because the drill 350 is constricted in an introducer cannula or in hard, high-density bone). The fully curved angle may be in a range between 20 degrees and 90 degrees (e.g., between 20 degrees and 60 degrees, between 40 degrees and 70 degrees, between 30 degrees and 80 degrees, between 35 degrees and 75 degrees, between 50 degrees and 90 degrees, between 30 degrees and 70 degrees, between 45 degrees and 65 degrees, overlapping ranges thereof, or any value within the recited ranges).
In some embodiments, the drill 350 may optionally include a second tube 353 (e.g., inner tube) attached (e.g., welded or bonded) to the distal end of the drive shaft 356. The second tube 353 is illustrated with dotted lines in
The drill 350 may then either be manually advanced forward with axial pressure while the drive shaft 356 is rotated or an automated separate mechanism (such as a robotic surgical system) can provide the axial pressure. As the drill 350 advances within the bone, the drill 350 moves forward and reduces its radius of curvature as it is deployed (and as a result, the compression spring 357 relaxes). The actuator 358 may be adjusted to adjust the radius of curvature during advancement. The radius of curvature may be actively controlled and monitored under visualization. In accordance with several embodiments, advancement may be performed while using fluoroscopy or other imaging modalities to facilitate access along a desired trajectory to the desired target treatment and/or diagnostic location.
Once fully deployed, the actuator 358 can be caused to relieve tension on the drive shaft 356, thereby allowing the outer tube 355 to straighten as the drill 350 is removed from the bone (e.g., vertebral body). This straightening may advantageously help prevent, or reduce the likelihood of, the segments of the segmented tube portion 362 of the outer tube 355 from catching on the introducer cannula as force is applied on the opposite side of the outer tube 355. In some embodiments, the compression spring 357 may be replaced with a hydraulic or pneumatic mechanism. The hydraulic or pneumatic mechanism may serve to provide a similar function as the mechanical compression spring 357.
The drill tip 352 may or may not include cutting flutes. A distal end portion of the outer tube 355 of the drill 350′ may include the segmented tube portion 362 described in connection with
The drill 350 may include one or more electrical leads or wires electrically coupled between a connector adapted to electrically interface with a radiofrequency generator and the drill tip 352 so as to allow for the drill 350 to deliver radiofrequency energy sufficient to modulate (e.g., ablate, stimulate, denervate) tissue (e.g., bone tissue, nerves, tumor tissue). For example, the drill 350 may advantageously be used to both access a desired target treatment location within bone and ablate nerves or tumors within the bone.
Applying ablative radiofrequency energy to the target treatment location within the bone may be performed according to the following example treatment parameters: a frequency between 400 kHz and 600 kHz (e.g., between 400 kHz and 500 kHz, between 450 kHz and 500 kHz, between 470 kHz and 490 kHz, between 500 kHz and 600 kHz, overlapping ranges thereof, or any value within the recited ranges); a target temperature of between 60 degrees Celsius and 90 degrees Celsius (e.g., between 60 degrees Celsius and 80 degrees Celsius, between 65 degrees Celsius and 75 degrees Celsius, between 70 degrees Celsius and 80 degrees Celsius, between 80 degrees Celsius and 90 degrees Celsius, overlapping ranges thereof, 70 degrees Celsius, 75 degrees Celsius, 80 degrees Celsius, 85 degrees Celsius, 90 degrees Celsius or any other value within the recited ranges); a temperature ramp of between 0.5 and 3 degrees Celsius per second (e.g., 0.5 degree Celsius per second, 1 degree Celsius per second, 1.5 degrees Celsius per second, 2 degrees Celsius per second, 2.5 degrees Celsius per second, 3 degrees Celsius per second); and an active energy delivery time of between 1 minute and 20 minutes (e.g., between 1 minute and 5 minutes, between 2 minutes and 10 minutes, between 4 minutes and 8 minutes, between 5 minutes and 10 minutes, between 5 minutes and 15 minutes, between 10 minutes and 20 minutes, overlapping ranges thereof, 5 minutes, 10 minutes, 12, minutes, 14 minutes, 15 minutes, 16 minutes, 18 minutes, 20 minutes, or any value within the recited ranges).
In some implementations, a target ablation zone has a major diameter along a long axis of between 20 mm and 30 mm and a minor diameter along a short axis of between 5 mm and 15 mm. In some implementations, the target ablation zone generally comprises a 1 cm sphere. The lesion may form an elliptical shape or other controlled lesion shape as desired and/or required.
In some implementations, no active cooling is provided. In other implementations, cooling fluid may be circulated through one or more internal lumens surrounding the drive shaft 356. The drill 350′ may include one or more temperature sensors (e.g., thermocouples, thermistors) configured to monitor temperature at one or more locations along the drill 350′. The drills 350, 350′ may include one or more sensors configured to provide stimulation to sense a presence or location of nerves within bone (e.g., basivertebral nerve within a vertebral body or nerves adjacent a pedicle of a vertebra).
In some implementations, the drill 350′ is configured to operate as a monopolar electrode. For example, an electrical lead may only be coupled to the conductive portion 363 and not to the drill tip 352 and a ground pad may be used as the second electrode. The drill 350 may additionally or alternatively be used to provide stimulation energy to facilitate confirmation of nerve ablation or to help identify locations of nerves within the bone to facilitate identification of the desired target treatment region.
In some implementations, the steerable drill comprises various features that are present as single features (as opposed to multiple features). For example, in one embodiment, the drill includes a single electrode. A single thermocouple (or other means for measuring temperature) may also be included. Multiple features or components are provided in alternate embodiments.
Although certain embodiments and examples have been described herein, aspects of the methods and devices shown and described in the present disclosure may be differently combined and/or modified to form still further embodiments. Additionally, the methods described herein may be practiced using any device suitable for performing the recited steps. Further, the disclosure (including the figures) herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Any section headings used herein are merely provided to enhance readability and are not intended to limit the scope of the embodiments disclosed in a particular section to the features or elements disclosed in that section.
While the embodiments are susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the embodiments are not to be limited to the particular forms or methods disclosed, but to the contrary, the embodiments are to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication.
The terms “top,” “bottom,” “first.” “second.” “upper.” “lower,” “height.” “width,” “length,” “end,” “side,” “horizontal,” “vertical,” and similar terms may be used herein; it should be understood that these terms have reference only to the structures shown in the figures and are utilized only to facilitate describing embodiments of the disclosure. Various embodiments of the disclosure have been presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. The ranges disclosed herein encompass any and all overlap, sub-ranges, and combinations thereof, as well as individual numerical values within that range. For example, description of a range such as from 20 to 90 degrees should be considered to have specifically disclosed subranges such as from 20 to 40 degrees, from 30 to 60 degrees, from 45 to 75 degrees, from 80 to 90 degrees etc., as well as individual numbers within that range, for example, 20, 30, 40, 45, 90, 40.5, 60.5 and any whole and partial increments therebetween. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “approximately 30-50%” includes 30% and 50%. The terms “generally” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result.
This application claims priority to U.S. Provisional Application No. 63/084,381 filed Sep. 28, 2020, the entire content of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3054881 | Metz et al. | Sep 1962 | A |
3062876 | Pons, Jr. et al. | Nov 1962 | A |
3565062 | Kuris | Feb 1971 | A |
3822708 | Zilber | Jul 1974 | A |
3845771 | Vise | Nov 1974 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3938502 | Bom | Feb 1976 | A |
3997408 | MacKew | Aug 1976 | A |
4044774 | Corgin et al. | Aug 1977 | A |
4116198 | Roos | Sep 1978 | A |
4311154 | Sterzer et al. | Jan 1982 | A |
4312364 | Convert et al. | Jan 1982 | A |
4378806 | Henley-Cohn | Apr 1983 | A |
4448198 | Turner | May 1984 | A |
4449528 | Auth et al. | May 1984 | A |
4462408 | Silverstein et al. | Jul 1984 | A |
4528979 | Marchenko et al. | Jul 1985 | A |
4530360 | Durate | Jul 1985 | A |
4541423 | Barber | Sep 1985 | A |
4569351 | Tang | Feb 1986 | A |
4573448 | Kambin | Mar 1986 | A |
4586512 | Do-huu | May 1986 | A |
4601296 | Yerushalmi | Jul 1986 | A |
4612940 | Kasevich et al. | Sep 1986 | A |
4657017 | Sorochenko | Apr 1987 | A |
4662383 | Sogawa et al. | May 1987 | A |
4671293 | Shalov | Jun 1987 | A |
4676258 | Inokuchi et al. | Jun 1987 | A |
4679561 | Doss | Jul 1987 | A |
4681122 | Winters et al. | Jul 1987 | A |
4750499 | Hoffer | Jun 1988 | A |
4754757 | Feucht | Jul 1988 | A |
4757820 | Itoh | Jul 1988 | A |
4774967 | Zanakis et al. | Oct 1988 | A |
4800899 | Elliott | Jan 1989 | A |
4813429 | Eshel et al. | Mar 1989 | A |
4841977 | Griffith et al. | Jun 1989 | A |
4907589 | Cosman | Mar 1990 | A |
4924863 | Sterzer | May 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4941466 | Romano | Jul 1990 | A |
4950267 | Ishibara et al. | Aug 1990 | A |
4951677 | Crowley et al. | Aug 1990 | A |
4955377 | Lennox et al. | Sep 1990 | A |
4959063 | Kojima | Sep 1990 | A |
4961435 | Kitagawa et al. | Oct 1990 | A |
4963142 | Loertscher | Oct 1990 | A |
4966144 | Rochkind et al. | Oct 1990 | A |
4967765 | Turner et al. | Nov 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
4977902 | Sekino et al. | Dec 1990 | A |
5000185 | Yock | Mar 1991 | A |
5002058 | Marinelli | Mar 1991 | A |
5002059 | Crowley et al. | Mar 1991 | A |
5007437 | Sterzer | Apr 1991 | A |
5025778 | Silverstein et al. | Jun 1991 | A |
5031618 | Mullett | Jul 1991 | A |
5061266 | Hakky | Oct 1991 | A |
5070879 | Herres | Dec 1991 | A |
RE33791 | Carr | Jan 1992 | E |
5078736 | Behl | Jan 1992 | A |
5080660 | Buelna | Jan 1992 | A |
5084043 | Hertzmann et al. | Jan 1992 | A |
5090414 | Takano | Feb 1992 | A |
5098431 | Rydell | Mar 1992 | A |
5106376 | Mononen et al. | Apr 1992 | A |
5108404 | Scholten et al. | Apr 1992 | A |
5131397 | Crowley et al. | Jul 1992 | A |
5147355 | Friedman et al. | Sep 1992 | A |
5156157 | Valenta, Jr. et al. | Oct 1992 | A |
5158536 | Sekins et al. | Oct 1992 | A |
5161533 | Prass et al. | Nov 1992 | A |
5167231 | Matsui | Dec 1992 | A |
5186177 | O'Donnell et al. | Feb 1993 | A |
5190540 | Lee | Mar 1993 | A |
5190546 | Jervis | Mar 1993 | A |
5201729 | Hertzmann et al. | Apr 1993 | A |
5207672 | Martinelli et al. | May 1993 | A |
5209748 | Daikuzono | May 1993 | A |
5222953 | Dowlatsbabi | Jun 1993 | A |
5226430 | Spear et al. | Jul 1993 | A |
5242439 | Larsen et al. | Sep 1993 | A |
5255679 | Imran | Oct 1993 | A |
5271408 | Breyer et al. | Dec 1993 | A |
5273026 | Wilk | Dec 1993 | A |
5281213 | Milder et al. | Jan 1994 | A |
5281215 | Milder et al. | Jan 1994 | A |
5282468 | Klepinski | Feb 1994 | A |
5292321 | Lee | Mar 1994 | A |
5295484 | Marcus et al. | Mar 1994 | A |
5300085 | Yock | Apr 1994 | A |
5304214 | DeFord et al. | Apr 1994 | A |
5305756 | Entrekin et al. | Apr 1994 | A |
5314463 | Camps et al. | May 1994 | A |
5320617 | Leach | Jun 1994 | A |
5324255 | Pasafaro et al. | Jun 1994 | A |
5325860 | Seward et al. | Jul 1994 | A |
5342292 | Nita et al. | Aug 1994 | A |
5342357 | Nardella | Aug 1994 | A |
5342409 | Mullett | Aug 1994 | A |
5344435 | Turner et al. | Sep 1994 | A |
5345940 | Seward et al. | Sep 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5350377 | Winston et al. | Sep 1994 | A |
5351691 | Brommersma | Oct 1994 | A |
5366443 | Eggers et al. | Nov 1994 | A |
5366490 | Edwards et al. | Nov 1994 | A |
5368031 | Cline et al. | Nov 1994 | A |
5368035 | Hamm et al. | Nov 1994 | A |
5368557 | Nita et al. | Nov 1994 | A |
5368558 | Nita | Nov 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5370678 | Edwards et al. | Dec 1994 | A |
5372138 | Crowley et al. | Dec 1994 | A |
5374265 | Sand | Dec 1994 | A |
5383876 | Nardella | Jan 1995 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5385544 | Edwards et al. | Jan 1995 | A |
5391197 | Burdette et al. | Feb 1995 | A |
5391199 | Ben-Haim | Feb 1995 | A |
5405376 | Mulier et al. | Apr 1995 | A |
5411527 | Alt | May 1995 | A |
5417719 | Hull et al. | May 1995 | A |
5419767 | Eggers et al. | May 1995 | A |
5421338 | Crowley | Jun 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
D361555 | Bettin et al. | Aug 1995 | S |
5437661 | Rieser | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5441527 | Erickson et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5447509 | Millis et al. | Sep 1995 | A |
5449380 | Chin | Sep 1995 | A |
5454373 | Koger et al. | Oct 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5472441 | Edwards et al. | Dec 1995 | A |
5474530 | Passafaro et al. | Dec 1995 | A |
5484432 | Sand | Jan 1996 | A |
5486170 | Winston et al. | Jan 1996 | A |
5501703 | Holsheimer et al. | Mar 1996 | A |
5505730 | Edwarrds | Apr 1996 | A |
5514130 | Baker | May 1996 | A |
5524624 | Tepper et al. | Jun 1996 | A |
5526815 | Granz et al. | Jun 1996 | A |
5529580 | Hagino et al. | Jun 1996 | A |
5540679 | Fram et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5545161 | Imran | Aug 1996 | A |
5560362 | Silwa, Jr. et al. | Oct 1996 | A |
5565005 | Erickson et al. | Oct 1996 | A |
5569242 | Lax et al. | Oct 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5575772 | Lennox | Nov 1996 | A |
5575788 | Baker et al. | Nov 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5596988 | Markle et al. | Jan 1997 | A |
5601526 | Chapelon et al. | Feb 1997 | A |
5606974 | Castellano et al. | Mar 1997 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5620479 | Diederich | Apr 1997 | A |
5628317 | Starkebaum et al. | May 1997 | A |
5630426 | Shmulewitz et al. | May 1997 | A |
5630837 | Crowley | May 1997 | A |
5643319 | Green et al. | Jul 1997 | A |
5643330 | Holshiemer et al. | Jul 1997 | A |
5647361 | Damadian | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5672173 | Gough et al. | Sep 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5685839 | Baker et al. | Nov 1997 | A |
5687729 | Schaetzle | Nov 1997 | A |
5688267 | Panescu | Nov 1997 | A |
5693052 | Weaver | Dec 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5697927 | Imran et al. | Dec 1997 | A |
5700262 | Acosta et al. | Dec 1997 | A |
5718231 | Chen et al. | Feb 1998 | A |
5720286 | Chapelon et al. | Feb 1998 | A |
5720287 | Chapelon et al. | Feb 1998 | A |
5722403 | McGee et al. | Mar 1998 | A |
5725494 | Brisken | Mar 1998 | A |
5728062 | Brisken | Mar 1998 | A |
5730706 | Garnies | Mar 1998 | A |
5733315 | Burdette et al. | Mar 1998 | A |
5735280 | Sherman et al. | Apr 1998 | A |
5735811 | Brisken | Apr 1998 | A |
5735846 | Fleischman et al. | Apr 1998 | A |
5735847 | Gough et al. | Apr 1998 | A |
5738680 | Mueller et al. | Apr 1998 | A |
5741249 | Moss et al. | Apr 1998 | A |
5743904 | Edwards | Apr 1998 | A |
5746737 | Saadat | May 1998 | A |
5752969 | Cunci et al. | May 1998 | A |
5755663 | Johnson et al. | May 1998 | A |
5762066 | Law et al. | Jun 1998 | A |
5762616 | Talish | Jun 1998 | A |
5766153 | Eggers et al. | Jun 1998 | A |
5766231 | Erickson et al. | Jun 1998 | A |
5776092 | Farin et al. | Jul 1998 | A |
5785705 | Baker | Jul 1998 | A |
5800378 | Edwards et al. | Sep 1998 | A |
5800429 | Edwards | Sep 1998 | A |
5800432 | Swanson | Sep 1998 | A |
5807237 | Tindel | Sep 1998 | A |
5807391 | Wijkamp | Sep 1998 | A |
5807392 | Eggers | Sep 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5817021 | Reichenberger | Oct 1998 | A |
5824021 | Rise | Oct 1998 | A |
5840031 | Crowley | Nov 1998 | A |
5843019 | Eggers et al. | Dec 1998 | A |
5843021 | Edwards et al. | Dec 1998 | A |
5844092 | Presta et al. | Dec 1998 | A |
5846218 | Brisken et al. | Dec 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5855576 | LeVeen et al. | Jan 1999 | A |
5860951 | Eggers et al. | Jan 1999 | A |
5865788 | Edwards et al. | Feb 1999 | A |
5865801 | Houser | Feb 1999 | A |
5868740 | LeVeen et al. | Feb 1999 | A |
5871469 | Eggers et al. | Feb 1999 | A |
5871470 | McWha | Feb 1999 | A |
5871481 | Kannenberg et al. | Feb 1999 | A |
5873855 | Eggers et al. | Feb 1999 | A |
5873877 | McGaffigan et al. | Feb 1999 | A |
5876398 | Mulier et al. | Mar 1999 | A |
5888198 | Eggers et al. | Mar 1999 | A |
5891095 | Eggers et al. | Apr 1999 | A |
5895370 | Edwards et al. | Apr 1999 | A |
5902272 | Eggers et al. | May 1999 | A |
5902308 | Murphy | May 1999 | A |
5904681 | West, Jr. | May 1999 | A |
5906613 | Mulier et al. | May 1999 | A |
5916213 | Haissaguerre et al. | Jun 1999 | A |
5916214 | Cosio | Jun 1999 | A |
5919188 | Shearon et al. | Jul 1999 | A |
5931805 | Brisken | Aug 1999 | A |
5935123 | Edwards et al. | Aug 1999 | A |
5938582 | Ciamacco et al. | Aug 1999 | A |
5941722 | Then | Aug 1999 | A |
5941876 | Nardella et al. | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5948007 | Starkebaum et al. | Sep 1999 | A |
5948008 | Daikuzono | Sep 1999 | A |
5954716 | Sharkey et al. | Sep 1999 | A |
5964727 | Edwards et al. | Oct 1999 | A |
5967988 | Briscoe et al. | Oct 1999 | A |
5972015 | Scribner et al. | Oct 1999 | A |
5976105 | Marcove et al. | Nov 1999 | A |
5983141 | Sluijter et al. | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
6001095 | de la Rama et al. | Dec 1999 | A |
6007533 | Casscells et al. | Dec 1999 | A |
6007570 | Sharkey et al. | Dec 1999 | A |
6012457 | Lesh | Jan 2000 | A |
6014588 | Fitz | Jan 2000 | A |
6016452 | Kasevich | Jan 2000 | A |
6016809 | Mulier et al. | Jan 2000 | A |
6017356 | Frederick et al. | Jan 2000 | A |
6019776 | Preissman et al. | Feb 2000 | A |
6022334 | Edwards et al. | Feb 2000 | A |
6024733 | Eggers et al. | Feb 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6030374 | McDaniel | Feb 2000 | A |
6030402 | Thompson et al. | Feb 2000 | A |
6032673 | Langberg et al. | Mar 2000 | A |
6032674 | Eggers et al. | Mar 2000 | A |
6033411 | Preissman et al. | Mar 2000 | A |
6035238 | Ingle et al. | Mar 2000 | A |
6038480 | Hrdlicka et al. | Mar 2000 | A |
6045532 | Eggers et al. | Apr 2000 | A |
6046187 | Berde et al. | Apr 2000 | A |
6047214 | Mueller et al. | Apr 2000 | A |
6050995 | Durgin | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6053909 | Shadduck | Apr 2000 | A |
6056745 | Panescu et al. | May 2000 | A |
6063078 | Wittkampf | May 2000 | A |
6063079 | Hovda et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6066139 | Ryan et al. | May 2000 | A |
6068642 | Johnson et al. | May 2000 | A |
6071279 | Whayne et al. | Jun 2000 | A |
6073051 | Sharkey et al. | Jun 2000 | A |
6074352 | Hynynen et al. | Jun 2000 | A |
6086585 | Hovda et al. | Jul 2000 | A |
6090105 | Zepeda et al. | Jul 2000 | A |
6095149 | Sharkey et al. | Aug 2000 | A |
6099499 | Ciamacco | Aug 2000 | A |
6099514 | Sharkey et al. | Aug 2000 | A |
6099524 | Lipson et al. | Aug 2000 | A |
6102046 | Weinstein et al. | Aug 2000 | A |
6104957 | Alo et al. | Aug 2000 | A |
6105581 | Eggers et al. | Aug 2000 | A |
6106454 | Berg et al. | Aug 2000 | A |
6109268 | Thapliyal et al. | Aug 2000 | A |
6112122 | Schwardt et al. | Aug 2000 | A |
6113597 | Eggers et al. | Sep 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6117109 | Eggers et al. | Sep 2000 | A |
6117128 | Gregory | Sep 2000 | A |
6120467 | Schallhorn | Sep 2000 | A |
6120502 | Michelson | Sep 2000 | A |
6122549 | Sharkey et al. | Sep 2000 | A |
6126682 | Ashley et al. | Oct 2000 | A |
6137209 | Dahlberg et al. | Oct 2000 | A |
6139545 | Utley et al. | Oct 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6143019 | Motamedi et al. | Nov 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6159194 | Eggers et al. | Dec 2000 | A |
6159208 | Hovda et al. | Dec 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6165172 | Farley et al. | Dec 2000 | A |
6168593 | Sbarkey et al. | Jan 2001 | B1 |
6169924 | Meloy et al. | Jan 2001 | B1 |
6171239 | Humphrey | Jan 2001 | B1 |
6176857 | Ashley | Jan 2001 | B1 |
6179824 | Eggers et al. | Jan 2001 | B1 |
6179836 | Eggers et al. | Jan 2001 | B1 |
6179858 | Squire et al. | Jan 2001 | B1 |
6183469 | Thapliyal et al. | Feb 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6190383 | Schmaltz et al. | Feb 2001 | B1 |
6193715 | Wrublewski et al. | Feb 2001 | B1 |
6203542 | Ellsberry et al. | Mar 2001 | B1 |
6206842 | Tu et al. | Mar 2001 | B1 |
6210393 | Brisken | Apr 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210415 | Bester | Apr 2001 | B1 |
6216704 | Ingle et al. | Apr 2001 | B1 |
6221038 | Brisken | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6228046 | Brisken | May 2001 | B1 |
6228078 | Eggers et al. | May 2001 | B1 |
6228082 | Baker et al. | May 2001 | B1 |
6231516 | Keilman et al. | May 2001 | B1 |
6231528 | Kaufman et al. | May 2001 | B1 |
6231571 | Ellman et al. | May 2001 | B1 |
6231615 | Preissman | May 2001 | B1 |
6233488 | Hess | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6235022 | Hallock et al. | May 2001 | B1 |
6235024 | Tu | May 2001 | B1 |
6237604 | Burnside et al. | May 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6238393 | Mulier et al. | May 2001 | B1 |
6241665 | Negus et al. | Jun 2001 | B1 |
6241725 | Cosman | Jun 2001 | B1 |
6241734 | Scribner et al. | Jun 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6248110 | Reiley et al. | Jun 2001 | B1 |
6248345 | Goldenheim et al. | Jun 2001 | B1 |
6254553 | Lidgren et al. | Jul 2001 | B1 |
6254599 | Lesh et al. | Jul 2001 | B1 |
6254600 | Willink et al. | Jul 2001 | B1 |
6258086 | Ashley et al. | Jul 2001 | B1 |
6259952 | Sluijter | Jul 2001 | B1 |
6261311 | Sharkey et al. | Jul 2001 | B1 |
6264650 | Hovda et al. | Jul 2001 | B1 |
6264651 | Underwood et al. | Jul 2001 | B1 |
6264652 | Eggers et al. | Jul 2001 | B1 |
6264659 | Ross et al. | Jul 2001 | B1 |
6267770 | Truwit | Jul 2001 | B1 |
6270498 | Michelson | Aug 2001 | B1 |
6277112 | Underwood et al. | Aug 2001 | B1 |
6277122 | McGahan et al. | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6280456 | Scribner et al. | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
6287114 | Meller et al. | Sep 2001 | B1 |
6287272 | Brisken et al. | Sep 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6290715 | Sharkey et al. | Sep 2001 | B1 |
6292699 | Simon et al. | Sep 2001 | B1 |
6296619 | Brisken et al. | Oct 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6296638 | Davison et al. | Oct 2001 | B1 |
6305378 | Lesh et al. | Oct 2001 | B1 |
6309387 | Eggers et al. | Oct 2001 | B1 |
6309420 | Preissman | Oct 2001 | B1 |
6312408 | Eggers et al. | Nov 2001 | B1 |
6312425 | Simpson et al. | Nov 2001 | B1 |
6312426 | Goldberg et al. | Nov 2001 | B1 |
6319241 | King et al. | Nov 2001 | B1 |
6322549 | Eggers et al. | Nov 2001 | B1 |
6348055 | Preissman | Feb 2002 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6356790 | Maguire et al. | Mar 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6363937 | Hovda et al. | Apr 2002 | B1 |
6368292 | Ogden et al. | Apr 2002 | B1 |
6379351 | Thapliyal et al. | Apr 2002 | B1 |
6383190 | Preissman | May 2002 | B1 |
6391025 | Weinstein et al. | May 2002 | B1 |
6398782 | Pecor et al. | Jun 2002 | B1 |
6416507 | Eggers et al. | Jul 2002 | B1 |
6416508 | Eggers et al. | Jul 2002 | B1 |
6423057 | He et al. | Jul 2002 | B1 |
6423059 | Hanson et al. | Jul 2002 | B1 |
6425887 | McGuckin et al. | Jul 2002 | B1 |
6426339 | Berde et al. | Jul 2002 | B1 |
6428491 | Weiss | Aug 2002 | B1 |
6432103 | Ellsberry et al. | Aug 2002 | B1 |
6436060 | Talish | Aug 2002 | B1 |
6436098 | Michelson | Aug 2002 | B1 |
6440138 | Reiley et al. | Aug 2002 | B1 |
6447448 | Ishikawa et al. | Sep 2002 | B1 |
6451013 | Bays et al. | Sep 2002 | B1 |
6454727 | Bubank et al. | Sep 2002 | B1 |
6461350 | Underwood et al. | Oct 2002 | B1 |
6461354 | Olsen et al. | Oct 2002 | B1 |
6464695 | Hovda et al. | Oct 2002 | B2 |
6468270 | Hovda et al. | Oct 2002 | B1 |
6468274 | Alleyne et al. | Oct 2002 | B1 |
6470220 | Kraus et al. | Oct 2002 | B1 |
6478793 | Cosman et al. | Nov 2002 | B1 |
6482201 | Olsen et al. | Nov 2002 | B1 |
6485271 | Tack | Nov 2002 | B1 |
6487446 | Hill et al. | Nov 2002 | B1 |
6491893 | Babich | Dec 2002 | B1 |
6493592 | Leonard et al. | Dec 2002 | B1 |
6494902 | Hoey et al. | Dec 2002 | B2 |
6500173 | Underwood et al. | Dec 2002 | B2 |
6505075 | Weiner | Jan 2003 | B1 |
6508839 | Lambrecht et al. | Jan 2003 | B1 |
6524261 | Talish et al. | Feb 2003 | B2 |
6527759 | Tachibana et al. | Mar 2003 | B1 |
6537306 | Burdette et al. | Mar 2003 | B1 |
6540741 | Underwood et al. | Apr 2003 | B1 |
6544261 | Ellsberry et al. | Apr 2003 | B2 |
6557559 | Eggers et al. | May 2003 | B1 |
6558385 | McClurken et al. | May 2003 | B1 |
6558390 | Cragg | May 2003 | B2 |
6560486 | Osorio et al. | May 2003 | B1 |
6562033 | Shah et al. | May 2003 | B2 |
6575919 | Reiley et al. | Jun 2003 | B1 |
6575968 | Eggers et al. | Jun 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6575979 | Cragg | Jun 2003 | B1 |
6578579 | Burnside et al. | Jun 2003 | B2 |
6582423 | Thapliyal et al. | Jun 2003 | B1 |
6585656 | Masters | Jul 2003 | B2 |
6589237 | Woloszko et al. | Jul 2003 | B2 |
6592559 | Pakter et al. | Jul 2003 | B1 |
6595990 | Weinstein et al. | Jul 2003 | B1 |
6599288 | Maguire et al. | Jul 2003 | B2 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6604003 | Fredricks et al. | Aug 2003 | B2 |
6607502 | Maguire et al. | Aug 2003 | B1 |
6607529 | Jones et al. | Aug 2003 | B1 |
6608502 | Aoki et al. | Aug 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623505 | Scribner et al. | Sep 2003 | B2 |
6632193 | Davison et al. | Oct 2003 | B1 |
6632220 | Eggers et al. | Oct 2003 | B1 |
6645202 | Pless et al. | Nov 2003 | B1 |
6648883 | Francischelli et al. | Nov 2003 | B2 |
6651669 | Burnside | Nov 2003 | B1 |
6659106 | Hovda et al. | Dec 2003 | B1 |
6663627 | Francischelli et al. | Dec 2003 | B2 |
6663647 | Reiley et al. | Dec 2003 | B2 |
6673063 | Brett | Jan 2004 | B2 |
6689086 | Nita et al. | Feb 2004 | B1 |
6689125 | Keith et al. | Feb 2004 | B1 |
6692450 | Coleman | Feb 2004 | B1 |
6699240 | Francischelli | Mar 2004 | B2 |
6699242 | Heggeness | Mar 2004 | B2 |
6709432 | Ferek-Patric | Mar 2004 | B2 |
6718208 | Hill et al. | Apr 2004 | B2 |
6719761 | Reiley et al. | Apr 2004 | B1 |
6723087 | O'Neill et al. | Apr 2004 | B2 |
6723094 | Desinger | Apr 2004 | B1 |
6726684 | Woloszko et al. | Apr 2004 | B1 |
6736810 | Hoey et al. | May 2004 | B2 |
6745079 | King | Jun 2004 | B2 |
6746447 | Davison et al. | Jun 2004 | B2 |
6746451 | Middleton et al. | Jun 2004 | B2 |
6749604 | Eggers et al. | Jun 2004 | B1 |
6758846 | Goble et al. | Jul 2004 | B2 |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6772012 | Ricart et al. | Aug 2004 | B2 |
6773431 | Eggers et al. | Aug 2004 | B2 |
6795737 | Gielen et al. | Sep 2004 | B2 |
6805697 | Helm et al. | Oct 2004 | B1 |
6827715 | Francischelli et al. | Dec 2004 | B2 |
6827716 | Ryan et al. | Dec 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6852091 | Edwards et al. | Feb 2005 | B2 |
6863672 | Reiley et al. | Mar 2005 | B2 |
6875219 | Arramon et al. | Apr 2005 | B2 |
6881214 | Cosman et al. | Apr 2005 | B2 |
6896674 | Woloszko et al. | May 2005 | B1 |
6896675 | Leung et al. | May 2005 | B2 |
6907884 | Pellegrino et al. | Jun 2005 | B2 |
6915806 | Pacek et al. | Jul 2005 | B2 |
6922579 | Taimisto et al. | Jul 2005 | B2 |
6923813 | Phillips et al. | Aug 2005 | B2 |
6936046 | Hissong et al. | Aug 2005 | B2 |
6955674 | Eick et al. | Oct 2005 | B2 |
6960204 | Eggers et al. | Nov 2005 | B2 |
6962589 | Mulier et al. | Nov 2005 | B2 |
6974453 | Woloszko et al. | Dec 2005 | B2 |
6980849 | Sasso | Dec 2005 | B2 |
6981981 | Reiley et al. | Jan 2006 | B2 |
6989010 | Francischelli et al. | Jan 2006 | B2 |
6997941 | Sharkey et al. | Feb 2006 | B2 |
7001383 | Keidar | Feb 2006 | B2 |
7041096 | Malis et al. | May 2006 | B2 |
7044954 | Reiley et al. | May 2006 | B2 |
7048743 | Miller et al. | May 2006 | B2 |
7065408 | Herman et al. | Jun 2006 | B2 |
7081122 | Reiley et al. | Jul 2006 | B1 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7094215 | Davison et al. | Aug 2006 | B2 |
7104989 | Skarda | Sep 2006 | B2 |
7118574 | Patel et al. | Oct 2006 | B2 |
7131969 | Hovda et al. | Nov 2006 | B1 |
7153307 | Scribner et al. | Dec 2006 | B2 |
7163536 | Godara | Jan 2007 | B2 |
7177678 | Osorio et al. | Feb 2007 | B1 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7186234 | Dahla et al. | Mar 2007 | B2 |
7192428 | Eggers et al. | Mar 2007 | B2 |
7201731 | Lundquist et al. | Apr 2007 | B1 |
7201750 | Eggers et al. | Apr 2007 | B1 |
7211055 | Diederich et al. | May 2007 | B2 |
7217268 | Eggers et al. | May 2007 | B2 |
7238184 | Megerman et al. | Jul 2007 | B2 |
7241297 | Shaolian et al. | Jul 2007 | B2 |
7250048 | Francischelli et al. | Jul 2007 | B2 |
7258690 | Sutton et al. | Aug 2007 | B2 |
7270659 | Ricart et al. | Sep 2007 | B2 |
7270661 | Dahla et al. | Sep 2007 | B2 |
7276063 | Davison et al. | Oct 2007 | B2 |
7294127 | Leung et al. | Nov 2007 | B2 |
7305264 | Larson et al. | Dec 2007 | B2 |
7306596 | Hillier et al. | Dec 2007 | B2 |
7306598 | Truckai et al. | Dec 2007 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7318826 | Teitelbaum et al. | Jan 2008 | B2 |
7326203 | Papineau et al. | Feb 2008 | B2 |
7331956 | Hovda et al. | Feb 2008 | B2 |
7331957 | Woloszko et al. | Feb 2008 | B2 |
RE40156 | Sharps et al. | Mar 2008 | E |
7346391 | Osorio et al. | Mar 2008 | B1 |
7386350 | Vilims | Jun 2008 | B2 |
7387625 | Hovda et al. | Jun 2008 | B2 |
7393351 | Woloszko et al. | Jul 2008 | B2 |
7399306 | Reiley et al. | Jul 2008 | B2 |
7422585 | Eggers et al. | Sep 2008 | B1 |
7429262 | Woloszko et al. | Sep 2008 | B2 |
7435247 | Woloszko et al. | Oct 2008 | B2 |
7435250 | Francischelli et al. | Oct 2008 | B2 |
7442191 | Hovda et al. | Oct 2008 | B2 |
7468059 | Eggers et al. | Dec 2008 | B2 |
7480533 | Cosman et al. | Jan 2009 | B2 |
7502652 | Gaunt et al. | Mar 2009 | B2 |
7503920 | Siegal | Mar 2009 | B2 |
7503921 | Siegal | Mar 2009 | B2 |
7507236 | Eggers et al. | Mar 2009 | B2 |
7546164 | King | Jun 2009 | B2 |
7553307 | Bleich et al. | Jun 2009 | B2 |
7553309 | Buysse et al. | Jun 2009 | B2 |
7555343 | Bleich | Jun 2009 | B2 |
7559932 | Truckai et al. | Jul 2009 | B2 |
7569626 | Truckai | Aug 2009 | B2 |
7574257 | Rittman, III | Aug 2009 | B2 |
7585300 | Cha | Sep 2009 | B2 |
7593778 | Chandran et al. | Sep 2009 | B2 |
7594913 | Ormsby et al. | Sep 2009 | B2 |
7604636 | Walters et al. | Oct 2009 | B1 |
7621952 | Truckai et al. | Nov 2009 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7678111 | Mulier et al. | Mar 2010 | B2 |
7678116 | Truckai et al. | Mar 2010 | B2 |
7682378 | Truckai et al. | Mar 2010 | B2 |
7708733 | Sanders et al. | May 2010 | B2 |
7717918 | Truckai et al. | May 2010 | B2 |
7722620 | Truckai et al. | May 2010 | B2 |
7731720 | Sand et al. | Jun 2010 | B2 |
7738968 | Bleich | Jun 2010 | B2 |
7740631 | Bleich et al. | Jun 2010 | B2 |
7749218 | Pellegrino et al. | Jul 2010 | B2 |
7749220 | Schmaltz et al. | Jul 2010 | B2 |
7780733 | Carver et al. | Aug 2010 | B2 |
7792588 | Harding | Sep 2010 | B2 |
7799021 | Leung et al. | Sep 2010 | B2 |
7819826 | Diederich et al. | Oct 2010 | B2 |
7819869 | Godara et al. | Oct 2010 | B2 |
7824398 | Woloszko et al. | Nov 2010 | B2 |
7824404 | Godara et al. | Nov 2010 | B2 |
7828804 | Li et al. | Nov 2010 | B2 |
7846156 | Malis et al. | Dec 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
7853326 | Rittman, III | Dec 2010 | B2 |
7857813 | Schmitz et al. | Dec 2010 | B2 |
7879032 | Garito et al. | Feb 2011 | B1 |
7887534 | Hamel et al. | Feb 2011 | B2 |
7887543 | Sand et al. | Feb 2011 | B2 |
7892235 | Ellis | Feb 2011 | B2 |
7896870 | Arless et al. | Mar 2011 | B2 |
7896909 | Sharkey et al. | Mar 2011 | B2 |
7901403 | Woloszko et al. | Mar 2011 | B2 |
7909827 | Reiley et al. | Mar 2011 | B2 |
7909873 | Tan-Malecki et al. | Mar 2011 | B2 |
7914526 | Lehmann et al. | Mar 2011 | B2 |
7914535 | Assell et al. | Mar 2011 | B2 |
7917222 | Osorio et al. | Mar 2011 | B1 |
7918849 | Bleich et al. | Apr 2011 | B2 |
7918874 | Siegal | Apr 2011 | B2 |
7938835 | Boucher et al. | May 2011 | B2 |
7945331 | Vilims | May 2011 | B2 |
7951140 | Arless et al. | May 2011 | B2 |
7959634 | Sennett | Jun 2011 | B2 |
7963915 | Bleich | Jun 2011 | B2 |
7967827 | Osorio et al. | Jun 2011 | B2 |
7972340 | Sand et al. | Jul 2011 | B2 |
8000785 | Ritmann, III | Aug 2011 | B2 |
8021401 | Carl et al. | Sep 2011 | B2 |
8025688 | Diederich et al. | Sep 2011 | B2 |
8034052 | Podhajsky | Oct 2011 | B2 |
8034071 | Scribner et al. | Oct 2011 | B2 |
8043287 | Conquergood et al. | Oct 2011 | B2 |
8048030 | McGuckin, Jr. et al. | Nov 2011 | B2 |
8048071 | Youssef et al. | Nov 2011 | B2 |
8048083 | Shadduck et al. | Nov 2011 | B2 |
8052661 | McGuckin, Jr. et al. | Nov 2011 | B2 |
8062290 | Buysse et al. | Nov 2011 | B2 |
8066702 | Rittman, III et al. | Nov 2011 | B2 |
8066712 | Truckai et al. | Nov 2011 | B2 |
8070753 | Truckai et al. | Dec 2011 | B2 |
8082043 | Sharkey et al. | Dec 2011 | B2 |
8083736 | McClurken et al. | Dec 2011 | B2 |
8092456 | Bleich et al. | Jan 2012 | B2 |
8096957 | Conquergood et al. | Jan 2012 | B2 |
8100896 | Podhajsky | Jan 2012 | B2 |
8109933 | Truckai et al. | Feb 2012 | B2 |
8123750 | Norton et al. | Feb 2012 | B2 |
8123756 | Miller et al. | Feb 2012 | B2 |
8128619 | Sharkey et al. | Mar 2012 | B2 |
8128633 | Linderman et al. | Mar 2012 | B2 |
8162933 | Francischelli et al. | Apr 2012 | B2 |
8163031 | Truckai et al. | Apr 2012 | B2 |
8172846 | Brunnett et al. | May 2012 | B2 |
8182477 | Orszulak et al. | May 2012 | B2 |
8187268 | Godara et al. | May 2012 | B2 |
8187312 | Sharkey et al. | May 2012 | B2 |
8192424 | Woloszko et al. | Jun 2012 | B2 |
8192435 | Bleich et al. | Jun 2012 | B2 |
8192442 | Truckai et al. | Jun 2012 | B2 |
8216223 | Wham et al. | Jul 2012 | B2 |
8226697 | Sharkey et al. | Jul 2012 | B2 |
8231616 | McPherson et al. | Jul 2012 | B2 |
8241335 | Truckai et al. | Aug 2012 | B2 |
8246627 | Vanleeuwen et al. | Aug 2012 | B2 |
8265747 | Rittman, III et al. | Sep 2012 | B2 |
8282628 | Paul et al. | Oct 2012 | B2 |
8292882 | Danek et al. | Oct 2012 | B2 |
8292887 | Woloszko et al. | Oct 2012 | B2 |
8323277 | Vilims | Dec 2012 | B2 |
8323279 | Dahla et al. | Dec 2012 | B2 |
8343146 | Godara et al. | Jan 2013 | B2 |
8348946 | McClurken et al. | Jan 2013 | B2 |
8348955 | Truckai et al. | Jan 2013 | B2 |
8355799 | Marion et al. | Jan 2013 | B2 |
8361063 | Godara | Jan 2013 | B2 |
8361067 | Pellegrino et al. | Jan 2013 | B2 |
8406886 | Gaunt et al. | Mar 2013 | B2 |
8409289 | Truckai et al. | Apr 2013 | B2 |
8414509 | Diederich et al. | Apr 2013 | B2 |
8414571 | Pellegrino et al. | Apr 2013 | B2 |
8419730 | Pellegrino et al. | Apr 2013 | B2 |
8419731 | Pellegrino et al. | Apr 2013 | B2 |
8425430 | Pond, Jr. et al. | Apr 2013 | B2 |
8425507 | Pellegrino et al. | Apr 2013 | B2 |
8430881 | Bleich et al. | Apr 2013 | B2 |
8430887 | Truckai et al. | Apr 2013 | B2 |
8444636 | Shadduck et al. | May 2013 | B2 |
8444640 | Demarais et al. | May 2013 | B2 |
8454594 | Demarais et al. | Jun 2013 | B2 |
8460382 | Helm et al. | Jun 2013 | B2 |
8475449 | Werneth et al. | Jul 2013 | B2 |
8486063 | Werneth et al. | Jul 2013 | B2 |
8487021 | Truckai et al. | Jul 2013 | B2 |
8504147 | Deem et al. | Aug 2013 | B2 |
8505545 | Conquergood et al. | Aug 2013 | B2 |
8518036 | Leung et al. | Aug 2013 | B2 |
8523871 | Truckai et al. | Sep 2013 | B2 |
8535309 | Pellegrino et al. | Sep 2013 | B2 |
8540723 | Shadduck et al. | Sep 2013 | B2 |
8556891 | Mathur | Oct 2013 | B2 |
8556910 | Truckai et al. | Oct 2013 | B2 |
8556911 | Mehta et al. | Oct 2013 | B2 |
8560062 | Rittman, III et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8562607 | Truckai et al. | Oct 2013 | B2 |
8562620 | Truckai et al. | Oct 2013 | B2 |
8579903 | Carl | Nov 2013 | B2 |
8585694 | Amoah et al. | Nov 2013 | B2 |
8591507 | Kramer et al. | Nov 2013 | B2 |
8597301 | Mitchell | Dec 2013 | B2 |
8603088 | Stern et al. | Dec 2013 | B2 |
8613744 | Pellegrino et al. | Dec 2013 | B2 |
8617156 | Werneth et al. | Dec 2013 | B2 |
8623014 | Pellegrino et al. | Jan 2014 | B2 |
8623025 | Tan-Malecki et al. | Jan 2014 | B2 |
8628528 | Pellegrino et al. | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8644941 | Rooney et al. | Feb 2014 | B2 |
8657814 | Werneth et al. | Feb 2014 | B2 |
8663266 | Obsuth | Mar 2014 | B1 |
8672934 | Benamou et al. | Mar 2014 | B2 |
8676309 | Deem et al. | Mar 2014 | B2 |
8679023 | Kobayashi et al. | Mar 2014 | B2 |
8690884 | Linderman et al. | Apr 2014 | B2 |
8696679 | Shadduck et al. | Apr 2014 | B2 |
RE44883 | Cha | May 2014 | E |
8740897 | Leung et al. | Jun 2014 | B2 |
8747359 | Pakter et al. | Jun 2014 | B2 |
8747398 | Behnke | Jun 2014 | B2 |
8758349 | Germain et al. | Jun 2014 | B2 |
8764761 | Truckai et al. | Jul 2014 | B2 |
8771265 | Truckai | Jul 2014 | B2 |
8771276 | Linderman | Jul 2014 | B2 |
8774913 | Demarais et al. | Jul 2014 | B2 |
8774924 | Weiner | Jul 2014 | B2 |
8777479 | Kwan et al. | Jul 2014 | B2 |
8784411 | Leuthardt et al. | Jul 2014 | B2 |
8795270 | Drake | Aug 2014 | B2 |
8808161 | Gregg et al. | Aug 2014 | B2 |
8808284 | Pellegrino et al. | Aug 2014 | B2 |
8814873 | Schaller et al. | Aug 2014 | B2 |
8818503 | Rittman, III | Aug 2014 | B2 |
8821488 | Stewart et al. | Sep 2014 | B2 |
8828001 | Stearns et al. | Sep 2014 | B2 |
8845631 | Werneth et al. | Sep 2014 | B2 |
8864759 | Godara et al. | Oct 2014 | B2 |
8864760 | Kramer et al. | Oct 2014 | B2 |
8864777 | Harrison et al. | Oct 2014 | B2 |
8880189 | Lipani | Nov 2014 | B2 |
8882755 | Leung et al. | Nov 2014 | B2 |
8882759 | Manley et al. | Nov 2014 | B2 |
8882764 | Pellegrino et al. | Nov 2014 | B2 |
8894616 | Harrison et al. | Nov 2014 | B2 |
8894658 | Linderman et al. | Nov 2014 | B2 |
8911497 | Chavatte et al. | Dec 2014 | B2 |
8915949 | Diederich et al. | Dec 2014 | B2 |
8926620 | Chasmawala et al. | Jan 2015 | B2 |
8932300 | Shadduck et al. | Jan 2015 | B2 |
8939969 | Temelli et al. | Jan 2015 | B2 |
8968288 | Brannan | Mar 2015 | B2 |
8989859 | Deem et al. | Mar 2015 | B2 |
8992521 | VanWyk | Mar 2015 | B2 |
8992522 | Pellegrino et al. | Mar 2015 | B2 |
8992523 | Pellegrino et al. | Mar 2015 | B2 |
8992524 | Ellman | Mar 2015 | B1 |
9005210 | Truckai et al. | Apr 2015 | B2 |
9008793 | Cosman, Sr. et al. | Apr 2015 | B1 |
9017325 | Pellegrino et al. | Apr 2015 | B2 |
9023038 | Pellegrino et al. | May 2015 | B2 |
9028488 | Goshayeshgar | May 2015 | B2 |
9028538 | Paul et al. | May 2015 | B2 |
9039701 | Pellegrino et al. | May 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9044254 | Ladtkow et al. | Jun 2015 | B2 |
9044575 | Beasley et al. | Jun 2015 | B2 |
9050109 | Smith | Jun 2015 | B2 |
9050112 | Greenhalgh et al. | Jun 2015 | B2 |
9066769 | Truckai et al. | Jun 2015 | B2 |
9078761 | Godara et al. | Jul 2015 | B2 |
9095359 | Robert et al. | Aug 2015 | B2 |
9113896 | Mulier et al. | Aug 2015 | B2 |
9113911 | Sherman | Aug 2015 | B2 |
9113925 | Smith et al. | Aug 2015 | B2 |
9113950 | Schutlz et al. | Aug 2015 | B2 |
9113974 | Germain | Aug 2015 | B2 |
9119623 | Malis et al. | Sep 2015 | B2 |
9119639 | Kuntz | Sep 2015 | B2 |
9119647 | Brannan | Sep 2015 | B2 |
9119650 | Brannan et al. | Sep 2015 | B2 |
9125671 | Germain et al. | Sep 2015 | B2 |
9131597 | Taft et al. | Sep 2015 | B2 |
9149652 | Wenz et al. | Oct 2015 | B2 |
9151680 | Brannan | Oct 2015 | B2 |
9155895 | Wacnik et al. | Oct 2015 | B2 |
9161735 | Bradford et al. | Oct 2015 | B2 |
9161797 | Truckai et al. | Oct 2015 | B2 |
9161798 | Truckai et al. | Oct 2015 | B2 |
9161805 | Isenberg | Oct 2015 | B2 |
9161809 | Germain et al. | Oct 2015 | B2 |
9161814 | Brannan et al. | Oct 2015 | B2 |
9168047 | To et al. | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168078 | Linderman et al. | Oct 2015 | B2 |
9168085 | Juzkiw | Oct 2015 | B2 |
9173676 | Pellegrino et al. | Nov 2015 | B2 |
9173700 | Godara et al. | Nov 2015 | B2 |
9179970 | Utley et al. | Nov 2015 | B2 |
9179972 | Olson | Nov 2015 | B2 |
9180416 | Phan et al. | Nov 2015 | B2 |
9186197 | McKay | Nov 2015 | B2 |
9192308 | Brannan et al. | Nov 2015 | B2 |
9192397 | Sennett et al. | Nov 2015 | B2 |
9198684 | Arthur et al. | Dec 2015 | B2 |
9216053 | Godara et al. | Dec 2015 | B2 |
9216195 | Truckai et al. | Dec 2015 | B2 |
9226756 | Teisen et al. | Jan 2016 | B2 |
9232954 | Steiner et al. | Jan 2016 | B2 |
9237916 | Crainich et al. | Jan 2016 | B2 |
9238139 | Degiorgio et al. | Jan 2016 | B2 |
9241057 | Van Wyk et al. | Jan 2016 | B2 |
9241729 | Juntz et al. | Jan 2016 | B2 |
9241760 | Godara et al. | Jan 2016 | B2 |
9247970 | Teisen | Feb 2016 | B2 |
9247992 | Ladtkow et al. | Feb 2016 | B2 |
9247993 | Ladtkow et al. | Feb 2016 | B2 |
9248278 | Crosby et al. | Feb 2016 | B2 |
9248289 | Bennett et al. | Feb 2016 | B2 |
9254168 | Palanker | Feb 2016 | B2 |
9254386 | Lee et al. | Feb 2016 | B2 |
9259241 | Pellegrino et al. | Feb 2016 | B2 |
9259248 | Leuthardt et al. | Feb 2016 | B2 |
9259269 | Ladtkow et al. | Feb 2016 | B2 |
9259569 | Brounstein et al. | Feb 2016 | B2 |
9259577 | Kaula et al. | Feb 2016 | B2 |
9265522 | Pellegrino et al. | Feb 2016 | B2 |
9265557 | Sherman et al. | Feb 2016 | B2 |
9277969 | Brannan et al. | Mar 2016 | B2 |
9282979 | O'Neil et al. | Mar 2016 | B2 |
9282988 | Goshayeshgar | Mar 2016 | B2 |
9283015 | Tan-Malecki et al. | Mar 2016 | B2 |
9289607 | Su et al. | Mar 2016 | B2 |
9295479 | Hibri et al. | Mar 2016 | B2 |
9295517 | Peyman et al. | Mar 2016 | B2 |
9295841 | Fang et al. | Mar 2016 | B2 |
9301723 | Brannan et al. | Apr 2016 | B2 |
9301804 | Bonn | Apr 2016 | B2 |
9302117 | De Vincentiis | Apr 2016 | B2 |
9308036 | Robinson | Apr 2016 | B2 |
9308045 | Kim et al. | Apr 2016 | B2 |
9314252 | Schaller et al. | Apr 2016 | B2 |
9314613 | Mashiach | Apr 2016 | B2 |
9314618 | Imran et al. | Apr 2016 | B2 |
9333033 | Gliner | May 2016 | B2 |
9333144 | Baxter et al. | May 2016 | B2 |
9333339 | Weiner | May 2016 | B2 |
9333361 | Li et al. | May 2016 | B2 |
9333373 | Imran | May 2016 | B2 |
9339655 | Carbunaru | May 2016 | B2 |
9345530 | Ballakur et al. | May 2016 | B2 |
9345537 | Harrison et al. | May 2016 | B2 |
9345538 | Deem et al. | May 2016 | B2 |
9351739 | Mahoney et al. | May 2016 | B2 |
9358059 | Linderman et al. | Jun 2016 | B2 |
9358067 | Lee et al. | Jun 2016 | B2 |
9358396 | Holley | Jun 2016 | B2 |
9364242 | Tornier et al. | Jun 2016 | B2 |
9364286 | Werneth et al. | Jun 2016 | B2 |
9370348 | Tally et al. | Jun 2016 | B2 |
9370373 | Smith | Jun 2016 | B2 |
9370392 | Sharonov | Jun 2016 | B2 |
9370398 | Ladtkow et al. | Jun 2016 | B2 |
9375274 | Reid | Jun 2016 | B2 |
9375275 | Lee et al. | Jun 2016 | B2 |
9375278 | Robert et al. | Jun 2016 | B2 |
9375279 | Brannan | Jun 2016 | B2 |
9375283 | Arts et al. | Jun 2016 | B2 |
9381024 | Globerman et al. | Jul 2016 | B2 |
9381045 | Donner et al. | Jul 2016 | B2 |
9381050 | Lee et al. | Jul 2016 | B2 |
9381359 | Parramon et al. | Jul 2016 | B2 |
9387094 | Manrique et al. | Jul 2016 | B2 |
9393416 | Rooney et al. | Jul 2016 | B2 |
9398931 | Wittenberger et al. | Jul 2016 | B2 |
9399144 | Howard | Jul 2016 | B2 |
9403038 | Tyler | Aug 2016 | B2 |
9409023 | Burdick et al. | Aug 2016 | B2 |
9414884 | Faehndrich et al. | Aug 2016 | B2 |
9421057 | Germain | Aug 2016 | B2 |
9421064 | Pellegrino et al. | Aug 2016 | B2 |
9421123 | Lee et al. | Aug 2016 | B2 |
9421371 | Pless et al. | Aug 2016 | B2 |
9421378 | Lian et al. | Aug 2016 | B2 |
9439693 | Childs et al. | Sep 2016 | B2 |
9439721 | Werneth et al. | Sep 2016 | B2 |
9445859 | Pageard | Sep 2016 | B2 |
9446229 | Omar-Pasha | Sep 2016 | B2 |
9446235 | Su et al. | Sep 2016 | B2 |
9452286 | Cowan et al. | Sep 2016 | B2 |
9456836 | Boling et al. | Oct 2016 | B2 |
9457182 | Koop | Oct 2016 | B2 |
9468485 | Wittenberger et al. | Oct 2016 | B2 |
9468495 | Kunis et al. | Oct 2016 | B2 |
9474565 | Shikhman et al. | Oct 2016 | B2 |
9474906 | Sachs et al. | Oct 2016 | B2 |
9480485 | Aho et al. | Nov 2016 | B2 |
9486279 | Pellegrino et al. | Nov 2016 | B2 |
9486447 | Peterson et al. | Nov 2016 | B2 |
9486621 | Howard et al. | Nov 2016 | B2 |
9492657 | Gerber | Nov 2016 | B2 |
9492664 | Peterson | Nov 2016 | B2 |
9504372 | Kim | Nov 2016 | B2 |
9504481 | Germain et al. | Nov 2016 | B2 |
9504506 | Crainich et al. | Nov 2016 | B2 |
9504518 | Condie et al. | Nov 2016 | B2 |
9504530 | Hartmann et al. | Nov 2016 | B2 |
9504818 | Moffitt et al. | Nov 2016 | B2 |
9511229 | Bradley | Dec 2016 | B2 |
9511231 | Kent et al. | Dec 2016 | B1 |
9513761 | Shikhman et al. | Dec 2016 | B2 |
9517077 | Blain et al. | Dec 2016 | B2 |
9517200 | Bleier | Dec 2016 | B2 |
9526507 | Germain | Dec 2016 | B2 |
9526551 | Linderman | Dec 2016 | B2 |
9526559 | Banamou et al. | Dec 2016 | B2 |
9532828 | Condie et al. | Jan 2017 | B2 |
9545283 | Sack et al. | Jan 2017 | B2 |
9549772 | Carl | Jan 2017 | B2 |
9550041 | Bedell | Jan 2017 | B2 |
9555037 | Podhajsky | Jan 2017 | B2 |
9556101 | Robertson et al. | Jan 2017 | B2 |
9556449 | Basu et al. | Jan 2017 | B2 |
9566108 | Brustad et al. | Feb 2017 | B2 |
9566449 | Perryman et al. | Feb 2017 | B2 |
9572976 | Howard et al. | Feb 2017 | B2 |
9572986 | Moffitt | Feb 2017 | B2 |
9579127 | Kostuik et al. | Feb 2017 | B2 |
9579518 | Gertner | Feb 2017 | B2 |
9597091 | Bromer | Mar 2017 | B2 |
9597148 | Olson | Mar 2017 | B2 |
RE46356 | Pellegrino et al. | Apr 2017 | E |
9610083 | Kuntz | Apr 2017 | B2 |
9610117 | Germain | Apr 2017 | B2 |
9636175 | Stern et al. | May 2017 | B2 |
9642629 | Griffiths et al. | May 2017 | B2 |
9649116 | Germain | May 2017 | B2 |
9675408 | Godara et al. | Jun 2017 | B2 |
9681889 | Greenhalgh et al. | Jun 2017 | B1 |
9687255 | Sennett et al. | Jun 2017 | B2 |
9717551 | Krueger et al. | Aug 2017 | B2 |
9724107 | Pellegrino et al. | Aug 2017 | B2 |
9724151 | Edidin | Aug 2017 | B2 |
9730707 | Sasaki et al. | Aug 2017 | B2 |
9743854 | Stewart et al. | Aug 2017 | B2 |
9743938 | Germain et al. | Aug 2017 | B2 |
9750560 | Ballakur et al. | Sep 2017 | B2 |
9750570 | Condie et al. | Sep 2017 | B2 |
9757193 | Zarins et al. | Sep 2017 | B2 |
9770280 | Diederich et al. | Sep 2017 | B2 |
9775627 | Patel et al. | Oct 2017 | B2 |
9782221 | Srinivasan | Oct 2017 | B2 |
9795802 | Mohamed et al. | Oct 2017 | B2 |
9814514 | Shelton, IV et al. | Nov 2017 | B2 |
9826985 | Slobitker et al. | Nov 2017 | B2 |
9844406 | Edwards et al. | Dec 2017 | B2 |
9848890 | Yoon et al. | Dec 2017 | B2 |
9848944 | Sutton et al. | Dec 2017 | B2 |
9872687 | Tornier et al. | Jan 2018 | B2 |
9872691 | Griffiths et al. | Jan 2018 | B2 |
9877707 | Godara et al. | Jan 2018 | B2 |
9901392 | Phan et al. | Feb 2018 | B2 |
9913675 | Germain | Mar 2018 | B2 |
9918786 | Wang et al. | Mar 2018 | B2 |
9980771 | Carter et al. | May 2018 | B2 |
9993285 | Govari et al. | Jun 2018 | B2 |
10022140 | Germain et al. | Jul 2018 | B2 |
10028753 | Pellegrino et al. | Jul 2018 | B2 |
10028784 | Kramer et al. | Jul 2018 | B2 |
10052149 | Germain et al. | Aug 2018 | B2 |
10052152 | Tegg et al. | Aug 2018 | B2 |
10052153 | Olson | Aug 2018 | B2 |
10058336 | Truckai et al. | Aug 2018 | B2 |
10105175 | Godara et al. | Oct 2018 | B2 |
10111674 | Crainich et al. | Oct 2018 | B2 |
10111704 | Pellegrino et al. | Oct 2018 | B2 |
10123809 | Germain | Nov 2018 | B2 |
10159497 | Kuntz et al. | Dec 2018 | B2 |
10245092 | Germain | Apr 2019 | B2 |
10265099 | Pellegrino et al. | Apr 2019 | B2 |
10272271 | Diederich et al. | Apr 2019 | B2 |
10292716 | Aho et al. | May 2019 | B2 |
10292719 | Burger et al. | May 2019 | B2 |
10299805 | Germain et al. | May 2019 | B2 |
10314633 | Linderman et al. | Jun 2019 | B2 |
10327841 | Germain | Jun 2019 | B2 |
10357258 | Patel et al. | Jul 2019 | B2 |
10357307 | Harrison et al. | Jul 2019 | B2 |
10376271 | Mehta et al. | Aug 2019 | B2 |
10383641 | LeRoy et al. | Aug 2019 | B2 |
10390877 | Heggeness et al. | Aug 2019 | B2 |
10441295 | Brockman et al. | Oct 2019 | B2 |
10441354 | Govari et al. | Oct 2019 | B2 |
10448995 | Olson | Oct 2019 | B2 |
10456187 | Edidin | Oct 2019 | B2 |
10463380 | Purdy et al. | Nov 2019 | B2 |
10463423 | Sutton et al. | Nov 2019 | B2 |
10470781 | Purdy et al. | Nov 2019 | B2 |
10478241 | Purdy et al. | Nov 2019 | B2 |
10478246 | Pellegrino et al. | Nov 2019 | B2 |
10493247 | Goshayeshgar | Dec 2019 | B2 |
10499960 | Sinnott et al. | Dec 2019 | B2 |
10517611 | Patel et al. | Dec 2019 | B2 |
10524805 | Zilberman et al. | Jan 2020 | B2 |
10582966 | Orczy-Timko et al. | Mar 2020 | B2 |
10588691 | Pellegino et al. | Mar 2020 | B2 |
10589131 | Diederich et al. | Mar 2020 | B2 |
10603522 | Diederich et al. | Mar 2020 | B2 |
10624652 | Germain et al. | Apr 2020 | B2 |
10660656 | Purdy et al. | May 2020 | B2 |
10835234 | Harari et al. | Nov 2020 | B2 |
10849613 | Rosner et al. | Dec 2020 | B2 |
10864040 | Dastjerdi et al. | Dec 2020 | B2 |
10898254 | Diederich et al. | Jan 2021 | B2 |
10905440 | Pellegrino et al. | Feb 2021 | B2 |
10918363 | Godara et al. | Feb 2021 | B2 |
RE48460 | Pellegrino et al. | Mar 2021 | E |
10952771 | Pellegrino | Mar 2021 | B2 |
11007010 | Donovan et al. | May 2021 | B2 |
11026734 | Truckai et al. | Jun 2021 | B2 |
11026744 | Purdy et al. | Jun 2021 | B2 |
11052267 | Diederich et al. | Jul 2021 | B2 |
11065046 | Edidin | Jul 2021 | B2 |
11116570 | Purdy et al. | Sep 2021 | B2 |
11123103 | Donovan et al. | Sep 2021 | B2 |
11147684 | Neubardt | Oct 2021 | B2 |
11160503 | Peesapati et al. | Nov 2021 | B2 |
11160563 | Patel et al. | Nov 2021 | B2 |
11166747 | Brockman et al. | Nov 2021 | B2 |
11191575 | Kidman et al. | Dec 2021 | B2 |
11207100 | Donovan et al. | Dec 2021 | B2 |
11224475 | Godara et al. | Jan 2022 | B2 |
11234764 | Patel et al. | Feb 2022 | B1 |
11259818 | Brockman et al. | Mar 2022 | B2 |
11291502 | Patel et al. | Apr 2022 | B2 |
11344350 | Purdy et al. | May 2022 | B2 |
11364069 | Heggeness | Jun 2022 | B2 |
11376021 | Marino et al. | Jul 2022 | B2 |
11389181 | Dutertre et al. | Jul 2022 | B2 |
11419614 | Weitzman et al. | Aug 2022 | B2 |
11426199 | Donovan et al. | Aug 2022 | B2 |
11471171 | Pellegrino et al. | Oct 2022 | B2 |
11471210 | Pellegrino et al. | Oct 2022 | B2 |
11497543 | Sprinkle et al. | Nov 2022 | B2 |
11510723 | Defosset et al. | Nov 2022 | B2 |
11596468 | Pellegrino et al. | Mar 2023 | B2 |
11690667 | Pellegrino et al. | Jul 2023 | B2 |
20010001314 | Davison et al. | May 2001 | A1 |
20010001811 | Burney et al. | May 2001 | A1 |
20010020167 | Woloszko et al. | Sep 2001 | A1 |
20010023348 | Ashley et al. | Sep 2001 | A1 |
20010025176 | Ellsberry et al. | Sep 2001 | A1 |
20010025177 | Wołoszko et al. | Sep 2001 | A1 |
20010027295 | Dulak et al. | Oct 2001 | A1 |
20010029370 | Hovda et al. | Oct 2001 | A1 |
20010029373 | Baker et al. | Oct 2001 | A1 |
20010029393 | Tierney et al. | Oct 2001 | A1 |
20010032001 | Ricart et al. | Oct 2001 | A1 |
20010047167 | Heggeness | Nov 2001 | A1 |
20010049522 | Eggers et al. | Dec 2001 | A1 |
20010049527 | Cragg | Dec 2001 | A1 |
20010051802 | Woloszko et al. | Dec 2001 | A1 |
20010053885 | Gielen et al. | Dec 2001 | A1 |
20010056280 | Underwood et al. | Dec 2001 | A1 |
20020016583 | Cragg | Feb 2002 | A1 |
20020016600 | Cosman | Feb 2002 | A1 |
20020019626 | Sharkey et al. | Feb 2002 | A1 |
20020026186 | Woloszko et al. | Feb 2002 | A1 |
20020049438 | Sharkey et al. | Apr 2002 | A1 |
20020052600 | Davison et al. | May 2002 | A1 |
20020068930 | Tasto et al. | Jun 2002 | A1 |
20020095144 | Carl | Jul 2002 | A1 |
20020095151 | Dahla et al. | Jul 2002 | A1 |
20020095152 | Ciarrocca et al. | Jul 2002 | A1 |
20020099366 | Dahla et al. | Jul 2002 | A1 |
20020111661 | Cross et al. | Aug 2002 | A1 |
20020115945 | D'Luzansky et al. | Aug 2002 | A1 |
20020120259 | Lettice et al. | Aug 2002 | A1 |
20020133148 | Daniel et al. | Sep 2002 | A1 |
20020147444 | Shah et al. | Oct 2002 | A1 |
20020151885 | Underwood et al. | Oct 2002 | A1 |
20020165532 | Hill et al. | Nov 2002 | A1 |
20020183758 | Middleton et al. | Dec 2002 | A1 |
20020188284 | To et al. | Dec 2002 | A1 |
20020188290 | Sharkey et al. | Dec 2002 | A1 |
20020193708 | Thompson et al. | Dec 2002 | A1 |
20020193789 | Underwood et al. | Dec 2002 | A1 |
20030009164 | Woloszko et al. | Jan 2003 | A1 |
20030014047 | Woloszko et al. | Jan 2003 | A1 |
20030014088 | Fang et al. | Jan 2003 | A1 |
20030028147 | Aves et al. | Feb 2003 | A1 |
20030028189 | Woloszko et al. | Feb 2003 | A1 |
20030040710 | Polidoro | Feb 2003 | A1 |
20030040742 | Underwood et al. | Feb 2003 | A1 |
20030040743 | Cosman et al. | Feb 2003 | A1 |
20030055418 | Tasto et al. | Mar 2003 | A1 |
20030069569 | Burdette et al. | Apr 2003 | A1 |
20030083592 | Faciszewski | May 2003 | A1 |
20030084907 | Pacek et al. | May 2003 | A1 |
20030097126 | Woloszko et al. | May 2003 | A1 |
20030097129 | Davison et al. | May 2003 | A1 |
20030130655 | Woloszko et al. | Jul 2003 | A1 |
20030139652 | Kang et al. | Jul 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030181963 | Pellegrino et al. | Sep 2003 | A1 |
20030208194 | Hovda et al. | Nov 2003 | A1 |
20030216725 | Woloszko et al. | Nov 2003 | A1 |
20030216726 | Eggers et al. | Nov 2003 | A1 |
20030225364 | Kraft | Dec 2003 | A1 |
20040006339 | Underwood et al. | Jan 2004 | A1 |
20040015163 | Buysse et al. | Jan 2004 | A1 |
20040024399 | Sharps et al. | Feb 2004 | A1 |
20040054366 | Davison et al. | Mar 2004 | A1 |
20040064023 | Thomas et al. | Apr 2004 | A1 |
20040064136 | Crombie et al. | Apr 2004 | A1 |
20040064137 | Pellegrino et al. | Apr 2004 | A1 |
20040068242 | McGuckin, Jr. | Apr 2004 | A1 |
20040082942 | Katzman | Apr 2004 | A1 |
20040082946 | Malis et al. | Apr 2004 | A1 |
20040087937 | Eggers et al. | May 2004 | A1 |
20040111087 | Stern et al. | Jun 2004 | A1 |
20040116922 | Hovda et al. | Jun 2004 | A1 |
20040120668 | Loeb | Jun 2004 | A1 |
20040120891 | Hill et al. | Jun 2004 | A1 |
20040133124 | Bates et al. | Jul 2004 | A1 |
20040162559 | Arramon | Aug 2004 | A1 |
20040186544 | King | Sep 2004 | A1 |
20040193151 | To et al. | Sep 2004 | A1 |
20040193152 | Sutton et al. | Sep 2004 | A1 |
20040220577 | Cragg et al. | Nov 2004 | A1 |
20040225228 | Ferree | Nov 2004 | A1 |
20040230190 | Dahla et al. | Nov 2004 | A1 |
20040267269 | Middleton et al. | Dec 2004 | A1 |
20050004634 | Ricart et al. | Jan 2005 | A1 |
20050010095 | Stewart et al. | Jan 2005 | A1 |
20050010203 | Edwards et al. | Jan 2005 | A1 |
20050010205 | Hovda et al. | Jan 2005 | A1 |
20050043737 | Reiley et al. | Feb 2005 | A1 |
20050055096 | Serhan et al. | Mar 2005 | A1 |
20050124989 | Suddaby | Jun 2005 | A1 |
20050177209 | Leung et al. | Aug 2005 | A1 |
20050177210 | Leung et al. | Aug 2005 | A1 |
20050177211 | Leung et al. | Aug 2005 | A1 |
20050182417 | Pagano | Aug 2005 | A1 |
20050192564 | Cosman et al. | Sep 2005 | A1 |
20050209610 | Carrison | Sep 2005 | A1 |
20050209659 | Pellegrino et al. | Sep 2005 | A1 |
20050216018 | Sennett | Sep 2005 | A1 |
20050234445 | Conquergood et al. | Oct 2005 | A1 |
20050261754 | Woloszko | Nov 2005 | A1 |
20050267552 | Conquergood et al. | Dec 2005 | A1 |
20050278007 | Godara | Dec 2005 | A1 |
20050283148 | Janssen et al. | Dec 2005 | A1 |
20060004369 | Patel et al. | Jan 2006 | A1 |
20060036264 | Selover et al. | Feb 2006 | A1 |
20060052743 | Reynolds | Mar 2006 | A1 |
20060064101 | Arramon | Mar 2006 | A1 |
20060095026 | Ricart et al. | May 2006 | A1 |
20060095028 | Bleich | May 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060106376 | Godara et al. | May 2006 | A1 |
20060122458 | Bleich | Jun 2006 | A1 |
20060129101 | McGuckin | Jun 2006 | A1 |
20060178670 | Woloszko et al. | Aug 2006 | A1 |
20060200121 | Mowery | Sep 2006 | A1 |
20060206128 | Conquergood et al. | Sep 2006 | A1 |
20060206129 | Conquergood et al. | Sep 2006 | A1 |
20060206130 | Conquergood et al. | Sep 2006 | A1 |
20060206132 | Conquergood et al. | Sep 2006 | A1 |
20060206133 | Conquergood et al. | Sep 2006 | A1 |
20060206134 | Conquergood et al. | Sep 2006 | A1 |
20060206166 | Weiner | Sep 2006 | A1 |
20060217736 | Kaneko et al. | Sep 2006 | A1 |
20060229625 | Truckai et al. | Oct 2006 | A1 |
20060247746 | Danek et al. | Nov 2006 | A1 |
20060253117 | Hovda et al. | Nov 2006 | A1 |
20060259026 | Godara et al. | Nov 2006 | A1 |
20060264957 | Cragg et al. | Nov 2006 | A1 |
20060264965 | Shadduck et al. | Nov 2006 | A1 |
20060265014 | Demarais et al. | Nov 2006 | A1 |
20060276749 | Selmon et al. | Dec 2006 | A1 |
20060287649 | Ormsby et al. | Dec 2006 | A1 |
20070021803 | Deem et al. | Jan 2007 | A1 |
20070027449 | Godara et al. | Feb 2007 | A1 |
20070055316 | Godara et al. | Mar 2007 | A1 |
20070066987 | Scanlan et al. | Mar 2007 | A1 |
20070074719 | Danek et al. | Apr 2007 | A1 |
20070118142 | Krueger et al. | May 2007 | A1 |
20070129715 | Eggers et al. | Jun 2007 | A1 |
20070142791 | Yeung et al. | Jun 2007 | A1 |
20070142842 | Krueger et al. | Jun 2007 | A1 |
20070149966 | Dahla et al. | Jun 2007 | A1 |
20070179497 | Eggers et al. | Aug 2007 | A1 |
20070185231 | Liu et al. | Aug 2007 | A1 |
20070213584 | Kim et al. | Sep 2007 | A1 |
20070213735 | Saadat et al. | Sep 2007 | A1 |
20070260237 | Sutton et al. | Nov 2007 | A1 |
20080004621 | Dahla et al. | Jan 2008 | A1 |
20080004675 | King et al. | Jan 2008 | A1 |
20080009847 | Ricart et al. | Jan 2008 | A1 |
20080021447 | Davison et al. | Jan 2008 | A1 |
20080021463 | Georgy | Jan 2008 | A1 |
20080058707 | Ashley et al. | Mar 2008 | A1 |
20080065062 | Leung et al. | Mar 2008 | A1 |
20080091207 | Truckai et al. | Apr 2008 | A1 |
20080114364 | Goldin et al. | May 2008 | A1 |
20080119844 | Woloszko et al. | May 2008 | A1 |
20080119846 | Rioux | May 2008 | A1 |
20080132890 | Woloszko et al. | Jun 2008 | A1 |
20080161804 | Rioux et al. | Jul 2008 | A1 |
20080275458 | Bleich et al. | Nov 2008 | A1 |
20080281322 | Sherman et al. | Nov 2008 | A1 |
20080294166 | Goldin et al. | Nov 2008 | A1 |
20080294167 | Schumacher et al. | Nov 2008 | A1 |
20090030308 | Bradford et al. | Jan 2009 | A1 |
20090054951 | Leuthardt et al. | Feb 2009 | A1 |
20090069807 | Eggers et al. | Mar 2009 | A1 |
20090076520 | Choi | Mar 2009 | A1 |
20090105775 | Mitchell et al. | Apr 2009 | A1 |
20090112278 | Wingeier et al. | Apr 2009 | A1 |
20090118731 | Young et al. | May 2009 | A1 |
20090131867 | Liu et al. | May 2009 | A1 |
20090131886 | Liu et al. | May 2009 | A1 |
20090149846 | Hoey et al. | Jun 2009 | A1 |
20090149878 | Truckai et al. | Jun 2009 | A1 |
20090204192 | Carlton et al. | Aug 2009 | A1 |
20090222053 | Gaunt et al. | Sep 2009 | A1 |
20090312764 | Marino | Dec 2009 | A1 |
20100010392 | Skelton et al. | Jan 2010 | A1 |
20100016929 | Prochazka | Jan 2010 | A1 |
20100023006 | Ellman | Jan 2010 | A1 |
20100023065 | Welch et al. | Jan 2010 | A1 |
20100082033 | Germain | Apr 2010 | A1 |
20100094269 | Pellegrino et al. | Apr 2010 | A1 |
20100114098 | Carl | May 2010 | A1 |
20100145424 | Podhajsky et al. | Jun 2010 | A1 |
20100179556 | Scribner et al. | Jul 2010 | A1 |
20100185082 | Chandran et al. | Jul 2010 | A1 |
20100185161 | Pellegrino et al. | Jul 2010 | A1 |
20100211076 | Germain et al. | Aug 2010 | A1 |
20100222777 | Sutton et al. | Sep 2010 | A1 |
20100261989 | Boseck et al. | Oct 2010 | A1 |
20100261990 | Gillis et al. | Oct 2010 | A1 |
20100286487 | Van Lue | Nov 2010 | A1 |
20100298737 | Koehler | Nov 2010 | A1 |
20100298822 | Behnke | Nov 2010 | A1 |
20100298832 | Lau et al. | Nov 2010 | A1 |
20100305559 | Brannan et al. | Dec 2010 | A1 |
20100324506 | Pellegrino et al. | Dec 2010 | A1 |
20110022133 | Diederich et al. | Jan 2011 | A1 |
20110034884 | Pellegrino et al. | Feb 2011 | A9 |
20110040362 | Godara et al. | Feb 2011 | A1 |
20110077628 | Hoey et al. | Mar 2011 | A1 |
20110087314 | Diederich et al. | Apr 2011 | A1 |
20110118735 | Abou-Marie et al. | May 2011 | A1 |
20110130751 | Malis et al. | Jun 2011 | A1 |
20110144524 | Fish et al. | Jun 2011 | A1 |
20110152855 | Mayse et al. | Jun 2011 | A1 |
20110196361 | Vilims | Aug 2011 | A1 |
20110206260 | Bergmans et al. | Aug 2011 | A1 |
20110264098 | Cobbs | Oct 2011 | A1 |
20110270238 | Rizq et al. | Nov 2011 | A1 |
20110276001 | Schultz et al. | Nov 2011 | A1 |
20110295245 | Willyard et al. | Dec 2011 | A1 |
20110295261 | Germain | Dec 2011 | A1 |
20110319765 | Gertner et al. | Dec 2011 | A1 |
20120029420 | Rittman et al. | Feb 2012 | A1 |
20120116266 | House et al. | May 2012 | A1 |
20120136346 | Condie et al. | May 2012 | A1 |
20120136348 | Condie et al. | May 2012 | A1 |
20120143090 | Hay et al. | Jun 2012 | A1 |
20120143341 | Zipnick | Jun 2012 | A1 |
20120172858 | Harrison et al. | Jul 2012 | A1 |
20120172859 | Condie et al. | Jul 2012 | A1 |
20120191095 | Burger et al. | Jul 2012 | A1 |
20120196251 | Taft et al. | Aug 2012 | A1 |
20120197344 | Taft et al. | Aug 2012 | A1 |
20120203219 | Evans et al. | Aug 2012 | A1 |
20120226145 | Chang et al. | Sep 2012 | A1 |
20120226273 | Nguyen et al. | Sep 2012 | A1 |
20120239049 | Truckai et al. | Sep 2012 | A1 |
20120239050 | Linderman | Sep 2012 | A1 |
20120265186 | Burger et al. | Oct 2012 | A1 |
20120330180 | Pellegrino et al. | Dec 2012 | A1 |
20120330300 | Pellegrino et al. | Dec 2012 | A1 |
20120330301 | Pellegrino et al. | Dec 2012 | A1 |
20130006232 | Pellegrino et al. | Jan 2013 | A1 |
20130006233 | Pellegrino et al. | Jan 2013 | A1 |
20130012933 | Pellegrino et al. | Jan 2013 | A1 |
20130012935 | Pellegrino et al. | Jan 2013 | A1 |
20130012936 | Pellegrino et al. | Jan 2013 | A1 |
20130012951 | Linderman | Jan 2013 | A1 |
20130060244 | Godara et al. | Mar 2013 | A1 |
20130079810 | Isenberg | Mar 2013 | A1 |
20130103022 | Sutton et al. | Apr 2013 | A1 |
20130197508 | Shikhman et al. | Aug 2013 | A1 |
20130231654 | Germain | Sep 2013 | A1 |
20130237979 | Shikhman et al. | Sep 2013 | A1 |
20130261507 | Diederich et al. | Oct 2013 | A1 |
20130274784 | Lenker et al. | Oct 2013 | A1 |
20130296767 | Zarins et al. | Nov 2013 | A1 |
20130324993 | McCarthy et al. | Dec 2013 | A1 |
20130324994 | Pellegrino et al. | Dec 2013 | A1 |
20130324996 | Pellegrino et al. | Dec 2013 | A1 |
20130324997 | Pellegrino et al. | Dec 2013 | A1 |
20130331840 | Teisen et al. | Dec 2013 | A1 |
20130345765 | Brockman et al. | Dec 2013 | A1 |
20140031715 | Sherar et al. | Jan 2014 | A1 |
20140039500 | Pellegrino et al. | Feb 2014 | A1 |
20140046245 | Cornacchia | Feb 2014 | A1 |
20140046328 | Schumacher et al. | Feb 2014 | A1 |
20140066913 | Sherman | Mar 2014 | A1 |
20140088575 | Loeb | Mar 2014 | A1 |
20140148801 | Asher et al. | May 2014 | A1 |
20140148805 | Stewart et al. | May 2014 | A1 |
20140171942 | Werneth et al. | Jun 2014 | A1 |
20140194887 | Shenoy | Jul 2014 | A1 |
20140221967 | Childs et al. | Aug 2014 | A1 |
20140236137 | Tran et al. | Aug 2014 | A1 |
20140236144 | Krueger et al. | Aug 2014 | A1 |
20140243823 | Godara et al. | Aug 2014 | A1 |
20140243943 | Rao et al. | Aug 2014 | A1 |
20140257265 | Godara et al. | Sep 2014 | A1 |
20140257296 | Morgenstern Lopez | Sep 2014 | A1 |
20140271717 | Goshayeshgar et al. | Sep 2014 | A1 |
20140276728 | Goshayeshgar et al. | Sep 2014 | A1 |
20140276744 | Arthur et al. | Sep 2014 | A1 |
20140288544 | Diederich et al. | Sep 2014 | A1 |
20140288546 | Sherman et al. | Sep 2014 | A1 |
20140296850 | Condie et al. | Oct 2014 | A1 |
20140303610 | McCarthy et al. | Oct 2014 | A1 |
20140303614 | McCarthy et al. | Oct 2014 | A1 |
20140316405 | Pellegrino et al. | Oct 2014 | A1 |
20140316413 | Burger | Oct 2014 | A1 |
20140324051 | Pellegrino et al. | Oct 2014 | A1 |
20140330332 | Danek et al. | Nov 2014 | A1 |
20140336630 | Woloszko et al. | Nov 2014 | A1 |
20140336667 | Pellegrino et al. | Nov 2014 | A1 |
20140364842 | Werneth et al. | Dec 2014 | A1 |
20140371740 | Germain et al. | Dec 2014 | A1 |
20150005614 | Heggeness et al. | Jan 2015 | A1 |
20150005767 | Werneth et al. | Jan 2015 | A1 |
20150045783 | Edidin | Feb 2015 | A1 |
20150057658 | Sutton et al. | Feb 2015 | A1 |
20150065945 | Zarins et al. | Mar 2015 | A1 |
20150073515 | Turovskiy et al. | Mar 2015 | A1 |
20150105701 | Mayer et al. | Apr 2015 | A1 |
20150141876 | Diederich et al. | May 2015 | A1 |
20150157402 | Kunis et al. | Jun 2015 | A1 |
20150164546 | Pellegrino et al. | Jun 2015 | A1 |
20150196358 | Goshayeshgar | Jul 2015 | A1 |
20150216588 | Deem et al. | Aug 2015 | A1 |
20150231417 | Metcalf et al. | Aug 2015 | A1 |
20150272655 | Condie et al. | Oct 2015 | A1 |
20150273208 | Hamilton | Oct 2015 | A1 |
20150297246 | Patel et al. | Oct 2015 | A1 |
20150297282 | Cadouri | Oct 2015 | A1 |
20150320480 | Cosman, Jr. et al. | Nov 2015 | A1 |
20150335349 | Pellegrino et al. | Nov 2015 | A1 |
20150335382 | Pellegrino et al. | Nov 2015 | A1 |
20150342619 | Weitzman | Dec 2015 | A1 |
20150342660 | Nash | Dec 2015 | A1 |
20150342670 | Pellegrino et al. | Dec 2015 | A1 |
20150359586 | Heggeness | Dec 2015 | A1 |
20150374432 | Godara et al. | Dec 2015 | A1 |
20150374992 | Crosby et al. | Dec 2015 | A1 |
20150374995 | Foreman et al. | Dec 2015 | A1 |
20160000601 | Burger et al. | Jan 2016 | A1 |
20160001096 | Mishelevich | Jan 2016 | A1 |
20160002627 | Bennett et al. | Jan 2016 | A1 |
20160008593 | Cairns | Jan 2016 | A1 |
20160008618 | Omar-Pasha | Jan 2016 | A1 |
20160008628 | Morries et al. | Jan 2016 | A1 |
20160016012 | Youn et al. | Jan 2016 | A1 |
20160022988 | Thieme et al. | Jan 2016 | A1 |
20160022994 | Moffitt et al. | Jan 2016 | A1 |
20160024208 | MacDonald et al. | Jan 2016 | A1 |
20160029930 | Plumley et al. | Feb 2016 | A1 |
20160030276 | Spanyer | Feb 2016 | A1 |
20160030408 | Levin | Feb 2016 | A1 |
20160030748 | Edgerton et al. | Feb 2016 | A1 |
20160030765 | Towne et al. | Feb 2016 | A1 |
20160045207 | Kovacs et al. | Feb 2016 | A1 |
20160045256 | Godara et al. | Feb 2016 | A1 |
20160051831 | Lundmark et al. | Feb 2016 | A1 |
20160059007 | Koop | Mar 2016 | A1 |
20160074068 | Patwardhan | Mar 2016 | A1 |
20160074133 | Shikhman et al. | Mar 2016 | A1 |
20160074279 | Shin | Mar 2016 | A1 |
20160074661 | Lipani | Mar 2016 | A1 |
20160081716 | Boling et al. | Mar 2016 | A1 |
20160081810 | Reiley et al. | Mar 2016 | A1 |
20160095721 | Schell et al. | Apr 2016 | A1 |
20160106443 | Kuntz et al. | Apr 2016 | A1 |
20160106985 | Zhu | Apr 2016 | A1 |
20160106994 | Crosby et al. | Apr 2016 | A1 |
20160113704 | Godara et al. | Apr 2016 | A1 |
20160115173 | Bois et al. | Apr 2016 | A1 |
20160136310 | Bradford et al. | May 2016 | A1 |
20160144182 | Bennett et al. | May 2016 | A1 |
20160144187 | Caparso et al. | May 2016 | A1 |
20160158551 | Kent et al. | Jun 2016 | A1 |
20160166302 | Tan-Malecki et al. | Jun 2016 | A1 |
20160166835 | De Ridder | Jun 2016 | A1 |
20160175586 | Edgerton et al. | Jun 2016 | A1 |
20160199097 | Linderman et al. | Jul 2016 | A1 |
20160199117 | Druma | Jul 2016 | A1 |
20160213927 | McGee et al. | Jul 2016 | A1 |
20160220317 | Shikhman et al. | Aug 2016 | A1 |
20160220393 | Slivka et al. | Aug 2016 | A1 |
20160220638 | Dony et al. | Aug 2016 | A1 |
20160220672 | Chalasani et al. | Aug 2016 | A1 |
20160228131 | Brockman et al. | Aug 2016 | A1 |
20160228696 | Imran et al. | Aug 2016 | A1 |
20160235471 | Godara et al. | Aug 2016 | A1 |
20160235474 | Prisco et al. | Aug 2016 | A1 |
20160243353 | Ahmed | Aug 2016 | A1 |
20160246944 | Jain et al. | Aug 2016 | A1 |
20160250469 | Kim et al. | Sep 2016 | A1 |
20160250472 | Carbunaru | Sep 2016 | A1 |
20160262830 | Werneth et al. | Sep 2016 | A1 |
20160262904 | Schaller et al. | Sep 2016 | A1 |
20160271405 | Angara et al. | Sep 2016 | A1 |
20160278791 | Pellegrino et al. | Sep 2016 | A1 |
20160278846 | Harrison et al. | Sep 2016 | A1 |
20160278861 | Ko | Sep 2016 | A1 |
20160279190 | Watts et al. | Sep 2016 | A1 |
20160279408 | Grigsby et al. | Sep 2016 | A1 |
20160279411 | Rooney et al. | Sep 2016 | A1 |
20160279441 | Imran | Sep 2016 | A1 |
20160296739 | Burdick et al. | Oct 2016 | A1 |
20160302925 | Keogh et al. | Oct 2016 | A1 |
20160302936 | Billon et al. | Oct 2016 | A1 |
20160310739 | Burdick et al. | Oct 2016 | A1 |
20160317053 | Srivastava | Nov 2016 | A1 |
20160317211 | Harrison et al. | Nov 2016 | A1 |
20160317621 | Bright | Nov 2016 | A1 |
20160324541 | Pellegrino et al. | Nov 2016 | A1 |
20160324677 | Hyde et al. | Nov 2016 | A1 |
20160325100 | Lian et al. | Nov 2016 | A1 |
20160339251 | Kent et al. | Nov 2016 | A1 |
20160354093 | Pellegrino et al. | Dec 2016 | A1 |
20160354233 | Sansone et al. | Dec 2016 | A1 |
20160367797 | Eckermann | Dec 2016 | A1 |
20160367823 | Cowan et al. | Dec 2016 | A1 |
20160375259 | Davis et al. | Dec 2016 | A1 |
20170000501 | Aho et al. | Jan 2017 | A1 |
20170001026 | Schwarz et al. | Jan 2017 | A1 |
20170007277 | Drapeau et al. | Jan 2017 | A1 |
20170014169 | Dean et al. | Jan 2017 | A1 |
20170027618 | Lee et al. | Feb 2017 | A1 |
20170028198 | Degiorgio et al. | Feb 2017 | A1 |
20170028201 | Howard | Feb 2017 | A1 |
20170035483 | Crainich et al. | Feb 2017 | A1 |
20170036009 | Hughes et al. | Feb 2017 | A1 |
20170036025 | Sachs et al. | Feb 2017 | A1 |
20170036033 | Perryman et al. | Feb 2017 | A9 |
20170042834 | Westphal et al. | Feb 2017 | A1 |
20170049500 | Shikhman et al. | Feb 2017 | A1 |
20170049503 | Cosman | Feb 2017 | A1 |
20170049507 | Cosman | Feb 2017 | A1 |
20170049513 | Cosman | Feb 2017 | A1 |
20170050017 | Cosman | Feb 2017 | A1 |
20170050021 | Cosman | Feb 2017 | A1 |
20170050024 | Bhadra et al. | Feb 2017 | A1 |
20170056028 | Germain et al. | Mar 2017 | A1 |
20170065329 | Benamou et al. | Mar 2017 | A1 |
20170112507 | Crainich et al. | Apr 2017 | A1 |
20170119461 | Godara et al. | May 2017 | A1 |
20170128080 | Torrie | May 2017 | A1 |
20170128112 | Germain | May 2017 | A1 |
20170135742 | Lee et al. | May 2017 | A1 |
20170164998 | Klimovitch | Jun 2017 | A1 |
20170172650 | Germain | Jun 2017 | A1 |
20170181788 | Dastjerdi et al. | Jun 2017 | A1 |
20170202613 | Pellegrino et al. | Jul 2017 | A1 |
20170238943 | Sennett et al. | Aug 2017 | A1 |
20170246481 | Mishelevich | Aug 2017 | A1 |
20170266419 | Gosbayeshgar | Sep 2017 | A1 |
20170303983 | Linderman et al. | Oct 2017 | A1 |
20170312007 | Harlev et al. | Nov 2017 | A1 |
20170333052 | Ding et al. | Nov 2017 | A1 |
20180021048 | Pellegrino et al. | Jan 2018 | A1 |
20180042656 | Edidin | Feb 2018 | A1 |
20180055539 | Pellegino | Mar 2018 | A1 |
20180103964 | Patel et al. | Apr 2018 | A1 |
20180140245 | Videman | May 2018 | A1 |
20180153604 | Ayvazyan et al. | Jun 2018 | A1 |
20180161047 | Purdy et al. | Jun 2018 | A1 |
20180193088 | Sutton et al. | Jul 2018 | A1 |
20180303509 | Germain et al. | Oct 2018 | A1 |
20190029698 | Pellegrino et al. | Jan 2019 | A1 |
20190038296 | Pellegrino | Feb 2019 | A1 |
20190038343 | Sutton et al. | Feb 2019 | A1 |
20190038344 | Pellegrino | Feb 2019 | A1 |
20190038345 | Pellegrino | Feb 2019 | A1 |
20190090933 | Pellegrino et al. | Mar 2019 | A1 |
20190110833 | Pellegrino et al. | Apr 2019 | A1 |
20190118003 | Diederich et al. | Apr 2019 | A1 |
20190118004 | Diederich et al. | Apr 2019 | A1 |
20190118005 | Diederich et al. | Apr 2019 | A1 |
20190175252 | Heggeness | Jun 2019 | A1 |
20190216486 | Weitzman | Jul 2019 | A1 |
20190282268 | Pellegrino et al. | Sep 2019 | A1 |
20190290296 | Patel et al. | Sep 2019 | A1 |
20190298392 | Capote et al. | Oct 2019 | A1 |
20190365416 | Brockman et al. | Dec 2019 | A1 |
20200000480 | Alambeigi et al. | Jan 2020 | A1 |
20200022709 | Burger et al. | Jan 2020 | A1 |
20200022749 | Malkevich et al. | Jan 2020 | A1 |
20200030601 | Molnar et al. | Jan 2020 | A1 |
20200060695 | Purdy et al. | Feb 2020 | A1 |
20200060747 | Edidin | Feb 2020 | A1 |
20200069920 | Goshayeshgar | Mar 2020 | A1 |
20200078083 | Sprinkle et al. | Mar 2020 | A1 |
20200138454 | Patel et al. | May 2020 | A1 |
20200146743 | Defosset et al. | May 2020 | A1 |
20200146744 | Defosset et al. | May 2020 | A1 |
20200179033 | Banamou et al. | Jun 2020 | A1 |
20200214762 | Pellegrino et al. | Jul 2020 | A1 |
20200281646 | Pellegrino et al. | Sep 2020 | A1 |
20200390493 | Orczy-Timko et al. | Dec 2020 | A1 |
20200405499 | Gerbec et al. | Dec 2020 | A1 |
20210022814 | Crawford et al. | Jan 2021 | A1 |
20210077170 | Wiersdorf et al. | Mar 2021 | A1 |
20210093373 | Dastjerdi et al. | Apr 2021 | A1 |
20210113238 | Donovan et al. | Apr 2021 | A1 |
20210145416 | Godara et al. | May 2021 | A1 |
20210177502 | Wright et al. | Jun 2021 | A1 |
20210290254 | Serrahima Tornel et al. | Sep 2021 | A1 |
20210361350 | Pellegrino et al. | Nov 2021 | A1 |
20210361351 | Pellegrino et al. | Nov 2021 | A1 |
20210369323 | Edidin | Dec 2021 | A1 |
20210386491 | Shmayahu et al. | Dec 2021 | A1 |
20210401496 | Purdy et al. | Dec 2021 | A1 |
20220022930 | Brockman et al. | Jan 2022 | A1 |
20220031390 | Ebersole et al. | Feb 2022 | A1 |
20220096143 | Godara et al. | Mar 2022 | A1 |
20220110639 | Brockman et al. | Apr 2022 | A1 |
20220192702 | Donovan | Jun 2022 | A1 |
20220192722 | Harshman et al. | Jun 2022 | A1 |
20220202471 | Schepis et al. | Jun 2022 | A1 |
20220218411 | Druma et al. | Jul 2022 | A1 |
20220218434 | Druma | Jul 2022 | A1 |
20220240916 | Jung et al. | Aug 2022 | A1 |
20220296255 | Patel et al. | Sep 2022 | A1 |
20220401114 | Marino et al. | Dec 2022 | A1 |
20230046328 | Weitzman et al. | Feb 2023 | A1 |
20230138303 | Pellegrino | May 2023 | A1 |
20230172656 | Druma | Jun 2023 | A1 |
20230255676 | Donovan et al. | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
2001033279 | Feb 2001 | AU |
2003248436 | Sep 2003 | AU |
2008249202 | Sep 2003 | AU |
2011218612 | Sep 2003 | AU |
2009296474 | Sep 2009 | AU |
2015234376 | Sep 2009 | AU |
2018223007 | Sep 2009 | AU |
20112044278 | Jan 2010 | AU |
2011204278 | Jan 2011 | AU |
2012362524 | Dec 2012 | AU |
2013337680 | Nov 2013 | AU |
2012244378 | May 2015 | AU |
2019201705 | Mar 2019 | AU |
2019206037 | Jul 2019 | AU |
2020201962 | Mar 2020 | AU |
2021200382 | Jan 2021 | AU |
2020346827 | Mar 2022 | AU |
2021306313 | Jan 2023 | AU |
2023204019 | Jun 2023 | AU |
2021409967 | Jul 2023 | AU |
2022239314 | Sep 2023 | AU |
2397413 | Feb 2001 | CA |
2723071 | Feb 2001 | CA |
2443491 | Sep 2003 | CA |
2737374 | Sep 2009 | CA |
2957010 | Sep 2009 | CA |
2785207 | Jan 2011 | CA |
2889478 | Nov 2013 | CA |
28589478 | Nov 2013 | CA |
3093398 | Sep 2020 | CA |
3150339 | Mar 2022 | CA |
3202650 | Jun 2023 | CA |
3211365 | Sep 2023 | CA |
0040658 | Dec 1981 | EP |
0584959 | Mar 1994 | EP |
0597463 | May 1994 | EP |
0880938 | Dec 1998 | EP |
1013228 | Jun 2000 | EP |
1059067 | Dec 2000 | EP |
1059087 | Dec 2000 | EP |
1905397.4 | Feb 2001 | EP |
7010394 | Feb 2001 | EP |
7010581.2 | Feb 2001 | EP |
7010649.7 | Feb 2001 | EP |
10012521 | Feb 2001 | EP |
16197060.3 | Feb 2001 | EP |
3256168 | Sep 2003 | EP |
5021597.9 | Sep 2003 | EP |
10012523.6 | Sep 2003 | EP |
1294323 | Apr 2007 | EP |
1938765 | Jul 2008 | EP |
9816892.5 | Sep 2009 | EP |
1471836 | Apr 2010 | EP |
1732213.1 | Jan 2011 | EP |
11732213.1 | Jan 2011 | EP |
13852217.2 | Nov 2013 | EP |
2785260 | Aug 2015 | EP |
2965782 | Jan 2016 | EP |
2508225 | Sep 2016 | EP |
3078395 | Oct 2016 | EP |
2205313 | Nov 2016 | EP |
3097946 | Nov 2016 | EP |
2913081 | Jan 2017 | EP |
18166323.8 | Apr 2018 | EP |
19162385.9 | Mar 2019 | EP |
20161054.0 | Mar 2020 | EP |
20862138.3 | Mar 2022 | EP |
22771962.2 | Sep 2023 | EP |
8102841.9 | Feb 2001 | HK |
8103900.5 | Feb 2001 | HK |
17108246.6 | Feb 2001 | HK |
12100034.4 | Sep 2009 | HK |
13105656.9 | Jan 2011 | HK |
16100183.9 | Nov 2013 | HK |
161002183.9 | Nov 2013 | HK |
19124269.2 | May 2019 | HK |
220747 | Jan 2011 | IL |
245665 | Jan 2011 | IL |
238516 | Nov 2013 | IL |
303851 | Jun 2023 | IL |
53-139791 | Nov 1978 | JP |
6-47058 | Feb 1994 | JP |
10-290806 | Nov 1998 | JP |
2001-037760 | Feb 2001 | JP |
2001-556439 | Feb 2001 | JP |
2003-341164 | Sep 2003 | JP |
2009-269652 | Sep 2003 | JP |
2012-246075 | Sep 2003 | JP |
2005-169012 | Jun 2005 | JP |
2011-529245 | Sep 2009 | JP |
2015-010950 | Sep 2009 | JP |
2016-201503 | Sep 2009 | JP |
2012-548169 | Jan 2011 | JP |
2013-1951 | Jan 2011 | JP |
2015-540810 | Nov 2013 | JP |
2017-156808 | Nov 2013 | JP |
2018-088547 | May 2018 | JP |
2018-232891 | Dec 2018 | JP |
2021-026929 | Feb 2021 | JP |
2023-537522 | Sep 2023 | JP |
2023-555601 | Sep 2023 | JP |
2003-0017897 | Mar 2003 | KR |
WO9636289 | Nov 1996 | WO |
WO9827876 | Jul 1998 | WO |
WO9834550 | Aug 1998 | WO |
WO9919025 | Apr 1999 | WO |
WO9944519 | Sep 1999 | WO |
WO9948621 | Sep 1999 | WO |
WO0021448 | Apr 2000 | WO |
WO0033909 | Jun 2000 | WO |
WO0049978 | Aug 2000 | WO |
WO0056237 | Sep 2000 | WO |
WO0067648 | Nov 2000 | WO |
WO0067656 | Nov 2000 | WO |
WO0101877 | Jan 2001 | WO |
WO0145579 | Jun 2001 | WO |
WO0157655 | Aug 2001 | WO |
WO 200205699 | Jan 2002 | WO |
WO 200205897 | Jan 2002 | WO |
WO 2002026319 | Apr 2002 | WO |
WO 200228302 | Apr 2002 | WO |
WO 2002054941 | Jul 2002 | WO |
WO 2002067797 | Sep 2002 | WO |
WO 2002096304 | Dec 2002 | WO |
WO 2006044794 | Apr 2006 | WO |
WO 2007001981 | Jan 2007 | WO |
WO2007008954 | Jan 2007 | WO |
WO 2007031264 | Mar 2007 | WO |
WO 2008001385 | Jan 2008 | WO |
WO 2008008522 | Jan 2008 | WO |
WO 2008076330 | Jun 2008 | WO |
WO 2008076357 | Jun 2008 | WO |
WO 2008121259 | Oct 2008 | WO |
WO 2008140519 | Nov 2008 | WO |
WO 2008141104 | Nov 2008 | WO |
WO2008144709 | Nov 2008 | WO |
WO 2009042172 | Apr 2009 | WO |
WO 2009076461 | Jun 2009 | WO |
PCTUS2009058329 | Sep 2009 | WO |
WO 2009124192 | Oct 2009 | WO |
WO 2009155319 | Dec 2009 | WO |
WO 2010111246 | Sep 2010 | WO |
WO 2010135606 | Nov 2010 | WO |
PCTUS2011020535 | Jan 2011 | WO |
WO 2011041038 | Apr 2011 | WO |
WO 2012024162 | Feb 2012 | WO |
WO 2012065753 | Mar 2012 | WO |
WO 2012074932 | Jun 2012 | WO |
PCTUS2012071465 | Dec 2012 | WO |
WO 2013009516 | Jan 2013 | WO |
WO 2013134452 | Sep 2013 | WO |
PCTUS2013068012 | Nov 2013 | WO |
WO 2013168006 | Nov 2013 | WO |
WO 2013180947 | Dec 2013 | WO |
WO 2014004051 | Jan 2014 | WO |
WO 2014130231 | Aug 2014 | WO |
WO 2014141207 | Sep 2014 | WO |
WO 2014165194 | Oct 2014 | WO |
WO 2014176141 | Oct 2014 | WO |
WO 2015038317 | Mar 2015 | WO |
WO 2015047817 | Apr 2015 | WO |
WO 2015066295 | May 2015 | WO |
WO 2015066303 | May 2015 | WO |
WO 2015079319 | Jun 2015 | WO |
WO 2015148105 | Oct 2015 | WO |
WO 2014145222 | Jan 2016 | WO |
WO 2014145659 | Jan 2016 | WO |
WO 2014146029 | Jan 2016 | WO |
WO 2016033380 | Mar 2016 | WO |
WO 2016048965 | Mar 2016 | WO |
WO 2014197596 | Apr 2016 | WO |
WO 2014210373 | May 2016 | WO |
WO 2016069157 | May 2016 | WO |
WO 2016075544 | May 2016 | WO |
WO 2015024013 | Jun 2016 | WO |
WO 2016090420 | Jun 2016 | WO |
WO 2016105448 | Jun 2016 | WO |
WO 2016105449 | Jun 2016 | WO |
WO 2015044945 | Aug 2016 | WO |
WO 2015057696 | Aug 2016 | WO |
WO 2015060927 | Aug 2016 | WO |
WO 2016127130 | Aug 2016 | WO |
WO 2016130686 | Aug 2016 | WO |
WO 2016134273 | Aug 2016 | WO |
WO 2011157714 | Sep 2016 | WO |
WO 2016148954 | Sep 2016 | WO |
WO 2016154091 | Sep 2016 | WO |
WO 2016168381 | Oct 2016 | WO |
WO 2016209682 | Dec 2016 | WO |
WO 2017009472 | Jan 2017 | WO |
WO2017010930 | Jan 2017 | WO |
WO 2017019863 | Feb 2017 | WO |
WO 2017027703 | Feb 2017 | WO |
WO 2017027809 | Feb 2017 | WO |
WO 2018116273 | Jun 2018 | WO |
PCTUS2020050249 | Sep 2020 | WO |
WO 2020198150 | Oct 2020 | WO |
WO 2021016699 | Feb 2021 | WO |
PCTUS2021040843 | Jul 2021 | WO |
PCTUS2021072125 | Oct 2021 | WO |
PCTUS202182125 | Oct 2021 | WO |
PCTUS2022019954 | Mar 2022 | WO |
WO 2022066743 | Mar 2022 | WO |
WO 2022125875 | Jun 2022 | WO |
WO 2022191978 | Sep 2022 | WO |
WO 2022207105 | Oct 2022 | WO |
WO 2023009697 | Feb 2023 | WO |
PCTUS2023017913 | Apr 2023 | WO |
Entry |
---|
U.S. Appl. No. 16/152,834 U.S. Pat. No. 11,471,171, filed Oct. 5, 2018, Bipolar Radiofrequencey Ablation Systems for Treatment Within Bone. |
U.S. Appl. No. 18/451,539, filed Aug. 17, 2023, Systems for Treating Nerves Within Bone. |
U.S. Appl. No. 13/612,001 U.S. Pat. No. 8,419,731, filed Sep. 13, 2012, Methods of Treating Back Pain. |
U.S. Appl. No. 16/153,242 U.S. Pat. No. 10,588,691, filed Oct. 5, 2018, Radiofrequencey Ablation of Tissue Within a Vertebral Body. |
U.S. Appl. No. 16/160,155 U.S. Pat. No. 11,596,468, filed Oct. 15, 2018, Intraosseous Nerve Treatment. |
U.S. Appl. No. 16/818,092 U.S. Pat. No. 11,737,814, filed Mar. 13, 2020, Radiofrequency Ablation of Tissue Within a Vertebral Body. |
U.S. Appl. No. 17/394,189 U.S. Pat. No. 11,701,168, filed Aug. 4, 2021, Radiofrequency Ablation of Tissue Within a Vertebral Body. |
U.S. Appl. No. 17/394,166 U.S. Pat. No. 11,690,667, filed Aug. 4, 2021, Radiofrequency Ablation of Tissue Within a Vertebral Body. |
U.S. Appl. No. 18/360,724, filed Jul. 27, 2023, Radiofrequency Ablation of Tissue Within a Vertebral Body. |
U.S. Appl. No. 17/193,491, filed Mar. 5, 2021, Method of Treating an Intraosseous Nerve |
U.S. Appl. No. 13/963,767 U.S. Pat. No. 9,39,701, filed Aug. 9, 2013, Channeling Paths Into Bone. |
U.S. Appl. No. 15/040,268 U.S. Pat. No. 10,265,099, filed Feb. 10, 2016, Systems for Accessing Nerves Within Bone. |
U.S. Appl. No. 16/368,453, filed Mar. 28, 2019, Systems for Accessing Nerves Within Bone. |
U.S. Appl. No. 16/205,050 U.S. Pat. No. 11,471,210, filed Nov. 29, 2018, Methods of Denervating Vertebral Body Using External Energy Source. |
U.S. Appl. No. 18/047,164, filed Oct. 17, 2022, Methods of Denervating Vertebral Body Using External Energy Source. |
U.S. Appl. No. 17/488,116 U.S. Pat. No. 11,234,764, filed Sep. 28, 2021, Systems for Navigation and Treatment Within a Vertebral Body. |
U.S. Appl. No. 17/488,111 U.S. Pat. No. 11,291,502, filed Sep. 28, 2021, Methods of Navigation and Treatment Within a Vertebral Body. |
U.S. Appl. No. 17/657,864, filed Apr. 4, 2022, Methods of Navigation and Treatment Within a Vertebral Body. |
U.S. Appl. No. 17/138,203 U.S. Pat. No. 11,123,103, filed Dec. 30, 2020, Introducer Systems for Bone Access. |
U.S. Appl. No. 17/138,234 U.S. Pat. No. 11,007,010, filed Dec. 30, 2020, Curved Bone Access Systems. |
U.S. Appl. No. 17/302,949 U.S. Pat. No. 11,202,655, filed Mar. 17, 2021, Accessubg and Treating Tissue Within a Vertical Body. |
U.S. Appl. No. 17/303,254 U.S. Pat. No. 11,426,199, filed May 25, 2021, Methods of Treating a Vertebral Body. |
U.S. Appl. No. 17/303,267 U.S. Pat. No. 11,207,100, filed May 25, 2021, Methods of Detecting and Treating Back Pain. |
U.S. Appl. No. 17/645,658, filed Dec. 22, 2021, Methods of Detecting and Treating Back Pain. |
U.S. Appl. No. 17/822,700, filed Aug. 26, 2022, Methods of Treating a Vertebral Body. |
U.S. Appl. No. 18/003,760, filed Dec. 29, 2022, Vertebral Denervation in Conjunction With Vertebral Fusion. |
U.S. Appl. No. 18/258,734, filed Jun. 21, 2023, Prediction of Candicates for Spinal Neuromodulation. |
U.S. Appl. No. 18/339,007, filed Jun. 21, 2023, Prediction of Candicates for Spinal Neuromodulation. |
U.S. Appl. No. 18/550,040, filed Sep. 11, 2023, Robotic Spine Systems and Robotic-Assisted Methods for Tissue Modulation. |
U.S. Appl. No. 18/053,284, filed Nov. 7, 2022, Impedance Stoppage Mitigation During Radiofrequency Tissue Ablation Procedures. |
A Novel Approach for Treating Chronic Lower Back Pain Abstract for Presentation at North American Spine Society 26th Annual Meeting in Chicago IL on Nov. 4, 2011. |
Antonacci M. Darryl et al.; Innervation of the Human Vertebral Body: A Histologic Study; Journal of Spinal Disorder vol. 11 No. 6 pp. 526-531 1998 Lippincott Williams & Wilkins Philadelphia. |
Arnoldi Carl C.; Intraosseous Hypertension—A Possible Cause of Low Back Pain ?; Clinical Orthopedics and Related Research No. 115 Mar.-Apr. 1976. |
Bailey, Jeannie F., “Innervation Patterns of PGP 9.5-Positive Nerve Fibers within the Human Lumbar Vertebra,” Journal of Anatomy, (2011) 218, pp. 263-270, San Francisco, California. |
Becker, Stephan, et al., “Ablation of the basivertebral nerve for treatment of back pain: a clinical study,” The Spine Journal, vol. 17, pp. 218-223 (Feb. 2017). |
Bergeron et al. “Fluoroscopic-guided radiofrequency ablation of the basivertebral nerve: application and analysis with multiple imaging modalities in an ovine model” Thermal Treatment of Tissue: Energy Delivery and Assessment III edited by Thomas p. Ryan Proceedings of SPIE vol. 5698 (SPIE Bellingham WA 2005) pp. 156-167. |
Bogduk N. The anatomy of the lumbar intervertebral disc syndrome Med J. Aust. 1976 Vol. 1 No. 23 pp. 878-881. |
Bogduk Nikolai et al.; Technical Limitations to the efficacy of Radiofrequency Neurotomy for Spinal Pain; Neurosurgery vol. 20 No. 4 1987. |
Caragee, EG et al.; “Discographic, MRI and psychosocial determinants of low back pain disability and remission: A prospective study in subjects with benign persistent back pain”, The Spine Journal: The Official Journal of the North American Spine Society, vol. 5(1), pp. 24-35 (2005). |
Choy Daniel SS.J et al.; Percutaneous Laser Disc Decompression A New Therapeutic Modality; SPINE vol. 17 No. 8 1992. |
Cosman E.R. et al. Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone. Neurosurgery vol. 1 no. 6 1984 pp. 945-950. |
Deardorff Dana L. et al.; Ultrasound applicators with internal cooling for interstitial thermal therapy; SPIE vol. 3594 1999. |
Deramond H. et al. Temperature Elevation Caused by Bone Cement Polymerization During Vertebroplasty Bone Aug. 1999 p. 17S-21S vol. 25 No. 2 Supplement. |
Diederich C. J. et al. “IDTT Therapy in Cadaveric Lumbar Spine: Temperature and thermal dosedistributions Thermal Treatment of Tissue: Energy Delivery and Assessment” Thomas P. Ryan Editor Proceedings of SPIE vol. 4247:104-108 (2001). |
Diederich Chris J. et al.; Ultrasound Catheters for Circumferential Cardiac Ablation; SPIE vol. 3594 (1999). |
Dupuy D.E. et al. Radiofrequency ablation of spinal tumors: Temperature distribution in the spinal canal AJR vol. 175 pp. 1263-1266 Nov. 2000. |
Dupuy Damian E.; Radiofrequency Ablation: An Outpatient Percutaneous Treatment; Medicine and Health/Rhode Island vol. 82 No. 6 Jun. 1999. |
Esses Stephen I. et al.; Intraosseous Vertebral Body Pressures; SPINE vol. 17 No. 6 Supplement 1992. |
FDA Response to 510(k) Submission by Relievant Medsystems Inc. submitted on Sep. 27, 2007 (date stamped on Oct. 5, 2007) and associated documents. |
Fields, AJ et al; “Innervation of pathologies in the lumbar vertebral endplate and intervertebral disc”, The Spine Journal: Official Journal of the North American Spine Society, vol. 14(3), pp. 513-521 (2014). |
Fields, Aaron J. et al.; “Cartilage endplate damage strongly assocates with chronic low back pain, independent of modic changes”, Abstract form Oral Presentation at the ISSLS Annual Meeting in Banff, Canada (May 14-18, 2018). |
Fischgrund JS, et al.; “Intraosseous Basivertebral Nerve Ablation for the Treatment of Chronic LowBack Pain: 2-Year Results from a Prospective Randomized Double-Blind Sham-Controlled Multicenter Study”, International Journal of Spine Surgery, vol. 13 (2), pp. 110-119 (2019). |
Fras M.D., Christian et al., “Substance P-containing Nerves within the Human Vertebral Body: An Immunohistochemical Study of the Basivertebral Nerve”, The Spine Journal 3, 2003, pp. 63-67. |
Gehl J. “Electroporation: theory and methods perspectives for drug delivery gene therapy and research” Acta Physiol. Scand. Vol. 177 pp. 437-447 (2003). |
Goldberg S.N. et al. Tissue ablation with radiofrequency: Effect of probe size gauge duration and temperature on lesion volume Acad. Radiol. vol. 2 pp. 399-404 (1995). |
Gornet, Matthew G et al.; “Magnetic resonance spectroscopy (MRS) can identify painful lumbar discsand may facilitate improved clinical outcomes of lumbar surgeries for discogenic pain”, European Spine Journal, vol. 28, pp. 674-687 (2019). |
Hanai Kenji et al.; Simultaneous Measurement of Intraosseous and Cerebrospinal Fluid Pressures in the Lumbar Region; SPINE vol. 10 No. 1 1985. |
Heggeness Michael H. et al. The Trabecular Anatomy of Thoracolumbar Vertebrae: Implications for Burst Fractures Journal of Anatomy 1997 pp. 309-312 vol. 191 Great Britain. |
Heggeness Michael H. et al. Discography Causes End Plate Deflection; SPINE vol. 18 No. 8 pp. 1050-1053 1993 J.B. Lippincott Company. |
Heggeness, M. et al Ablation of the Basivertebral Nerve for the Treatment of Back Pain: A PilotClinical Study; The Spine Journal, 2011, vol. 11, Issue 10, Supplement, pp. S65-S66, ISSN 1529-9430. |
Hoopes et al. “Radiofrequency Ablation of The Basivertebral Nerve as a Potential Treatment of Back Pain: Pathologic Assessment in an Ovine Model” Thermal Treatment of Tissue: Energy Delivery and Assessment III edited by Thomas P. Ryan Proceedings of SPIE vol. 5698 (SPIE Bellingham WA 2005) pp. 168-180. |
Houpt Jonathan C. et al.; Experimental Study of Temperature Distributions and Thermal TransportDuring Radiofrequency Current Therapy of the Intervertebral Disc; SPINE vol. 21 No. 15 pp. 1808-1813 1996 Lippincott-Raven Publishers. |
Jourabchi, Natanel et al.; “Irreversible electroporation (NanoKnife) in cancer treatment,” Gastrointestinal Intervention, vol. 3, pp. 8-18 (2014). |
Khalil, J et al.; “A Prospective, Randomized, Multi-Center Study of Intraosseous Basivertebral Nerve Ablation for the Treatment of Chronic Low Back Pain”, The Spine Journal (2019), avilable at https://doi.org/10.1016/jspinee.2019.05.598. |
Kleinstueck Frank S. et al.; Acute Biomechanical and Histological Effects of Intradiscal Electrothermal Therapy on Human Lumbar Discs; SPINE vol. 26 No. 20 pp. 2198-2207; 2001 Lippincott Williams & Wilkins Inc. |
Kopecky Kenyon K. et al. “Side-Exiting Coaxial Needle for Aspiration Biopsy”—AJR—1996; 167 pp. 661-662. |
Kuisma M et al.; “Modic changes in endplates of lumbar vertebral bodies: Prevalence and associationwith low back and sciatic pain among middle-aged male workers”, Spine, vol. 32(10), pp. 1116-1122 (2007). |
Lehmann Justus F. et al.; Selective Heating Effects of Ultrasound in Human Beings; Archives of Physical Medicine & Rehabilitation Jun. 1966. |
Letcher Frank S. et al.; The Effect of Radiofrequency Current and Heat on Peripheral Nerve Action Potential in the Cat; U.S. Naval Hospital Philadelphia PA. (1968). |
Lotz JC, et al.; “The Role of the Vertebral End Plate in Low Back Pain”, Global Spine Journal, vol. 3, pp. 153-164 (2013). |
Lundskog Jan; Heat and Bone Tissue-/an experimental investigation of the thermal properties of bone tissue and threshold levels for thermal injury; Scandinavian Journal of Plastic and Reconstructive Surgery Supplemental 9 From the Laboratory of Experimental Biology Department of anatomy University of Gothenburg Gothenburg Sweden GOTEBORG 1972. |
Martin J.B. et al. Vertebroplasty: Clinical Experience and Follow-up Results Bone Aug. 1999 pp. 11S-15S vol. 25 No. 2 Supplement. |
Massad Malek M.D. et al.; Endoscopic Thoracic Sympathectomy: Evaluation of Pulsatile Laser Non-Pulsatile Laser and Radiofrequency-Generated Thermocoagulation; Lasers in Surgery and Medicine; 1991; pp. 18-25. |
Mehta Mark et al.; The treatment of chronic back pain; Anaesthesia 1979 vol. 34 pp. 768-775. |
Modic MT et al.; “Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging” Radiology vol. 166 pp. 193-199 (1988). |
Mok, Florence et al.; “Modic changes of the lumbar spine: Prevalence, risk factors, and association with disc degeneration and low back pain in a large-scale population-based cohort”, The Spine Journal: Official Journal of the North American Spine Society, vol. 16(1), pp. 32-41 (2016). |
Nau William H. Ultrasound interstitial thermal therapy (USITT) in the prostate; SPIE vol. 3594 Jan. 1999. |
Osteocool Pain Management Brochure, Baylis Medical, copyright 2011. |
Pang, Henry et al,; The UTE Disc Sign on MRI: A Novel Imaging Biomarker Associated With Degenerative Spine Changes, Low Back Pain, and Disability, SPINE, vol. 42 (Aug. 2017). |
Radiological Society of North America. “Pulsed radiofrequency relieves acute back pain and sciatica.”ScienceDaily. ScienceDaily, Nov. 27, 2018. <www.sciencedaily.com/releases/2018/11/181127092604.htm>. |
Rashbaum Ralph F.; Radiofrequency Facet Denervation A Treatment alternative in Refractory Low Back Pain with or without Leg Pain; Orthopedic Clinics of North America-vol. 14 No. 3 Jul. 1983. |
Rosenthal D.I. Seminars in Musculoskeletal Radiology vol. 1 No. 2. pp. 265-272 (1997). |
Ryan et al. “Three-Dimensional Finite Element Simulations of Vertebral Body Thermal Treatment”Thermal Treatment of Tissue: Energy Delivery and Assessment III edited by Thomas P. Ryan Proceedings of SPIE vol. 5698 (SPIE Bellingham WA 2005) pp. 137-155. |
Shealy C. Norman; Percutaneous radiofrequency denervation of spinal facets Treatment for chronic back pain and sciatica; Journal of Neurosurgery/vol. 43/Oct. 1975. |
Sherman Mary S.; The Nerves of Bone The Journal of Bone and Joint Surgery Apr. 1963 pp. 522-528 vol. 45-A No. 3. |
Solbiati L. et al. Hepatic metastases: Percutaneous radio-frequency ablation with cooled-tip electrodes. Interventional Radiology vol. 205 No. 2 pp. 367-373 (1997). |
Stanton Terry “Can Nerve Ablation Reduce Chronic Back Pain ?” AAOS Now Jan. 2012. |
The AVAmax System—Cardinal Health Special Procedures Lit. No. 25P0459-01—www.cardinal.com (copyright 2007). |
Tillotson L. et al. Controlled thermal injury of bone: Report of a percutaneous technique using radiofrequency electrode and generator. Investigative Radiology Nov. 1989 pp. 888-892. |
Troussier B. et al.; Percutaneous Intradiscal Radio-Frequency Thermocoagulation A Cadaveric Study; SPINE vol. 20 No. 15 pp. 1713-1718 1995 Lippincott-Raven Publishers. |
Ullrich Jr. Peter F. “Lumbar Spinal Fusion Surgery” Jan. 9, 2013 Spine-Health (available via wayback machine Internet archive at http://web.archive.org/web/20130109095419/http://www/spine-health.com/treatment/spinal-fusion/lumbar-spinal-fusion-surgery). |
Weishaupt, D et al,; “Painful Lumbar Disk Derangement: Relevance of Endplate Abnormalities at MR Imaging”, Radiology, vol. 218(2), pp. 420-427 (2001). |
YouTube Video, “DFINE-STAR Procedure Animation,” dated Sep. 30, 2013, can be viewed at https://www.youtube.com/watch?v=YxtKNyc2e-0. |
Kim et al., Transforaminal epiduroscopic basivertebral nerve laser ablation for chronic low back painassociated with modic changes: A preliminary open-label study. Pain Research and Management 2018; https://pubmed.ncbi.nlm.nih.gov/30186540. |
Rahme et al., The modic vertebral endplate and marrow changes: pathologic significance and relationto low back pain and segmental instability of the lumbar spine. American Journal of Neuroradiology 29.5 (2008): 838-842; http://www.ajnr.org/content/29/5/838. |
Macadaeg et al, A prospective single arm study of intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: 12-month results. North American Spine Society Journal; May 27, 2020, 8 pages. |
Vadala et al., “Robotic Spine Surgery and Augmented Reality Systems: A State of the Art”, Neurospine Epub Mar. 31, 2020; received: Feb. 2, 2020; revised: Feb. 22, 2020; accepted: Feb. 24, 2020; retrieved on [Oct. 6, 2022]. Retrieved from the internet URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136092/pdf/ns-2040060-030.pdf entire document. |
U.S. Appl. No. 09/775,137 U.S. Pat. No. 6,699,242, filed Feb. 1, 2001, Methods and Devices for Intraosseous Nerve Ablation. |
U.S. Appl. No. 10/401,854 U.S. Pat. No. 7,258,690, filed Mar. 28, 2003, Windowed Thermal Ablation Probe. |
U.S. Appl. No. 11/745,446, filed May 7, 2007, Windowed Thermal Ablation Probe. |
U.S. Appl. No. 12/643,997, filed Dec. 21, 2009, Windowed Thermal Ablation Probe. |
U.S. Appl. No. 13/655,683 U.S. Pat. No. 8,882,764, filed Oct. 19, 2012, Thermal Denervation Devices. |
U.S. Appl. No. 14/535,868 U.S. Pat. No. 9,848,944, filed Nov. 7, 2014, Thermal Denervation Devices and Methods. |
U.S. Appl. No. 15/845,699, filed Dec. 18, 2017, Thermal Denervation Devices and Methods. |
U.S. Appl. No. 16/153,407 U.S. Pat. No. 10,463,423, filed Oct. 5, 2018, Thermal Denervation Devices and Methods. |
U.S. Appl. No. 10/260,879 U.S. Pat. No. 6,907,884, filed Sep. 30, 2002, Method of Straddling an Intraosseous Nerve. |
U.S. Appl. No. 11/123,766 U.S. Pat. No. 7,749,218, filed May 6, 2005, Method of Straddling an Intraosseous Nerve. |
U.S. Appl. No. 12/683,555 U.S. Pat. No. 8,613,744, filed Jan. 7, 2010, Systems and Methods for Navigating an Instrument Through Bone. |
U.S. Appl. No. 13/612,561 U.S. Pat. No. 8,425,507, filed Sep. 12, 2012, Basivertebral Nerve Denervation. |
U.S. Appl. No. 13/617,470 U.S. Pat. No. 8,623,014, filed Sep. 14, 2012, Systems for Denervation of Basivertebral Nerves. |
U.S. Appl. No. 13/862,306 U.S. Pat. No. 8,628,528, filed Apr. 12, 2013, Vertebral Denervation. |
U.S. Appl. No. 14/136,763 U.S. Pat. No. 9,023,038, filed Dec. 20, 2013, Denervation Methods. |
U.S. Appl. No. 14/174,024 U.S. Pat. No. 9,017,325, filed Jan. 3, 2014, Nerve Modulation Systems. |
U.S. Appl. No. 14/174,024 U.S. Pat. No. 9,017,325, files Jan. 3, 2014, Nerve Modulation Systems. |
U.S. Appl. No. 14/153,922 U.S. Pat. No. 9,173,676, filed Jan. 13, 2014, Nerve Modulation Systems. |
U.S. Appl. No. 14/695,330 U.S. Pat. No. 9,421,064, filed Apr. 24, 2015, Nerve Modulation Systems. |
U.S. Appl. No. 14/701,908, filed May 1, 2015, Denervation Methods. |
U.S. Appl. No. 14/928,037 U.S. Pat. No. 10,028,753, filed Oct. 30, 2015, Spine Treatment Kits. |
U.S. Appl. No. 15/241,523 U.S. Pat. No. 9,724,107, filed Aug. 19, 2016, Nerve Modulation Systems. |
U.S. Appl. No. 15/669,399 U.S. Pat. No. 10,905,440, filed Aug. 4, 2017, Nerve Modulation Systems. |
U.S. Appl. No. 16/152,834, filed Oct. 5, 2018, Bipolar Radiofrequency Ablation Systems for Treatment Within Bone. |
U.S. Appl. No. 16/156,850, filed Oct. 10, 2018, Systems for Treating Nerves Within Bone Using Steam. |
U.S. Appl. No. 16/747,830, filed Jan. 21, 2020, Denervation Methods. |
U.S. Appl. No. 13/612,541 U.S. Pat. No. 8,361,067 filed Sep. 12, 2012, Methods of Therapeutically Heating a Vertebral Body to Treat Back Pain. |
U.S. Appl. No. 13/615,001 U.S. Pat. No. 8,419,731, filed Sep. 13, 2012, Methods of Treating Back Pain. |
U.S. Appl. No. 13/615,300, filed Sep. 13, 2012, System for Heating a Vertebral Body to Treat Back Pain. |
U.S. Appl. No. 13/862,317 U.S. Pat. No. 8,992,522, filed Apr. 12, 2013, Back Pain Treatment Methods. |
U.S. Appl. No. 13/923,798 U.S. Pat. No. 8,992,523, filed Jun. 12, 2013, Vertebral Treatment. |
U.S. Appl. No. 14/673,172 U.S. Pat. No. 9,486,279, filed Mar. 30, 2015, Intraosseous Nerve Treatment. |
U.S. Appl. No. 15/344,284 U.S. Pat. No. 10,111,704, filed Nov. 4, 2016, Intraosseous Nerve Treatment. |
U.S. Appl. No. 16/153,234 U.S. Pat. No. 10,478,246, filed Oct. 5, 2018, Ablation of Tissue Within Vertebral Body Involving Internal Cooling. |
U.S. Appl. No. 16/153,242 U.S. Pat. No. 10,588,691, filed Oct. 5, 2018, Radiofrequency Ablation of Tissue Within a Vertebral Body. |
U.S. Appl. No. 16/160,155, filed Oct. 15, 2018, Intraosseous Nerve Treatment. |
U.S. Appl. No. 16/818,092, filed Mar. 2020, Radiofrequency Ablation of Tissue Within a Vertebral Body. |
U.S. Appl. No. 17/394,189, filed Aug. 4, 2021, Radiofrequency Ablation of Tissue Within a Vertebral Body. |
U.S. Appl. No. 17/394,166, filed Aug. 4, 2021, Radiofrequency Ablation of Tissue Within a Vertebral Body. |
U.S. Appl. No. 13/541,591 U.S. Pat. No. 7,749,218 RE46356, filed Jul. 3, 2012, Method of Treating an Intraosseous Nerve. |
U.S. Appl. No. 15/469,315 U.S. Pat. No. 7,749,218 RE48460, filed Mar. 24, 2017, Method of Treating an Intraosseous Nerve. |
U.S. Appl. No. 16/153,598, filed Oct. 5, 2018, Method of Treating an Intraosseous Nerve. |
U.S. Appl. No. 16/153,603, filed Oct. 5, 2018, Method of Treating an Intraosseous Nerve. |
U.S. Appl. No. 12/566,895 U.S. Pat. No. 8,419,730, filed Sep. 25, 2009, Systems and Methods for Navigating an Instrument Through Bone. |
U.S. Appl. No. 13/963,767 U.S. Pat. No. 9,039,701, filed Aug. 9, 2013, Channeling Paths Into Bone. |
U.S. Appl. No. 13/862,242 U.S. Pat. No. 9,259,241, filed Apr. 12, 2013, Systems for Accessing Nerves Within Bone. |
U.S. Appl. No. 15/040,268 U.S. Pat. No. 10,265,099, filed Feb. 10, 2016, Systems for Accessing Nerves Within Bones. |
U.S. Appl. No. 16/368,453, filed Mar. 28, 2019, Systems for Accessing Nerves Within Bones. |
U.S. Appl. No. 12/868,818 U.S. Pat. No. 8,808,284, filed Aug. 26, 2010, Systems for Navigating an Instrument Through Bone. |
U.S. Appl. No. 14/462,371 U.S. Pat. No. 9,265,522, filed Aug. 18, 2014, Methods for Navigating an Instrument Through Bone. |
U.S. Appl. No. 13/543,712 U.S. Pat. No. 8,535,309, filed Jul. 6, 2012, Vertebral Bone Channeling Systems. |
U.S. Appl. No. 13/543,723 U.S. Pat. No. 8,414,571, filed Jul. 6, 2012, Vertebral Bone Navigation Systems. |
U.S. Appl. No. 13/543,721, filed Jul. 6, 2012, Intraosseous Nerve Denervation Methods. |
U.S. Appl. No. 10/103,439 U.S. Pat. No. 6,736,835, filed Mar. 21, 2002, Novel Early Intervention Spinal Treatment Methods and Devices for Use Therein. |
U.S. Appl. No. 14/369,661 U.S. Pat. No. 10,369,661, filed Jun. 27, 2014, Systems and Methods for Treating Back Pain. |
U.S. Appl. No. 16/205,050, filed Nov. 29, 2018, Methods of Denervating Vertebral Body Using External Energy Source. |
U.S. Appl. No. 14/440,050 U.S. Pat. No. 9,775,627, filed Apr. 30, 2015, Systems and Methods for Creating Curved Paths Through Bone and Modulating Nerves With The Bone. |
U.S. Appl. No. 15/722,392 U.S. Pat. No. 10/357,258, filed Oct. 2, 2017, Systems and Methods for Creating Curved Paths Through Bone and Modulating Nerves With The Bone. |
U.S. Appl. No. 16/370,264 U.S. Pat. No. 10/517,611, filed Mar. 29, 2019, Systems for Navigation and Treatment Within a Vertebral Body. |
U.S. Appl. No. 16/717,985 U.S. Pat. No. 11/160,563, filed Dec. 17, 2019, Systems for Navigation and Treatment Within a Vertebral Body. |
U.S. Appl. No. 17/488,116, filed Sep. 28, 2021, Systems for Navigation and Treatment Within a Vertebral Body. |
U.S. Appl. No. 17/488,111, filed Sep. 28, 2021, Methods of Navigation and Treatment Within a Vertebral Body. |
U.S. Appl. No. 14/454,643 U.S. Pat. No. 9,724,151, filed Aug. 7, 2014, Modulating Nerves Within Bone Using Bone Fasteners. |
U.S. Appl. No. 15/669,292 U.S. Pat. No. 10/456,187, filed Aug. 4, 2017, Modulating Nerves Within Bone Using Bone Fasteners. |
U.S. Appl. No. 16/661,271 U.S. Pat. No. 11,065,046, filed Oct. 23, 2019, Modulating Nerves Within Bone Using Bone Fasteners. |
U.S. Appl. No. 17/378,457, filed Jul. 16, 2021, Modulating Nerves Within Bone. |
U.S. Appl. No. 17/138,203, filed Dec. 30, 2020, Introducer Systems for Bone Access. |
U.S. Appl. No. 17/302,949, filed Mar. 17, 2021, Accessing and Treating Tissue Within a Vertical Body. |
U.S. Appl. No. 17/303,254, filed Mar. 25, 2021, Methods of Treating a Vertebral Body. |
U.S. Appl. No. 17/303,267, filed Mar. 25, 2021, Methods of Detecting and Treating Back Pain. |
Number | Date | Country | |
---|---|---|---|
63084381 | Sep 2020 | US |