1. Field of the Invention
Embodiments of the present invention relate to the inverse quantization of data during audio decoding.
2. Related Art
A persistent issue in digital media is the balance between quality of a presentation, and the costs inherent in preserving quality. Many media standards specify that implementations of that standard must meet certain minimum quality requirements, without specifically limiting how the standard is to be implemented.
For example, both the MP3 and AAC audio formats specify the use of nonlinear inverse quantization during the decoding process, and the standard requires that errors introduced during this inverse quantization process fall within certain minimums. Two prevailing approaches have been adopted for these specific standards. In one approach, errors are minimized, but at the cost of substantial memory requirements for implementing the solution. In another approach, a degree of error is acceptable, which lowers the memory requirements significantly, but at an increased cost in hardware resources.
Methods and systems for performing inverse quantization on a quantized integral value are described. The approach generally involves determining whether a quantized integral value lies within a first range or a second range of possible values. An interpolated inverse quantization value is calculated from the quantized integral value, using a predetermined bit shifting operation, depending on whether the quantized integral value was in the first or the second range.
Another embodiment is described for generating an offset table. This approach involves examining a number of quantized values. For each of these quantized values, both an interpolated inverse quantization value, and a precise inverse quantization value are calculated. These values are used to generate the offset table.
Another embodiment is also described for calculating an inverse quantization value for a quantized value. This approach involves determining whether the quantized value is associated with a lookup table entry; if it is, the lookup table entry is retrieved. If it is not, an interpolated inverse quantization value is calculated, and then modified using an interpolation correction value retrieved from an offset table.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:
Reference will now be made in detail to several embodiments of the invention. While the invention will be described in conjunction with the alternative embodiment(s), it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternative, modifications, and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.
Furthermore, in the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the claimed subject matter. However, it will be recognized by one skilled in the art that embodiments may be practiced without these specific details or with equivalents thereof. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects and features of the subject matter.
Portions of the detailed description that follows are presented and discussed in terms of a method. Although steps and sequencing thereof are disclosed in figures herein (e.g.,
Some portions of the detailed description are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits that can be performed on computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer-executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout, discussions utilizing terms such as “accessing,” “writing,” “including,” “storing,” “transmitting,” “traversing,” “associating,” “identifying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Computing devices typically include at least some form of computer readable media. Computer readable media can be any available media that can be accessed by a computing device. By way of example, and not limitation, computer readable medium may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules, or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile discs (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device. Communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signals such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.
Some embodiments may be described in the general context of computer-executable instructions, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Typically the functionality of the program modules may be combined or distributed as desired in various embodiments.
Although embodiments described herein may make reference to a CPU and a GPU as discrete components of a computer system, those skilled in the art will recognize that a CPU and a GPU can be integrated into a single device, and a CPU and GPU may share various resources such as instruction logic, buffers, functional units and so on; or separate resources may be provided for graphics and general-purpose operations. Accordingly, any or all of the circuits and/or functionality described herein as being associated with GPU could also be implemented in and performed by a suitably configured CPU.
Further, while embodiments described herein may make reference to a GPU, it is to be understood that the circuits and/or functionality described herein could also be implemented in other types of processors, such as general-purpose or other special-purpose coprocessors, or within a CPU.
Basic Computing System
Referring now to
Computer system 112 comprises an address/data bus 100 for communicating information, a central processor 101 coupled with bus 100 for processing information and instructions; a volatile memory unit 102 (e.g., random access memory [RAM], static RAM, dynamic RAM, etc.) coupled with bus 100 for storing information and instructions for central processor 101; and a non-volatile memory unit 103 (e.g., read only memory [ROM], programmable ROM, flash memory, etc.) coupled with bus 100 for storing static information and instructions for processor 101. Moreover, computer system 112 also comprises a data storage device 104 (e.g., hard disk drive) for storing information and instructions.
Computer system 112 also comprises an optional graphics subsystem 105, an optional alphanumeric input device 106, an optional cursor control or directing device 107, and signal communication interface (input/output device) 108. Optional alphanumeric input device 106 can communicate information and command selections to central processor 101. Optional cursor control or directing device 107 is coupled to bus 100 for communicating user input information and command selections to central processor 101. Signal communication interface (input/output device) 108, which is also coupled to bus 100, can be a serial port. Communication interface 108 may also include wireless communication mechanisms. Using communication interface 108, computer system 112 can be communicatively coupled to other computer systems over a communication network such as the Internet or an intranet (e.g., a local area network), or can receive data (e.g., a digital television signal). Computer system 112 may also comprise graphics subsystem 105 for presenting information to the computer user, e.g., by displaying information on an attached display device 110, connected by a video cable 111. In some embodiments, graphics subsystem 105 is incorporated into central processor 101. In other embodiments, graphics subsystem 105 is a separate, discrete component. In other embodiments, graphics subsystem 105 is incorporated into another component. In other embodiments, graphics subsystem 105 is included in system 112 in other ways.
Inverse Quantization
Inverse quantization (IQ) is used in many different digital media applications. In a number of these applications, e.g., AAC and MP3 decoding, a nonlinear inverse quantization is specified. For example, IQ in AAC and MP3 decoding is performed using the equation presented below, in Table 1. In this situation, x is the quantized integral value, and can range from 0 to 8207, inclusive.
Two typical implementation schemes have been developed, to address nonlinear inverse quantization, such as that called for by the AAC and MP3 standards. The first such implementation uses a full-size lookup table for the entire possible range of values. In the case of AAC and MP3, where x may range from 0 to 8207, the lookup table has 8208 entries, and requires somewhat more than 32 kB to store each of these (usually) four byte entries. This implementation, as it can use exact values for all possible entries, introduces very little error, at the cost of a significant use of memory.
The second implementation uses a much smaller lookup table, e.g., 256 entries and 1 kB of memory. For values of x larger than those that appear in the lookup table, linear interpolation is used to approximate values. This approach requires much less memory usage, but requires several expensive hardware elements.
With reference now Figures to 2A and 2B, graphical representations of the inverse quantization equation for AAC and MP3 is provided. These graphical representations are not to scale.
When calculating inverse quantization for some value x3, e.g., x3 223, using this second approach, if x3 is larger than the lookup table available, then this implementation requires determining several different values. This determination represents a significant investment of resources, as it is necessary to implement a multistage branching operation in hardware.
A second hardware investment is required to in order to implement the calculation of the slope between the two reference points, e.g., the slope of line 240. In some embodiment, this calculation is implemented using a 25-bit by 6-bit multiplier. This implementation also requires a 32-bit by 30-bit multiplier, used to reduce precision from the lookup table, and extract the integer portion of the data.
Efficient Inverse Quantization
Described herein are embodiments which perform nonlinear inverse quantization, within an acceptable margin of error, while requiring fewer resources than the present implementations. For example, in one embodiment, an approach to providing nonlinear inverse quantization for the AAC and MP3 standards is described, which substantially avoids the need for multiple branchings, and eliminates the requirement for the second, large, hardware multiplier.
Also described herein are embodiments which reduce the errors introduced by linear interpolation. In several such embodiments, a small offset table is utilized to correct for the errors introduced by linear interpolation of nonlinear inverse quantization data.
Further, described herein are embodiments which combine reduced hardware requirements for calculating nonlinear inverse quantization data, with the reduction in errors introduced by linear interpolation.
Performing Inverse Quantization
With reference now to
As shown in
Initially, in step 301, the method of flowchart 300 differentiates between values of X which are present on the lookup table, and those that are not. For example, if the lookup table has a total of 256 entries, the method may differentiate between values of X which are between 0 and 255, and those which are greater than 255. If the value appears on the lookup table, the method continues to step 309. If the value does not appear on the lookup table, the method continues to step 310.
In step 309, the method retrieves the appropriate data from the lookup table, and finishes.
In step 310, the method further differentiates between two possible ranges of values for X. In the depicted embodiment, if X is less than 2048, the method continues to step 320. If not, the method continues to step 321. This value was selected, in the depicted embodiment, to divide the possible range between the two preset bit-shifting operations which occur in steps 320 and 321.
In step 320, two values are calculated: S and D. S is set to X, the value, bit-shifted right by 3 bits. For X values between 256 and 2047, such a shift ensures that S falls between 0 and 255. D is selected, such that X=D+(S<<3); that is, D is the difference between the original X value, and S after it has been bit-shifted back to X's original precision. For example, with reference to
With reference to steps 330 through 360, the slope of the linear function between Q1 and Q2 is determined, and used to calculate an approximate Q3.
In step 330, the lookup table is referenced for S, and for S+1. This produces two values, Q1 and Q2. In step 340, the difference between Q2 and Q1 is determined. In step 350, the difference between Q2 and Q1 is multiplied by D, and divided by 23. In step 360, the resulting value is added to Q1, to generate an approximate Q3. In this embodiment, these steps are equivalent to the two equations presented in Table 2.
For example, using
With reference to step 380, the approximate Q value calculated above is bit-shifted right 4 places. In the depicted embodiment, this bit-shift operation is selected, in conjunction with the original bit-shift operation performed in step 320, to perform the exponential operation called for by the standard, namely X4/3.
As regards steps 321, 331, 341, 351, 361, and 381, similar functionality is utilized for the case where X>2407. Instead of beginning with a 3-bit shift, however, a 6-bit shift is used.
In step 321, two values are calculated: S and D. S is set to X, the value, bit-shifted right by 6 bits. For X values between 2048 and 8207, such a shift ensures that S falls between 0 and 255. D is selected, such that X=D+(S<<6); that is, D is the difference between the original X value, and S after it has been bit-shifted back to X's original precision. For example, with reference to
With reference to steps 331, 341, 351, and 361, the slope of the linear function between Q1 and Q2 is determined, and used to calculate an approximate Q3.
In step 331, the lookup table is referenced for S, and for S+1. This produces two values, Q1 and Q2. In step 341, the difference between Q2 and Q1 is determined. In step 351, the difference between Q2 and Q1 is multiplied by D, and divided by 26. In step 361, the resulting value is added to Q1, to generate an approximate Q. In this embodiment, these steps are equivalent to the two equations presented in Table 2.
With reference to step 381, the approximate Q value calculated above is the calculated IQ of X. In effect, the bit-shifting operations which occurred in the preceding steps were equivalent to the required exponential function, x4/3.
With reference now to
In the depicted embodiment, system 302 shows an exemplary hardware implementation of the inverse quantization method described by flowchart 300. Initially, a value X is received by system 302, and stored, e.g., in a register 303. In some embodiments, other means for storing may be utilized; e.g., a flip-flop may be used to latch the value X, rather than storing it in a register. Similarly, other values stored in system 302 maybe stored in any convenient manner, in different embodiments.
As shown in
In the depicted embodiment, S is passed to another shifter, shifter 326, which left-shifts S by N bits. This shifted value is then passed to subtraction module 328, and is subtracted from the initial X value to produce D. D is stored in register 329.
As shown, S is passed to lookup table 332, to produce value Q1. S is also passed to an adder, to produce S+1, which is similarly passed to lookup table 332, producing value Q2. Q1 is subtracted from Q2 by subtraction module 342. The resulting value is passed to multiplier module 352, where it is multiplied by D. That product is then right-shifted N bits by shifter 354. This value is added to Q1, and then passed to truncation module 382. The output of truncation module 382 is IQ(X).
In the depicted embodiment, X is also passed directly to lookup table 332. This path is utilized for values of X which appear on the lookup table, e.g., where X is less than 256. MUX 399 uses X to select between these two functional paths, as appropriate.
Linear Interpolation Error
With reference now to
In the depicted graph, X values run from 0 to 8207, with error ranging from 0 to nearly 12000. These results are sufficient for this embodiment to pass compliance tests for the AAC and MP3 formats.
As depicted in
With reference now to
As noted previously, and as illustrated by offset 243, using linear interpolation for nonlinear quantization introduces an additional error. In some embodiments, this linear interpolation error can be reduced by the use of an offset table. The offset table is generated, using a number of reference point spread across the entirety of the range of possible values. These offset values can then be used, e.g., added in, when calculating the approximate inverse quantization value.
Offset Table Generation
Described below, with reference to
With reference to
With reference now to step 510, the method initially examines each possible value of X in a given range. In some embodiment, e.g., for the AAC and MP3 standards, it may be desirable to only examine a portion of the possible range of values of X. Specifically, in one embodiment, the range from 2048 to 8207 is examined; within this range, the value of D will vary from zero to 63. Moreover, the size of the offset table which will be generated may vary across different embodiments. In one embodiment, where the standard being implemented is for the AAC and MP3 formats, an offset table having 64 entries is convenient, as it allows one entry per possible value of D. It is understood that different embodiments are well-suited for applications with offset tables of differing sizes. In some embodiments, the use of any offset table will decrease interpolation error; in several such embodiments, the larger the offset table used, the greater the improvement in performance.
With reference to step 520, the interpolated value for the inverse quantization of the current value of X is calculated. Which method is used to calculate this interpolated value will vary, across different embodiments. In one embodiment, the method set forth in flowchart 300 may be utilized.
With reference now to step 530, the true value of the inverse quantization for the current value of X is calculated. In one embodiment, this step entails using the actual equations provided by a given standard, in order to calculate the mathematically precise value of the inverse quantization for the current value of X. For example, when implementing the AAC and MP3 formats, the equation provided in Table 1 is utilized, in order to determine the exact value of the inverse quantization of a given value of X.
With reference now to step 540, the interpolation error is calculated, using the difference between the interpolated value and the true value for the current value of X. Step 540 allows for the computation of the exact error, within precision, between the interpolated value and the true value for the inverse quantization of a particular value of X.
In some embodiments, steps 520 to 540 are repeated for some or all of the possible values of X in the given range.
With reference now to step 550, the offset table is generated, with interpolation correction values derived from the calculated differences between the interpolated and true values. In different embodiments, different approaches will be utilized. In one embodiment, for example, where the AAC and MP3 formats are to be implemented, a 64 entry offset table is used, to provide one offset value for each possible value of D. In this embodiment, the average of the minimum interpolation error and the maximum interpolation error for a given value of D across the entire range from 2048 to 8207 is calculated, and used as an interpolation correction value for that value of D. In other embodiment, the size of the offset table may vary, and the approach used to generate an interpolation correction value may also very.
With reference to
With reference first to step 610, two 64 entry arrays are initialized. In the depicted embodiment, one array, the offset minimum array, is initialized to maximum values, while the other, the offset maximum array, is initialized to minimum values.
With reference to step 620, the range of possible X values from 2048 to 8207 is examined.
With reference to steps 630 through 650, the interpolated value of the inverse quantization of X is calculated. In step 630, two values are calculated: S and D. S is set to X, the value, bit-shifted right by 6 bits. For X values between 2048 and 8207, such a shift ensures that S falls between 0 and 255. D is selected, such that X=D+(S<<6); that is, D is the difference between the original X value, and S after it has been bit-shifted back to X's original precision. For example, with reference to
In step 640, the lookup table is referenced for S, and for S+1. This produces two values, Q1 and Q2. In step 650, the difference between Q2 and Q1 is determined, multiplied by D, and divided by 26. The resulting value is added to Q1, to generate the interpolated value of the inverse quantization of X. In this embodiment, these steps are equivalent to the two equations presented in Table 2.
With reference to step 660, the true value of the inverse quantization of X is calculated, using the equation provided in Table 1.
With reference to step 670, the interpolation error between the interpolated value and the true value of the inverse quantization of X is calculated.
With reference to step 680, if the interpolation error is greater than the currently stored maximum interpolation error for this value of D, the interpolation error is stored in the offset maximum array. If the interpolation error is less than the currently stored minimum interpolation error for this value of D, the interpolation error is stored in the offset minimum array.
In the depicted embodiment, steps 620 through 680 are repeated for all values of X within the defined range. In this manner, the maximum and minimum interpolation errors for the entire range for each value of D are stored in the two arrays.
In step 690, an average interpolation error is calculated for each value of D, by adding the minimum and maximum interpolation errors for a particular value of D, and dividing by two. The average interpolation errors are used to populate a 64 entry offset table.
As noted above, it is understood that embodiments are well-suited to applications wherever linear interpolation is utilized. In some embodiments, linear interpolation is utilized where inverse quantization is called for, e.g., for the AAC and MP3 formats.
Inverse Quantization with Offset
With reference now to
As shown in
Initially, in step 701, the method of flowchart 700 differentiates between values of X which are present on the lookup table, and those that are not. For example, if the lookup table has a total of 256 entries, the method may differentiate between values of X which are between 0 and 255, and those which are greater than 255. If the value appears on the lookup table, the method continues to step 709. If the value does not appear on the lookup table, the method continues to step 710.
In step 709, the method retrieves the appropriate data from the lookup table, and finishes.
In step 710, the method further differentiates between two possible ranges of values for X. In the depicted embodiment, if X is less than 2048, the method continues to step 720. If not, the method continues to step 721. This value was selected, in the depicted embodiment, to divide the possible range between the two preset bit-shifting operations which occur in steps 720 and 721.
In step 720, two values are calculated: S and D. S is set to X, the value, bit-shifted right by 3 bits. For X values between 256 and 2047, such a shift ensures that S falls between 0 and 255. D is selected, such that X=D+(S<<3); that is, D is the difference between the original X value, and S after it has been bit-shifted back to X's original precision. For example, with reference to
With reference to steps 730 through 760, the slope of the linear function between Q1 and Q2 is determined, and used to calculate an interpolated Q.
In step 730, the lookup table is referenced for S, and for S+1. This produces two values, Q and Q2. In step 740, the difference between Q2 and Q1 is determined. In step 750, the difference between Q2 and Q1 is multiplied by D, and divided by 23. In step 760, the resulting value is added to Q1, to generate an interpolated Q3. In this embodiment, these steps are equivalent to the two equations presented above, in Table 2.
For example, using
With reference to step 770, an offset table is referenced for the value of D, and the resulting interpolation correction value is subtracted from the interpolated Q3.
With reference to step 780, the corrected Q3 value calculated above is bit-shifted right 4 places. In the depicted embodiment, this bit-shift operation is selected, in conjunction with the original bit-shift operation performed in step 720, to perform the exponential operation called for by the standard, namely X4/3.
As regards steps 721, 731, 741, 751, 761, 771, and 781, similar functionality is utilized for the case where X>2407. Instead of beginning with a 3-bit shift, however, a 6-bit shift is used.
In step 721, two values are calculated: S and D. S is set to X, the value, bit-shifted right by 6 bits. For X values between 2048 and 8207, such a shift ensures that S falls between 0 and 255. D is selected, such that X=D+(S<<6); that is, D is the difference between the original X value, and S after it has been bit-shifted back to X's original precision. For example, with reference to
With reference to steps 731, 741, 751, and 761, the slope of the linear function between Q1 and Q2 is determined, and used to calculate an approximate Q3.
In step 731, the lookup table is referenced for S, and for S+1. This produces two values, Q1 and Q2. In step 741, the difference between Q2 and Q1 is determined. In step 751, the difference between Q2 and Q1 is multiplied by D, and divided by 26. In step 761, the resulting value is added to Q1, to generate an approximate Q3. In this embodiment, these steps are equivalent to the two equations presented in Table 2.
With reference to step 771, an offset table is referenced for the value of D, and the resulting interpolation correction value is subtracted from the interpolated Q3.
With reference to step 781, the corrected Q3 value calculated above is the calculated IQ of X.
As with the method of flowchart 300 and system 302, above, many hardware implementations of the method of flowchart 700 are utilized, in different embodiments. In one embodiment, system 302 is modified to incorporate an offset table, e.g., by subtracting an appropriate interpolation correction value, retrieved from an offset table, from the calculated interpolated value.
Corrected Linear Interpolation Error
With reference now to
In the depicted graph, X values run from 0 to 8207, with error ranging from 0 to nearly 3500. These results are sufficient for this embodiment to pass compliance tests for the AAC and MP3 formats.
As depicted in
With reference now to
Reducing Interpolation Error Through the Use of an Offset Table
As described above, an offset table can be generated and utilized, in some embodiments, to reduce the error introduced by linear interpolation. In different embodiments, different approaches can be utilized for performing inverse quantization. Further, in different embodiments, linear interpolation may be utilized for different purposes. The use of the offset table also extends to many different embodiments in which different kinds of interpolation are used. For example, in one embodiment, the offset table is utilized to correct for errors introduced by spline interpolation, or polynomial interpolation.
In some embodiments, the value of the offset table is to allow multiple values to be grouped, with a single corresponding offset correction value. This allows a memory savings over, e.g., providing offset correction values for every possible value, while still reducing the error introduced by interpolation. For example, a single offset correction value may be applied to a range of values. For a single value within that range, the offset correction value may eliminate interpolation error; for the remaining values in the range, error will be substantially reduced, as opposed to not using the offset correction value.
With reference now to
In step 910, an offset correction table is generated. In different embodiments, the contents of this offset correction table may vary. Further, in different embodiments, different approaches to generating the offset table may be utilized. For example, the approaches described in flowchart 500 and flowchart 600 may be utilized, where appropriate.
In step 920, in the depicted embodiment, an approximate inverse quantized value is calculated. While the depicted embodiment describes inverse quantization, it is understood that this usage is exemplary only. As noted above, embodiments are not limited to inverse quantization, and include applications involving other utilizations of linear interpolation.
With reference to step 930, an offset correction value is retrieved from the offset correction table. In different embodiments, different approaches may be utilized in retrieving the offset correction value. For example, with reference to
With reference to step 940, a corrected inverse quantized value is calculated, from the approximate inverse quantized value and the offset correction value. In different embodiments, different approaches may be followed for calculating a corrected value. For example, with reference to
System for Calculating an Inverse Quantized Value
With reference to
System 1000, as shown, receives an initial value 1001 (X), and stores it in a storage means 1010. In different embodiments, different storage means 1010 are utilized. For example, in one embodiment, storage means 1010 comprises a register.
System 1000 also includes a selection means 1020. In the depicted embodiment, selection means 1020 is used for selecting between multiple operations to perform on initial value 1001. In different embodiments, the nature of the operation being selected may vary. For example, in one embodiment, selection means 1020 chooses between two bit shifting operations to be performed on the initial value 1010. Further, the nature of selection means 1020 may vary, across different embodiments. For example, in one embodiment, selection means 1020 comprises a MUX.
System 1000 includes performing means 1030. As shown, performing means 1030 uses the selected operation, selected operation 1021, and performs it on initial value 1001. The nature of performing means 1030 may vary, across different embodiments. For example, performing means 1030 may comprise a shifter, in an embodiment where selected operation 1021 comprises a shift operation.
System 1000 is shown as incorporating lookup table 1040. In the depicted embodiment, lookup table 1040 receives modified value 1031 from performing means 1030, and retrieves several quantized values based on modified value 1031. In other embodiments, lookup table 1040 may be used in other ways, or to store and retrieve different information.
System 1000 includes calculation means 1050. As shown, calculation means 1050 receives retrieved values from lookup table 1040, e.g., several quantized values 1041. Calculation means 1050 uses the values retrieved by lookup table 1040 to calculate an approximate inverse quantized value 1051. In different embodiments, calculation means 1050 operates in different ways. For example, in one embodiment, calculation means 1050 may use the system and method described in
As shown, system 1000 includes offset table 1060. In the depicted embodiment, offset table 1060 is used to help reduce linear interpolation error. As shown, offset table 1060 receives modified value 1031 and initial value 1001. From these values, offset table 1060 can retrieve offset correction value 1061. In other embodiments, other approaches are utilized for calculating an offset correction value.
System 1000 is also depicted as including correction module 1070. In the depicted embodiment, correction module 1070 receives approximate inverse quantized value 1051 and offset correction value 1061, and uses these values to produce a corrected inverse quantized value 1071. In different embodiments, correction module 1070 operates in different ways. For example, in some embodiments, correction module 1070 may subtract offset correction value 1061 from approximate inverse quantized value 1051.
Embodiments of the present invention are thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4665556 | Fukushima et al. | May 1987 | A |
5163136 | Richmond | Nov 1992 | A |
5189671 | Cheng | Feb 1993 | A |
5420872 | Hyodo et al. | May 1995 | A |
5426731 | Masukane et al. | Jun 1995 | A |
5585931 | Juri et al. | Dec 1996 | A |
5774206 | Wasserman et al. | Jun 1998 | A |
5796743 | Bunting et al. | Aug 1998 | A |
5818529 | Asamura et al. | Oct 1998 | A |
5821886 | Son | Oct 1998 | A |
5850482 | Meany et al. | Dec 1998 | A |
5946037 | Ahnn | Aug 1999 | A |
5969750 | Hsieh et al. | Oct 1999 | A |
5990812 | Bakhmutsky | Nov 1999 | A |
6008745 | Zandi et al. | Dec 1999 | A |
6023088 | Son | Feb 2000 | A |
6041403 | Parker et al. | Mar 2000 | A |
6041431 | Goldstein | Mar 2000 | A |
6047253 | Nishiguchi et al. | Apr 2000 | A |
6047357 | Bannon et al. | Apr 2000 | A |
6144322 | Sato | Nov 2000 | A |
6157741 | Abe et al. | Dec 2000 | A |
6161531 | Hamburg et al. | Dec 2000 | A |
6246347 | Bakhmutsky | Jun 2001 | B1 |
6298370 | Tang et al. | Oct 2001 | B1 |
6317063 | Matsubara | Nov 2001 | B1 |
6339658 | Moccagatta et al. | Jan 2002 | B1 |
6404928 | Shaw et al. | Jun 2002 | B1 |
6441757 | Hirano | Aug 2002 | B1 |
6462744 | Mochida et al. | Oct 2002 | B1 |
6480489 | Muller et al. | Nov 2002 | B1 |
6493872 | Rangan et al. | Dec 2002 | B1 |
6507614 | Li | Jan 2003 | B1 |
6529631 | Peterson et al. | Mar 2003 | B1 |
6543023 | Bessios | Apr 2003 | B2 |
6552673 | Webb | Apr 2003 | B2 |
6556252 | Kim | Apr 2003 | B1 |
6563440 | Kangas | May 2003 | B1 |
6563441 | Gold | May 2003 | B1 |
6573946 | Gryskiewicz | Jun 2003 | B1 |
6577681 | Kimura | Jun 2003 | B1 |
6587057 | Scheuermann | Jul 2003 | B2 |
6654539 | Duruoz et al. | Nov 2003 | B1 |
6675282 | Hum et al. | Jan 2004 | B2 |
6696992 | Chu | Feb 2004 | B1 |
6718507 | Johnston et al. | Apr 2004 | B1 |
6738522 | Hsu et al. | May 2004 | B1 |
6795503 | Nakao et al. | Sep 2004 | B2 |
6839624 | Beesley et al. | Jan 2005 | B1 |
6891976 | Zheltov et al. | May 2005 | B2 |
6925119 | Bartolucci et al. | Aug 2005 | B2 |
6981073 | Wang et al. | Dec 2005 | B2 |
7016547 | Smirnov | Mar 2006 | B1 |
7051123 | Baker et al. | May 2006 | B1 |
7068407 | Sakai et al. | Jun 2006 | B2 |
7068919 | Ando et al. | Jun 2006 | B2 |
7069407 | Vasudevan et al. | Jun 2006 | B1 |
7074153 | Usoro et al. | Jul 2006 | B2 |
7113115 | Partiwala et al. | Sep 2006 | B2 |
7113546 | Kovacevic et al. | Sep 2006 | B1 |
7119813 | Hollis et al. | Oct 2006 | B1 |
7129862 | Shirdhonkar et al. | Oct 2006 | B1 |
7132963 | Pearlstein et al. | Nov 2006 | B2 |
7158539 | Zhang et al. | Jan 2007 | B2 |
7209636 | Imahashi et al. | Apr 2007 | B2 |
7230986 | Wise et al. | Jun 2007 | B2 |
7248740 | Sullivan | Jul 2007 | B2 |
7286543 | Bass et al. | Oct 2007 | B2 |
7289047 | Nagori | Oct 2007 | B2 |
7324026 | Puri et al. | Jan 2008 | B2 |
7327378 | Han et al. | Feb 2008 | B2 |
7372378 | Sriram | May 2008 | B2 |
7372379 | Jia et al. | May 2008 | B1 |
7432835 | Ohashi et al. | Oct 2008 | B2 |
7606313 | Raman et al. | Oct 2009 | B2 |
7613605 | Funakoshi | Nov 2009 | B2 |
7627042 | Raman et al. | Dec 2009 | B2 |
7724827 | Liang et al. | May 2010 | B2 |
7765320 | Vehse et al. | Jul 2010 | B2 |
7812927 | Kurosawa | Oct 2010 | B2 |
8032367 | Takamizawa | Oct 2011 | B2 |
20010010755 | Ando et al. | Aug 2001 | A1 |
20010026585 | Kumaki | Oct 2001 | A1 |
20020094031 | Ngai et al. | Jul 2002 | A1 |
20020135683 | Tamama et al. | Sep 2002 | A1 |
20030043919 | Haddad | Mar 2003 | A1 |
20030067977 | Chu et al. | Apr 2003 | A1 |
20030142105 | Lavelle et al. | Jul 2003 | A1 |
20030156652 | Wise et al. | Aug 2003 | A1 |
20030179706 | Goetzinger et al. | Sep 2003 | A1 |
20030191788 | Auyeung et al. | Oct 2003 | A1 |
20030196040 | Hosogi et al. | Oct 2003 | A1 |
20040028127 | Subramaniyan | Feb 2004 | A1 |
20040028142 | Kim | Feb 2004 | A1 |
20040056787 | Bossen | Mar 2004 | A1 |
20040059770 | Bossen | Mar 2004 | A1 |
20040067043 | Duruoz et al. | Apr 2004 | A1 |
20040081245 | Deeley et al. | Apr 2004 | A1 |
20040096002 | Zdepski et al. | May 2004 | A1 |
20040109059 | Kawakita | Jun 2004 | A1 |
20040130553 | Ushida et al. | Jul 2004 | A1 |
20040145677 | Raman et al. | Jul 2004 | A1 |
20050008331 | Nishimura et al. | Jan 2005 | A1 |
20050123274 | Crinon et al. | Jun 2005 | A1 |
20050147375 | Kadono | Jul 2005 | A1 |
20050182778 | Heuer et al. | Aug 2005 | A1 |
20050207497 | Rovati et al. | Sep 2005 | A1 |
20060013321 | Sekiguchi et al. | Jan 2006 | A1 |
20060083306 | Hsu | Apr 2006 | A1 |
20060133500 | Lee et al. | Jun 2006 | A1 |
20060176309 | Gadre et al. | Aug 2006 | A1 |
20060215916 | Kimura | Sep 2006 | A1 |
20060256120 | Ushida et al. | Nov 2006 | A1 |
20070006060 | Walker | Jan 2007 | A1 |
20070041653 | Lafon | Feb 2007 | A1 |
20070288971 | Cragun et al. | Dec 2007 | A1 |
20080069464 | Nakayama | Mar 2008 | A1 |
20080162860 | Sabbatini et al. | Jul 2008 | A1 |
20080317138 | Jia | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
101017574 | Aug 2007 | CN |
06276394 | Sep 1994 | JP |
09261647 | Oct 1997 | JP |
2000049621 | Feb 2000 | JP |
1020030016859 | Mar 2003 | KR |
0124425 | Apr 2001 | WO |
Entry |
---|
English Translation of Office Action for Chinese Patent Application No. 200810212373.X, Entitled: Decoding Variable Length Codes in JPEG Applications, Mar. 30, 2010. |