This invention relates generally to intumescent, ceramic silicate fire retardant coatings, which can be used to insulate substrates such as structural steel or wood materials used in buildings to protect the substrates from fires and more specifically, to the intumescent ceramic silicate liquid binder in which is incorporated intumescent, ceramic, silicate particles.
Hydrated metal silicates are known fire-proofing materials and are extensively employed in building construction to insulate apertures and passages in buildings against the passage of fire and smoke. Under the high temperatures existing during a fire, the water of hydration of the metal silicates are driven off causing the composition to expand (intumesce) by up to forty times its original volume forming a foam structure that insulates the building against heat generated by the fire. The foaming pressure of the metal silicate particles helps to seal apertures and passages in building structures making these fireproofing materials useful in fire-stops, as described in U.S. Pat. No. 4,364,210 to Fleming et al., which is hereby incorporated by reference in its entirety. In addition, the preparation of intumescent silicates is described in U.S. Pat. No. 4,521,333 to Graham et al., which is hereby incorporated by reference in its entirety.
A fire retardant, intumescent, ceramic coating composition comprising an aqueous ceramic intumescent binder, intumescent ceramic particles, mineral fibers and a wetting agent is provided. The intumescent ceramic binder comprises a mixture of a liquid alkali metal silicate, a borate salt, mineral fibers and a wetting agent. The coating provides enhanced intumescence and insulative properties suitable for application to structural steel and wood building materials.
A better understanding of the objects, advantages, features, properties and relationships of the invention will be obtained from the following detailed description and accompanying drawings which set forth illustrative embodiments that are indicative of the various ways in which the principles of the invention may be employed.
For a better understanding of the invention, reference may be had to preferred embodiments shown in the following drawing in which:
A unique composition has been developed by adding to a water soluble alkali silicate, particles of the same water soluble alkali silicate, which have been combined with a borate compound and then, dried and pulverized into various particle sizes. The composition may be further enhanced by incorporating mineral fibers and a soluble, low foaming, wetting agent. The mineral fibers strengthen the coating and the wetting agent increases adhesion to the metal or wood substrate.
Examples of useful water soluble alkali silicates are sodium silicate, lithium silicate and potassium silicate, however, it is preferred that sodium silicate be used. Sodium silicate has a silica/soda weight ratio of 3.22. It should be understood by those with skill in the art, however, that sodium alkali silicates with different silica/soda weight rations may also be used. These intumescent particles also control the uniformity, stability and height of the intumescence upon exposure to a fire.
Examples of borate compound are borax, calcium borate, magnesium borate and zinc borate, with zinc borate being preferred. Examples of mineral fibers include alkali stable fiberglass, wollastonite and mica. It should also be appreciated that other mineral fibers may be used without departing from the scope of this invention. The preferred wetting agent is sodium 2-ethylhexyl sulfate, but other equivalent wetting agents may also be used.
A coating was prepared and applied to steel bars for testing in a small lab furnace. The coating was made by first preparing the particles in the following manner. A finely ground zinc borate was added to a first sodium silicate solution with a silica/soda weight ratio of 3.22, the zinc borate comprising about three percent (3%) by weight of the combination of the zinc borate and the first sodium silicate solution. The zinc borate was added with high shear mixing. The compound was mixed for five minutes, spread out in a thin layer on a polyethylene sheet, air dried to a constant weight and pulverized into particles of 500 microns or less. The pulverized particles were added to a second sodium silicate solution with a silica/soda weight ratio of 3.22, the pulverized particles comprising about fifteen percent (15%) by weight of the combination of the pulverized particles and the second silicate solution. The second sodium silicate solution is further comprised of one percent (1%) 2-ethylhexyl sulfate and fifteen percent (15%) wollastonite with an aspect ratio of 15:1 (length to diameter) being preferred. Wollastonite fibers of different aspect ratios may also be used. The coating was mixed for ten minutes then applied at various thicknesses to steel bars containing a thermocouple inserted into the center of the bar. After the coated bars were air dried for two weeks, they were placed in a laboratory furnace and fire tested.
A coating was prepared and applied to a piece of drywall (not shown) having a first side and a second side for testing in a small lab furnace. The same coating that was applied to the steel bars in Example 1 was applied to the first side of the drywall. The first side of the drywall was then exposed to a flame temperature of 2000° F., while the temperature of the drywall was measured at the second side of the drywall.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangement disclosed is meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any equivalents thereof.
This application claims the priority date of U.S. provisional patent application Ser. No. 60/488,650 filed on Jul. 19, 2003.
Number | Name | Date | Kind |
---|---|---|---|
3707385 | Kraemer et al. | Dec 1972 | A |
4179535 | Kalbskopf et al. | Dec 1979 | A |
4297252 | Caesar et al. | Oct 1981 | A |
4364210 | Fleming et al. | Dec 1982 | A |
4521333 | Graham et al. | Jun 1985 | A |
4710309 | Miller | Dec 1987 | A |
5082494 | Crompton | Jan 1992 | A |
5085897 | Luckanuck | Feb 1992 | A |
5840105 | Helmstetter | Nov 1998 | A |
6645278 | Langille et al. | Nov 2003 | B1 |
20020171068 | Erismann et al. | Nov 2002 | A1 |
20040166246 | Holcomb | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
221184 | Apr 1985 | DE |
53-71134 | Jun 1978 | JP |
WO-0068337 | Nov 2000 | WO |
Number | Date | Country | |
---|---|---|---|
60488650 | Jul 2003 | US |