1. Field of the Invention
The present invention relates generally to a computer vision processing systems and more particularly to systems that encode visual signals into pulse-code output having information encoded into pulse timing.
2. Description of Related Art
It is known in the field of neuroscience that neurons generate action potentials, often called “spikes”, “impulses”, or “pulses” and transmit them to other neurons. Such pulses are discrete temporal events, and there could be many pulses per unit of time. Conventionally, bursts of a few spikes are considered to be pulses. It is not known how the brain processes information based on the timing of pulses or how visual features may be encoded using pulse-timing.
Certain embodiments of the present invention comprise systems and methods for encoding visual signals into pulse-code output, where the information is transmitted by the relative timings of pulses. The advantage of the invention is that the signal-to-pulse encoding is insensitive with respect to the luminance and the contrast of the input signals.
The present invention relates generally to a computer vision system that encodes visual signals into pulse-code output, where information is encoded into the timing of pulses. It is motivated by neuroscience findings that timing of pulses is important for information transmission and processing. This invention is useful for implementation of the function of an artificial retina in information processing, robotic, or prosthetic devices.
In certain embodiments systems and methods are provided that address issues associated with slow adaptation of pulse-time code to low or high levels of luminance and contrast. Certain embodiments provide systems and methods of decoding the pulse-time code to extract features of the visual signal independently from their luminance and contrast.
Certain embodiments of the invention provide systems and methods for processing image signals. In certain embodiments, an image processing method comprises obtaining a generator signal based on an image signal. Relative latencies associated with two or more pulses in a pulsed signal are determined using a function of the generator signal. The function of the generator signal can comprise a logarithmic function. The function of the generator signal can be the absolute value of its argument. Information can be encoded in the pattern of relative latencies. The step of determining the relative latencies can include determining the latency of a next pulse using a scaling parameter that is calculated from a history of the image signal. The pulsed signal is typically received from a plurality of channels and the scaling parameter corresponds to at least one of the channels. The scaling parameter may be adaptively calculated such that the latency of the next pulse falls within one or more of a desired interval and an optimal interval.
The method may additionally comprise scaling the generator signal using a parameter that is calculated by applying a low-pass filter to a function representative of prior generator signals. The generator signal may be scaled using a parameter that is calculated as the average of a function representing generator signals observed over a certain time period. The image signal may be scaled using a scaling parameter based on a history of the image signal. The step of determining the relative latencies typically includes determining the latency of a next pulse using a parameter that is calculated from a low-pass filter of a function of the latencies of a plurality of preceding pulses.
In certain embodiments, the method comprises scaling the generator signal using a parameter that is calculated from a history of the image signal and/or a history of the generator signal. The parameter can be adaptively calculated such that the latency of the next pulse falls within one or more of a desired interval and an optimal interval.
In certain embodiments, the image signal may be scaled using one or more parameters, each parameter calculated using a history of one or more of a plurality of signal channels. The image signal may be scaled to adaptively maintain the image signal within a desired range. Two or more of the plurality of signal channels can have a common channel parameter, and the common channel parameter may be calculated using a history of the image signal. The channel parameters may include a parameter obtained by low-pass filtering a function derived from the image signal. In some embodiments, the step of scaling the image signal includes scaling the signal multiplicatively. Channel parameters may represent an average of a function derived from the input signal over a time window.
In certain embodiments, the method comprises the step of determining latencies associated with the two or more pulses using one or more parameters calculated from a history of the image signal. Latencies associated with the two or more pulses may be determined by time-shifting the pulses by magnitudes determined by one or more channel parameters. The pulsed signal may be received from a plurality of channels. Information may be extracted from the pulsed signal by decoding the pattern of relative latencies.
Portions of the methods may be performed by one or more processors embodied in a prosthetic device, an autonomous robot and/or distributed computer systems.
Certain embodiments of the invention provide an image processing system. A filter may provide a generator signal that is based on an input signal representative of an element of an image. A processor may be configured to receive the input signal and to determine relative latencies associated with two or more pulses in a pulsed output signal using a function of the generator signal. Latencies of pulses in the pulsed output signal are calculated using a scaling parameter that is calculated from a history of the image signal. Information may be encoded in a pattern of relative pulse latencies between a plurality of channels be used to communicate the pulsed output signal. The pattern of relative pulse latencies is typically insensitive to changes in image luminance and/or image contrast. Scaling parameters correspond to at least one of the channels. In certain embodiments, the function of the generator signal comprises a logarithmic function which may be applied to a rectified version of the generator signal. The logarithmic function can have an offset and a base, which may be optimized to obtain a range of the generator signal that matches the dynamic range of the latency values and the dynamic range of the image signal. The filter is spatially and/or temporally balanced and characterized by a substantially zero integral along all dimensions of the filter.
Embodiments of the present invention will now be described in detail with reference to the drawings, which are provided as illustrative examples so as to enable those skilled in the art to practice the invention. Notably, the figures and examples below are not meant to limit the scope of the present invention to a single embodiment, but other embodiments are possible by way of interchange of some or all of the described or illustrated elements. Wherever convenient, the same reference numbers will be used throughout the drawings to refer to same or like parts. Where certain elements of these embodiments can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present invention will be described, and detailed descriptions of other portions of such known components will be omitted so as not to obscure the invention. In the present specification, an embodiment showing a singular component should not be considered limiting; rather, the invention is intended to encompass other embodiments including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein. Moreover, applicants do not intend for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such. Further, the present invention encompasses present and future known equivalents to the components referred to herein by way of illustration.
Although certain aspects of the invention can best be understood in the context of conversion of visual input to pulse latency output in retina transmitted through multiple channels corresponding to retinal ganglion cells, disclosed systems and methods can be embodied in spatiotemporal filters implementing visual processing in general. For example, systems and methods according to certain aspects of the invention can be applied in a model of animal visual system as well as in the thalamus or cortex of an animal. Embodiments of the presently disclosed invention may be deployed in a hardware and/or software implementation of a computer-vision system, provided in one or more of a prosthetic device, robotic device and any other specialized visual system. For example, an image processing system according to certain aspects of the invention may comprise a processor embodied in an application specific integrated circuit (“ASIC”) that can be adapted or configured for use in an embedded application such as a prosthetic device. Certain of the disclosed systems and methods may be used for processing of signals of other, often non-visual modalities. Certain of the disclosed systems and methods may be used for processing signals without spatial or temporal filtering.
For the purposes of this description, pulses are understood to refer to any of a single spike, a burst of spikes, an electronic pulse, a pulse in voltage, a pulse in electrical current, a software representation of a spike and/or burst of spikes and any other pulse in a pulsed transmission mechanism. For the purposes of this description, insensitivity of signal-to-pulse encoding with respect to luminance and/or contrast of an input signals may be understood as encoding that is invariant or substantially invariant to changes in luminance and/or contrast.
Certain embodiments of the invention can be used to encode visual features including features included in an observed scene, regardless of luminance and contrast. In some embodiments, information processing relies on different timing aspects of pulse timing in order to encode sensory input as a pulse-coded output, which can be used for further information transmission and processing.
For convenience and for the sake of illustration, we assume that the input signal is given as a function I(x,t) of space x and time t. For example, the function may describe a movie with frame number t and a two-dimensional image parameterized by the spatial two-dimensional vector-variable x, as illustrated in
Contrast-Invariant Encoding
Without loss of generality, the signal may be represented in the equivalent form:
I(x,t)=L(1−MS(x,t))
where the parameters L and M denote the luminance and the contrast, and the “feature” S(x,t) has zero mean calculated over space and/or time.
Such an image can be analyzed by a plurality of channels, each having a linear spatiotemporal filter with kernel F(x,s) satisfying the following “balance” condition:
∫∫F(x,s)dxds=0 (1)
Each such filter can be applied to the input signal l(x, t) to obtain a “generator signal” of the corresponding channel
g(t)=∫∫I(x,t−s)F(x,s)dxds
The generator signal can be used to calculate the timing of pulsed response relative to the time t, i.e., the latency of response transmitted over each channel:
Lat=C−logB|g(t)|+
where |g(t)|+ is the rectified value of g(t), i.e., zero for negative g(t) and equal to g(t) when g(t)≧0. Other functions may be used in addition or in place of the piece-wise linear rectifier ∥+. For the purposes of this description, “rectifier” can mean a piece-wise linear or other function that is positive such that the log function is well defined. Parameter C is the offset and parameter B is the base of the logarithm. These parameters are typically selected to optimize the efficiency of the logarithmic conversion, so that the relevant range of the generator signal g(t) is captured by the desired range of the latencies. For example, if the generator signal has a range of interest, [gmin·gmax], and the desirable latency interval is [lmin·lmax], then C and B can be found from the system of equations lmin=C−logB gmax, lmax=C−logB gmin. When g(t)=0 or g(t)<0, the latency of pulse may be assumed to be infinite. Such latency can be interpreted, e.g., as representative of non-generation of a pulse by a channel—corresponding to a pulse with infinite latency—or representative of a pulse generated with a relatively large latency. When g(t)>gmax·the channel may generate a pulse with very short latency. Negative latencies may be avoided by a cutoff at a value of lmin.
An example of signal to pulse latency encoding is illustrated in
This approach offers the advantage that it results in contrast-invariant latency code; that is, individual latencies of pulses may depend on the contrast of the input signal, but relative latencies do not. Indeed,
because of (Eq. 1). For the sake of simplicity of notation, it can be assumed that the generator signal is positive, and | |+ can be omitted from the equation. The latency of each channel is
Thus latency of pulsed response on each channel is shifted by the constant logB LM that depends on the luminance and the contrast of the input signal. However, latencies of all channels are shifted by the same constant, so the differences between latencies (relative latencies) are independent of the values L and M; in particular, they are contrast-invariant.
The condition (Eq. 1) may be referred to as the “balance condition,” which can be satisfied when
∫ƒ(x,s)dx=0(for all s;“spatial balance”)
∫ƒ(x,s)ds=0(for all x;“temporal balance”)
That is, the kernel, F, is zero along the spatial (dx) dimensions or temporal (ds) dimension, leading to “spatial” or “temporal” balance. It can also be zero even if neither of the two conditions above is satisfied, but the integral is evaluated along all dimensions. In practice, it is typically unnecessary to require that the integral be exactly zero and a small non-zero number may be permitted. In this case, the contrast-invariant pulse encoding will be approximate, i.e., it will contain a small error which is proportional to the absolute value of the integral in (Eq. 1). Since exact zeros may be difficult to achieve in practice, “approximate zero” condition may be considered to be a balance condition.
In certain embodiments, filters other than linear spatiotemporal filters may be used. The “balance condition” or “approximate zero” condition may be satisfied for motion sensitive filters, direction sensitive filters, certain nonlinear filters and other filters. A motion sensitive filter can comprise any suitable spatiotemporal filter that is responsive to the movement of a visual stimulus over the visual field in time. A direction sensitive filter can comprise a motion sensitive filter that is more responsive to motion of a stimulus over the visual field in some subset of all possible directions.
Latency Adaptation
It can be advantageous to adapt the sensitivity of the encoding mechanism such that latency within desired bounds adequately encodes inputs having luminance or contrasts that may vary over space and/or time by orders of magnitude. In certain embodiments, the generator signal may be mapped to latencies via the equation
Lat=C−logB|g(t)/a(t)|+
where the “adaptation” variable a=a(t) evolves according to the differential equation
da/dt=(|g(t)|−a)/τ
(or its integral or discrete analogue) where dajdt is the derivative with respect to time t, |g(t)| is the absolute value of g(t), and τ is the adaptation time constant. The adaptation variable a(t) keeps track of the “average” value of |g(t)|, so that the latency indicates deviations from the average value. In another embodiment, the differential equation for the adaptation variable may be
da/dt=(−1+(e+|g(t)|)/a)/τ
where e>0 is some small number that is used to cap the unbounded growth of a if g(t)=0 for a long time. It will be appreciated that a difference between the two equations above is that the generator signal affects the time constant of adaptation in the latter case, but not in the former case.
In certain embodiments, the equation may also be
da/dt=(ƒ(g(t))−a)/τ
with some function ƒ. A nonlinear (in a) version
da/dt=(ƒ(g(t),a)
(or its integral or discrete analogue) is also possible. In this case, the variable a(t) may reflect the history of g(t) over a certain time window (possibly infinite, as in low-pass filtering).
This mechanism achieves the following desirable functions:
The adaptation parameter can also be a vector. For example, the filter F(x, t) may be decomposed into a number of separate filters that are used to compute separate generator signals, which are combined to determine the main generator signal. In the visual system, for example, the filter F(x, t) may have separable center and surround regions, and hence the adaptation parameter could have 2 values, one for the center and one for the surround. Both, the center and the surround, can adapt independently, and the adaptation vector would scale each corresponding generator signal, thereby affecting the main generator signal.
An alternative adaptation mechanism may adjust each latency by a subtractive parameter, i.e.,
Latency=Lat−b(t)
where b(t) depends on the history of the latencies Lat, which are computed as above. For example, it can be a low-pass filter
db/dt=(P(Lat)−b)/τ
(or its integral or discrete analogue), where P(Lat) is a function that restricts the values of Lat to a certain interval, e.g., by ignoring the values where Lat is infinity (which would correspond to g(t) being negative or zero) and replacing them with a finite number. Parameter τs is the time constant of the low-pass filter. One implementation of the low-pass filter functionality is the running average of P(Lat) over a certain time window. A nonlinear (in b) version of the equation above
db/dt=ƒ(Lat,b)
is also possible.
The choice of the nonlinear function ƒ may be different for different variables (a or b) and for different applications. For example, the function may make the parameters adapt to the changing ranges of the magnitude of the input signal, its contrast, or its spatial and/or temporal statistics.
Input Signal Adaptation
In addition to the adaptation of the latencies conducted by the “adaptation variable” a(t) or b(t) and affecting directly the logarithmic conversion of the generator signal to latencies, it may be necessary and/or desirable to have an adaptation of the input signal itself. Such input signal adaptation may be referred to as “cone adaptation” as if the input signal were the signal coming from cone photoreceptors of retina, though the method would work for any other type of signal.
It is often desirable to take a raw signal I(x, t) and convert it to a rescaled signal J(x, t) where the values of J(x, t) at any spatial location, x, are deviations (positive or negative) from a certain “mid-point” value, which e.g. could be the mean of I(x, t) at the same location (and hence it would depend on x), or the mean over the entire signal, or the mean over a part of it. This way, the rescaled signal J(x, t) reports changes from the mean. However, if the mean of I(x, t) changes, e.g., due to changed luminance or contrast, it may be desirable that the rescaling and conversion to J(x, t) should also change adaptively, thereby modeling the cones of a retina.
In certain embodiments. It may be desired that the rescaled signal has approximately zero mean and deviations of the order of k from the mean for some constant k that might depend on the particular software and hardware restrictions. For example, in one example implementation, a value of k=127 is used when the pixel values are within the range [0, 255]. This can be achieved if
J(x,t)=I(x,t)p−k
with an appropriate (possibly x-dependent) parameter p that adapts to the changing statistics of I(x, t) as to keep I·p≈k, which can be achieved through the following equation:
dp/dt=(1−pI(x,t)/k)/τ
Here, τp is the input signal adaptation time constant. However, the input signal may be absent (i.e., I(x, t)=0) for a long period of time and, in this case, p will be growing unboundedly with the grown rate 1/τp. To cope with such condition, an upper bound may be set for the value of p. A slightly modified equation may be used:
dp/dt=(1−p[e+I(x,t)]/k)/τ
where e>0 is a small parameter that would play the bounding role when I(x, t)=0 because p will asymptote at k/e in this case. In one example, for an input signal encoded as an RGB image with discrete values between 0 and 255, values of k=127 and e=1 may be used. In one embodiment, a 1 can be added to all pixels of the input signal and used the equation with no e.
In certain embodiments, the equation for signal adaptation may be
dp/dt=(k/[e+1(x,t)]−p)/τ
Notice that the difference between the two equations above is that the input signal affects the time constant of adaptation in the former case, but does not in the latter case. A nonlinear version of the input signal adaptation is also feasible
dp/dt=ƒ(I(x,t),p) (2)
with some function ƒ such that it promotes I·p≈k.
In another embodiment, the rescaled (adjusted) image may be given by
J(x,t)=I(x,t)−p
where the offset p adapts to the input signal, e.g., via the low-pass filter differential equation
dp/dt=I(x,t)−p)/τ
or via a nonlinear function (Eq. 2).
Decoding
Certain embodiments have pulsed outputs whose relative latencies are invariant with respect to signal contrast is desirable for a decoder, whose job, e.g., may be to perform pattern recognition of the signal that is independent of attributes such as contrast. In one example, the decoder comprises a coincidence detector that signals coincident arrival of pulses. In another example, the decoder may receive input from the encoder with different transmission delays, as illustrated in
For example, suppose a signal (201) provided in one image frame results in two output pulses (221 and 222) generated by two channels (211 and 212) with certain latency from the time marked by the dashed line (250). The pulses arrive to the decoder (240) with certain transmission delays indicated by the arrows (231 and 232). Because the pulses arrive at different time, the decoder, being a coincident detector, will not register a coincidence. Now, another input signal (202) results in pulsed output with latencies (223 and 224) that have relative latencies (i.e., the difference of latencies) matching the difference of transmission delays. Such pulses arrive to the decoder at the same time (241) resulting in an output pulse. Increasing the contrast of the input signal (203) results in pulsed output (225 and 226) with shorter latencies, yet the same relative latencies (latency differences), which again matches the difference between transmission delays.
Thus, signals with different levels of contrast result in pulsed outputs with different latencies but with the same relative latencies and they can be readout by a decoder that receives these pulses along channels with different transmission delays that match the latency differences. Notice also that the decoder generates a pulsed output whose latency depends on the latency of the incoming pulses. Indeed, the latency 261 of the output pulse 241 is longer than the latency 262 of the output pulse 242.
Additional Descriptions of Certain Aspects of the Invention
The foregoing descriptions of the invention are intended to be illustrative and not limiting. For example, those skilled in the art will appreciate that the invention can be practiced with various combinations of the functionalities and capabilities described above, and can include fewer or additional components than described above. Certain additional aspects and features of the invention are further set forth below, and can be obtained using the functionalities and components described in more detail above, as will be appreciated by those skilled in the art after being taught by the present disclosure.
Certain embodiments of the invention provide systems and methods for processing image signals. In certain embodiments, an image processing method comprises obtaining a generator signal based on the image signal. In certain embodiments, the method comprises determining relative latencies associated with two or more pulses in a pulsed signal using a function of the generator signal. In some of these embodiments, information is encoded in the pattern of relative latencies. In some of these embodiments, the step of determining the relative latencies includes determining the latency of a next pulse using a scaling parameter that is calculated from a history of the image signal. In some of these embodiments, the pulsed signal is received from a plurality of channels. In some of these embodiments, the scaling parameter corresponds to at least one of the channels. In some of these embodiments, the scaling parameter corresponds to at least two of the channels. In some of these embodiments, the scaling parameter is adaptively calculated such that the latency of the next pulse falls within one or more of a desired interval and an optimal interval. In some of these embodiments, the function of the generator signal is the absolute value of its argument.
In certain embodiments, the method comprises scaling the generator signal using a parameter that is calculated by applying a low-pass filter to a function representative of prior generator signals. In certain embodiments, the method comprises scaling the image signal using a scaling parameter based on a history of the image signal. In some of these embodiments, the step of determining the relative latencies includes determining the latency of a next pulse using a parameter that is calculated from a low-pass filter of a function of the latencies of a plurality of preceding pulses. In some of these embodiments, the function of the generator signal comprises a logarithmic function.
In certain embodiments, the method comprises scaling the generator signal using a parameter that is calculated from a history of the image signal. In certain embodiments, the method comprises scaling the generator signal using a parameter that is calculated from a history of the generator signal. In some of these embodiments, the parameter is adaptively calculated such that the latency of the next pulse falls within one or more of a desired interval and an optimal interval.
In some of these embodiments, the image signal comprises a plurality of signal channels, and further comprising scaling the image signal using one or more parameters, each parameter calculated using a history of one of the signal channels. In some of these embodiments, at least two of the plurality of signal channels have a common channel parameter, the common channel parameter being calculated using a history of the image signal. In some of these embodiments, the step of scaling the image signal includes adaptively maintaining the image signal within a desired range. In some of these embodiments, the one or more parameters includes a parameter obtained by low-pass filtering a function derived from the image signal. In some of these embodiments, the step of scaling the image signal includes scaling the signal multiplicatively. In some of these embodiments, one of the one or more parameters represents an average of a function derived from the input signal over a time window.
In some of these embodiments, the pattern of relative latencies is insensitive to image luminance. In certain embodiments, the method comprises the step of determining latencies associated with the two or more pulses using one or more parameters calculated from a history of the image signal. In certain embodiments, the method comprises the step of determining latencies associated with the two or more pulses by time-shifting the pulses by magnitudes determined by one or more channel parameters. In certain embodiments, the method comprises the step receiving the pulsed signal from a plurality of channels. In certain embodiments, the method comprises the step of extracting the information from the pulsed signal by decoding the pattern of relative latencies. In some of these embodiments, the one or more processors include a processor embodied in one or more of a prosthetic device and an autonomous robot. In certain embodiments, the method comprises the step of scaling the generator signal using a parameter that is calculated as the average of a function representing generator signals observed over a certain time period.
Certain embodiments of the invention provide an image processing system. Some of these embodiments comprise an input signal representative of an element of an image. Some of these embodiments comprise a filter that provides a generator signal based on the input signal. Some of these embodiments comprise a processor configured to receive the input signal and to determine relative latencies associated with two or more pulses in a pulsed output signal using a function of the generator signal. In some of these embodiments, latencies of pulses in the pulsed output signal are calculated using a scaling parameter that is calculated from a history of the image signal. Some of these embodiments comprise a plurality of channels that communicate the pulsed output signal. In some of these embodiments, the information is encoded in a pattern of relative pulse latencies between the channels. In some of these embodiments, the pattern of relative pulse latencies is insensitive to changes in at least one of image luminance and image contrast.
In some of these embodiments, the scaling parameter corresponds to at least one of the channels. In some of these embodiments, the function of the generator signal comprises a logarithmic function. In some of these embodiments, the logarithmic function is applied to a rectified version of the generator signal. In some of these embodiments, the logarithmic function has an offset and a base that are optimized to obtain a range of the generator signal that matches the dynamic range of the latency values and the dynamic range of the image signal. In some of these embodiments, the filter is spatially and temporally balanced and characterized by an integral along all dimensions of the filter that is substantially zero.
Although the present invention has been described with reference to specific exemplary embodiments, it will be evident to one of ordinary skill in the art that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
The present application is a Continuation application of U.S. patent application Ser. No. 12/869,583, filed Aug. 26, 2010, entitled “Invariant Pulse Latency Coding Systems and Methods Systems and Methods,” which claims priority from U.S. Provisional Patent Application No. 61/318,191 filed Mar. 26, 2010, entitled “Systems and Methods For Invariant Pulse Latency Coding,” which are expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5063603 | Burt | Nov 1991 | A |
5138447 | Shen | Aug 1992 | A |
5216752 | Tam | Jun 1993 | A |
5272535 | Elabd | Dec 1993 | A |
5355435 | DeYong | Oct 1994 | A |
5638359 | Peltola | Jun 1997 | A |
5673367 | Buckley | Sep 1997 | A |
5875108 | Hoffberg | Feb 1999 | A |
6009418 | Cooper | Dec 1999 | A |
6014653 | Thaler | Jan 2000 | A |
6035389 | Grochowski | Mar 2000 | A |
6418424 | Hoffberg | Jul 2002 | B1 |
6458157 | Suaning | Oct 2002 | B1 |
6509854 | Morita | Jan 2003 | B1 |
6545705 | Sigel | Apr 2003 | B1 |
6545708 | Tamayama | Apr 2003 | B1 |
6546291 | Merfeld | Apr 2003 | B2 |
6581046 | Ahissar | Jun 2003 | B1 |
6625317 | Gaffin | Sep 2003 | B1 |
7580907 | Rhodes | Aug 2009 | B1 |
7653255 | Rastogi | Jan 2010 | B2 |
7737933 | Yamano | Jun 2010 | B2 |
7849030 | Ellingsworth | Dec 2010 | B2 |
8000967 | Taleb | Aug 2011 | B2 |
8015130 | Matsugu | Sep 2011 | B2 |
8103602 | Izhikevich | Jan 2012 | B2 |
8160354 | Paquier | Apr 2012 | B2 |
8200593 | Guillen | Jun 2012 | B2 |
8311965 | Breitwisch | Nov 2012 | B2 |
8315305 | Petre | Nov 2012 | B2 |
8390707 | Yamashita | Mar 2013 | B2 |
8416847 | Roman | Apr 2013 | B2 |
8467623 | Izhikevich | Jun 2013 | B2 |
20020038294 | Matsugu | Mar 2002 | A1 |
20030050903 | Li aw | Mar 2003 | A1 |
20030216919 | Roushar | Nov 2003 | A1 |
20040054964 | Bozdagi et al. | Mar 2004 | A1 |
20040136439 | Dewberry et al. | Jul 2004 | A1 |
20040170330 | Fogg | Sep 2004 | A1 |
20040193670 | Langan | Sep 2004 | A1 |
20050015351 | Nugent | Jan 2005 | A1 |
20050036649 | Yokono | Feb 2005 | A1 |
20050096539 | Leibig et al. | May 2005 | A1 |
20050283450 | Matsugu | Dec 2005 | A1 |
20060094001 | Torre et al. | May 2006 | A1 |
20060129728 | Hampel | Jun 2006 | A1 |
20060161218 | Danilov | Jul 2006 | A1 |
20070022068 | Linsker | Jan 2007 | A1 |
20070176643 | Nugent | Aug 2007 | A1 |
20070208678 | Matsugu | Sep 2007 | A1 |
20080100482 | Lazar | May 2008 | A1 |
20080174700 | Takaba | Jul 2008 | A1 |
20080199072 | Kondo | Aug 2008 | A1 |
20080237446 | Oshikubo | Oct 2008 | A1 |
20090043722 | Nugent | Feb 2009 | A1 |
20090287624 | Rouat et al. | Nov 2009 | A1 |
20100036457 | Sarpeshkar et al. | Feb 2010 | A1 |
20100081958 | She | Apr 2010 | A1 |
20100086171 | Lapstun | Apr 2010 | A1 |
20100100482 | Hardt | Apr 2010 | A1 |
20100166320 | Paquier | Jul 2010 | A1 |
20100225824 | Lazar | Sep 2010 | A1 |
20100235310 | Gage | Sep 2010 | A1 |
20100299296 | Modha | Nov 2010 | A1 |
20110016071 | Guillen | Jan 2011 | A1 |
20110119214 | Breitwisch | May 2011 | A1 |
20110119215 | Elmegreen | May 2011 | A1 |
20110134242 | Loubser et al. | Jun 2011 | A1 |
20110137843 | Poon | Jun 2011 | A1 |
20110160741 | Asano | Jun 2011 | A1 |
20110206122 | Lu et al. | Aug 2011 | A1 |
20120011090 | Tang | Jan 2012 | A1 |
20120083982 | Bonefas | Apr 2012 | A1 |
20120084240 | Esser | Apr 2012 | A1 |
20120109866 | Modha | May 2012 | A1 |
20120303091 | Izhikevich | Nov 2012 | A1 |
20120308076 | Piekniewski | Dec 2012 | A1 |
20120308136 | Izhikevich | Dec 2012 | A1 |
20130073484 | Izhikevich | Mar 2013 | A1 |
20130073491 | Izhikevich | Mar 2013 | A1 |
20130073492 | Izhikevich | Mar 2013 | A1 |
20130073495 | Izhikevich | Mar 2013 | A1 |
20130073496 | Szatmary | Mar 2013 | A1 |
20130073498 | Izhikevich | Mar 2013 | A1 |
20130073499 | Izhikevich | Mar 2013 | A1 |
20130073500 | Szatmary | Mar 2013 | A1 |
20130151450 | Ponulak | Jun 2013 | A1 |
20130218821 | Szatmary | Aug 2013 | A1 |
20130251278 | Izhikevich | Sep 2013 | A1 |
20130297539 | Piekniewski | Nov 2013 | A1 |
20130297541 | Piekniewski | Nov 2013 | A1 |
20130297542 | Piekniewski | Nov 2013 | A1 |
20130325766 | Petre | Dec 2013 | A1 |
20130325768 | Sinyavskiy | Dec 2013 | A1 |
20130325773 | Sinyavskiy | Dec 2013 | A1 |
20130325774 | Sinyavskiy | Dec 2013 | A1 |
20130325775 | Sinyavskiy | Dec 2013 | A1 |
20130325777 | Petre | Dec 2013 | A1 |
20140012788 | Piekniewski | Jan 2014 | A1 |
20140016858 | Richert | Jan 2014 | A1 |
20140032458 | Sinyavskiy | Jan 2014 | A1 |
20140032459 | Sinyavskiy | Jan 2014 | A1 |
20140052679 | Sinyavskiy | Feb 2014 | A1 |
20140064609 | Petre | Mar 2014 | A1 |
20140122397 | Richert | May 2014 | A1 |
20140122398 | Richert | May 2014 | A1 |
20140122399 | Szatmary | May 2014 | A1 |
20140156574 | Piekniewski | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
102226740 | Oct 2011 | CN |
4087423 | Mar 1992 | JP |
2108612 | Oct 1998 | RU |
2406105 | Dec 2010 | RU |
2424561 | Jul 2011 | RU |
2008083335 | Jul 2008 | WO |
2008132066 | Nov 2008 | WO |
Entry |
---|
Cessac et al. “Overview of facts and issues about neural coding by spikes.” Journal of Physiology, Paris 104.1 (2010): 5. |
Dorval et al. “Probability distributions of the logarithm of inter-spike intervals yield accurate entropy estimates from small datasets.” Journal of neuroscience methods 173.1 (2008): 129. |
Gollisch et al. “Rapid neural coding in the retina with relative spike latencies.” Science 319.5866 (2008): 11 08-1111. |
Lazar et al. “A video time encoding machine”, in Proceedings of the 15th IEEE International Conference on Image Processing (ICIP '08}, 2008, pp. 717-720. |
Lazar et al. “Consistent recovery of sensory stimuli encoded with MIMO neural circuits.” Computational intelligence and neuroscience (2010): 2. |
Lazar et al. “Multichannel time encoding with integrate-and-fire neurons.” Neurocomputing 65 (2005): 401-407. |
Masquelier, Timothee. “Relative spike time coding and Stop-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model.” Journal of computational neuroscience 32.3 (2012): 425-441. |
Paugam-Moisy et al. “Computing with spiking neuron networks.” Handbook of Natural Computing, 40 p. Springer, Heidelberg (2009). |
Sato et al., “Pulse interval and width modulation for video transmission.” Cable Television, IEEE Transactions on 4 (1978): 165-173. |
Wang “The time dimension for scene analysis.” Neural Networks, IEEE Transactions on 16.6 (2005): 1401-1426. |
Florian03, Biologically inspired neural networks for the control of embodied agents, Technical Report Coneural-03-03 Version 1.0 [online], Nov. 30, 2003 [retrieved on Nov. 24, 2014]. Retrieved from the Internet: <URL:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.216.4931&rep1&type=pdf>. |
Bohte, ‘Spiking Nueral Networks’ Doctorate at the University of Leiden, Holland, Mar. 5, 2003, pp. 1-133 [retrieved on Nov. 14, 2012]. Retrieved from the internet: <URL: http://holnepagcs,cwi ,n11-sbolltedmblica6ond)hdthesislxif>. |
Brette et al., Brian: A simple and flexible simulator for spiking neural networks, The Neuromorphic Engineer, Jul. 1, 2009, pp. 1-4, doi: 10.2417/1200906.1659. |
Cuntz et al., ‘One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Paractical Application’ PLOS Computational Biology, 6 (8), Published Aug. 5, 2010. |
Davison et al., PyNN: a common interface for neuronal network simulators, Frontiers in Neuroinformatics, Jan. 2009, pp. 1-10, vol. 2, Article 11. |
Djurfeldt, Mikael, The Connection-set Algebra: a formalism for the representation of connectivity structure in neuronal network models, implementations in Python and C++, and their use in simulators BMC Neuroscience Jul. 18, 2011 p. 1 12(Suppl 1):P80. |
Fidjeland et al., Accelerated Simulation of Spiking Neural Networks Using GPUs [online],2010 [retrieved on Jun. 15, 2013], Retrieved from the Internet: URL:http://ieeexplore.ieee.org/xpls/abs—all.jsp?ammber=5596678&tag=1. |
Floreano et al., ‘Neuroevolution: from architectures to learning’ Evol. Intel. Jan. 2008 1:47-62, [retrieved Dec. 30, 2013] [retrieved online from URL:<http://inforscience.epfl.ch/record/112676/files/FloreanoDuerrMattiussi2008.p df>. |
Gewaltig et al., ‘NEST (Neural Simulation Tool)’, Scholarpedia, 2007, pp. 1-15, 2(4): 1430, doi: 1 0.4249/scholarpedia. 1430. |
Gleeson et al., NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail, PLoS Computational Biology, Jun. 2010, pp. 1-19 vol. 6 Issue 6. |
Goodman et al., Brian: a simulator for spiking neural networks in Python, Frontiers in Neuroinformatics, Nov. 2008, pp. 1-10, vol. 2, Article 5. |
Gorchetchnikov et al., NineML: declarative, mathematically-explicit descriptions of spiking neuronal networks, Frontiers in Neuroinformatics, Conference Abstract: 4th INCF Congress of Neuroinformatics, doi: 1 0.3389/conf.fninf.2011.08.00098. |
Graham, Lyle J., The Surf-Hippo Reference Manual, http://www.neurophys.biomedicale.univparis5. fr/-graham/surf-hippo-files/Surf-Hippo%20Reference%20Manual.pdf, Mar. 2002, pp. 1-128. |
Izhikevich, ‘Polychronization: Computation with Spikes’, Neural Computation, 25, 2006, 18, 245-282. |
Izhikevich, ‘Simple Model of Spiking Neurons’, IEEE Transactions on Neural Networks, vol. 14, No. 6, Nov. 2003, pp. 1569-1572. |
Izhikevich et al., ‘Relating STDP to BCM’, Neural Computation (2003) 15, 1511-1523. |
Karbowski et al., ‘Multispikes and Synchronization in a Large Neural Network with Temporal Delays’, Neural Computation 12, 1573-1606 (2000). |
Khotanzad, ‘Classification of invariant image representations using a neural network’ IEEF. Transactions on Acoustics, Speech, and Signal Processing, vol. 38, No. 6, Jun. 1990, pp. 1028-1038 [online], [retrieved on Dec. 10, 2013]. Retrieved from the Internet <URL: http://www-ee.uta.edu/eeweb/IP/Courses/SPR/Reference/Khotanzad.pdf>. |
Laurent, ‘The Neural Network Query Language (NNQL) Reference’ [retrieved on Nov. 12, 2013]. Retrieved from the Internet: <URL'https://code.google.com/p/nnql/issues/detail?id=1>. |
Laurent, ‘Issue 1—nnql—Refactor Nucleus into its own file—Neural Network Query Language’ [retrieved on Nov. 12, 2013]. Retrieved from the Internet: URL:https://code.google.com/p/nnql/issues/detail?id=1. |
Nichols, A Re configurable Computing Architecture for Implementing Artificial Neural Networks on FPGA, Master's Thesis, The University of Guelph, 2003, pp. 1-235. |
Pavlidis et al. Spiking neural network training using evolutionary algorithms. In: Proceedings 2005 IEEE International Joint Conference on Neural Networkds, 2005. IJCNN'05, vol. 4, pp. 2190-2194 Publication Date Jul. 31, 2005 [online] [Retrieved on Dec. 10, 2013] Retrieved from the Internet <URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.4346&rep=rep1&type=pdf. |
Paugam-Moisy et al., “Computing with spiking neuron networks” G. Rozenberg T. Back, J. Kok (Eds.), Handbook of Natural Computing, Springer-Verlag (2010) [retrieved Dec. 30, 2013], [retrieved online from link.springer.com]. |
Schemmel et al., Implementing synaptic plasticity in a VLSI spiking neural network model in Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN'06), IEEE Press (2006) Jul. 16-21, 2006, pp. 1-6 [online], [retrieved on Dec. 10, 2013]. Retrieved from the Internet <URL: http://www.kip.uni-heidelberg.de/veroeffentlichungen/download.egi/4620/ps/1774.pdf>. |
Simulink.RTM. model [online], [Retrieved on Dec. 10, 2013] Retrieved from &It;URL: http://www.mathworks.com/ products/simulink/index.html>. |
Sinyavskiy et al. ‘Reinforcement learning of a spiking neural network in the task of control of an agent in a virtual discrete environment’ Rus. J. Nonlin. Dyn., 2011, vol. 7, No. 4 (Mobile Robots), pp. 859-875, chapters 1-8 (Russian Article with English Abstract). |
Sjostrom et al., ‘Spike-Timing Dependent Plasticity’ Scholarpedia, 5(2):1362 (2010), pp. 1-18. |
Szatmary et al., ‘Spike-timing Theory of Working Memory’ PLoS Computational Biology, vol. 6, Issue 8, Aug. 19, 2010 [retrieved on Dec. 30, 2013]. Retrieved from the Internet: <URL: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371 %2Fjournal.pcbi.10008 79#>. |
Gluck, Stimulus Generalization and Representation in Adaptive Network Models of Category Learning [online], 1991 [retrieved on Aug. 24, 2013]. Retrieved from the Internet:<URL:http://www.google.com/url?sa=t&rct=j&q=Giuck+%22STIMULUS+G ENERALIZATION+AND+REPRESENTATIO N+I N+ADAPTIVE+N ETWORK+MODELS+OF+CATEGORY+LEARN I NG%22+ 1991. |
Froemke et al., Temporal modulation of spike-timing-dependent plasticity, Frontiers in Synaptic Neuroscience, vol. 2, Article 19, pp. 1-16 [online] Jun. 2010 [retrieved on Dec. 16, 2013]. Retrieved from the internet: <frontiersin.org>. |
Berkes et al., Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision (2005) vol. 5 (6). |
Field et al., Information Processing in the Primate Retina: Circuitry and Coding. Annual Review of Neuroscience, 2007, 30(1), 1-30. |
Fiete et al. Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity. Neuron 65, Feb. 25, 2010, pp. 563-576. |
Foldiak, Learning invariance from transformation sequences. Neural Computation, 1991, 3(2), 194-200. |
Gerstner et al., (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature vol. 383 (6595) pp. 76-78. |
Hopfield, (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376: 33-36. |
Izhikevich et al., (2009) Polychronous Wavefront Computations. International Journal of Bifurcation and Chaos, 19:1733-1739. |
Izhikevich, (2004) Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on Neural Networks, 15:1063-1070. |
Izhikevich, (2007) Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, The MIT Press, 2007. |
Janowitz et al., Excitability changes that complement Hebbian learning. Network, Computation in Neural Systems, 2006, 17 (1), 31-41. |
Knoblauch et al. Memory Capacities for Synaptic and Structural Plasticity, Neural Computation 2009, pp. 1-45. |
Masquelier et al., Learning to recognize objects using waves of spikes and Spike Timing-Dependent Plasticity. Neural Networks (IJCNN), The 2010 International Joint Conference on DOI—10.1109/IJCNN.2010.5596934 (2010) pp. 1-8. |
Meister, Multineuronal codes in retinal signaling. Proceedings of the National Academy of sciences. 1996, 93, 609-614. |
Meister et al., The neural code of the retina, Neuron. 1999, 22, 435-450. |
Oster et al., A Spike-Based Saccadic Recognition System. ISCAS 2007. IEEE International Symposium on Circuits and Systems, 2009, pp. 3083-3086. |
Rekeczky et al., “Cellular Multiadaptive Analogic Architecture: A Computational Framework for UAV Applications.” May 2004. |
Revow et al., 1996, Using Generative Models for Handwritten Digit Recognition, IEEE Trans. on Pattern Analysis and Machine Intelligence, 18, No. 6, Jun. 1996. |
Sanchez, Efficient Simulation Scheme for Spiking Neural Networks, Doctoral Thesis, Universita di Granada Mar. 28, 2008, pp. 1-104. |
Schnitzer et al., Multineuronal Firing Patterns in the Signal from Eye to Brain. Neuron, 2003, 37, 499-511. |
Serrano-Gotarredona et al, “On Real-Time: AER 2-D Convolutions Hardware for Neuromorphic Spike-based Cortical Processing”, Jul. 2008. |
Szatmary et al., (2010) Spike-Timing Theory of Working Memory. PLoS Computational Biology, 6(8): e1000879. |
Thomas et al., 2004, Realistic Modeling of Simple and Complex Cell Tuning in the HMAX Model, and Implications for Invariant Object Recognition in Cortex, Al Memo 2004-017 Jul. 2004. |
Thorpe, Ultra-Rapid Scene Categorization with a Wave of Spikes. In H.H. Bulthoff et al. (eds.), Biologically Motivated Computer Vision, Lecture Notes in Computer Science, 2002, 2525, pp. 1-15, Springer-Verlag, Berlin. |
Thorpe et al., (2001). Spike-based strategies for rapid processing. Neural Networks 14, pp. 715-725. |
Thorpe et al., (2004). SpikeNet: real-time visual processing with one spike per neuron. Neurocomputing, 58-60, pp. 857-864. |
Van Rullen et al., Rate Coding versus temporal order coding: What the Retinal ganglion cells tell the visual cortex. Neural computation, 2001, 13, 1255-1283. |
Van Rullen et al., (2003). Is perception discrete or continuous? Trends in Cognitive Sciences 7(5), pp. 207-213. |
Van Rullen et al., (2005). Spike times make sense. Trends in Neurosciences 28(1). |
Wallis et al., A model of invariant object recognition in the visual system. Progress in Neurobiology. 1997, 51, 167-194. |
Wiskott et al., Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 2002, 14, (4), 715-770. |
Zarandy et al., “Bi-i: A Standalone Ultra High Speed Cellular Vision System”, Jun. 2005. |
Number | Date | Country | |
---|---|---|---|
20130251278 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
61318191 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12869583 | Aug 2010 | US |
Child | 13895246 | US |