Inverse quantization in audio decoding

Information

  • Patent Grant
  • 8725504
  • Patent Number
    8,725,504
  • Date Filed
    Wednesday, June 6, 2007
    17 years ago
  • Date Issued
    Tuesday, May 13, 2014
    11 years ago
Abstract
An approach to performing inverse quantization on a quantized integral value is described. This approach involves determining whether a quantized integral value lies within a first range or a second range of possible values. An interpolated inverse quantization value is calculated from the quantized integral value, using a predetermined bit shifting operation, depending on whether the quantized integral value was in the first or the second range.
Description
BACKGROUND

1. Field of the Invention


Embodiments of the present invention relate to the inverse quantization of data during audio decoding.


2. Related Art


A persistent issue in digital media is the balance between quality of a presentation, and the costs inherent in preserving quality. Many media standards specify that implementations of that standard must meet certain minimum quality requirements, without specifically limiting how the standard is to be implemented.


For example, both the MP3 and AAC audio formats specify the use of nonlinear inverse quantization during the decoding process, and the standard requires that errors introduced during this inverse quantization process fall within certain minimums. Two prevailing approaches have been adopted for these specific standards. In one approach, errors are minimized, but at the cost of substantial memory requirements for implementing the solution. In another approach, a degree of error is acceptable, which lowers the memory requirements significantly, but at an increased cost in hardware resources.


SUMMARY

Methods and systems for performing inverse quantization on a quantized integral value are described. The approach generally involves determining whether a quantized integral value lies within a first range or a second range of possible values. An interpolated inverse quantization value is calculated from the quantized integral value, using a predetermined bit shifting operation, depending on whether the quantized integral value was in the first or the second range.


Another embodiment is described for generating an offset table. This approach involves examining a number of quantized values. For each of these quantized values, both an interpolated inverse quantization value, and a precise inverse quantization value are calculated. These values are used to generate the offset table.


Another embodiment is also described for calculating an inverse quantization value for a quantized value. This approach involves determining whether the quantized value is associated with a lookup table entry; if it is, the lookup table entry is retrieved. If it is not, an interpolated inverse quantization value is calculated, and then modified using an interpolation correction value retrieved from an offset table.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:



FIG. 1 is a block diagram of an exemplary computer system upon which embodiments of the present invention may be implemented.



FIG. 2A is a graph of IQ=x4/3, in accordance with one embodiment of the present invention.



FIG. 2B is a graph of IQ=x4/3, with a limited range of x, in accordance with one embodiment of the present invention.



FIG. 3A is a flowchart of an exemplary method of performing inverse quantization, in accordance with one embodiment.



FIG. 3B is a block diagram of a system for performing inverse quantization, in accordance with one embodiment.



FIG. 4A is a graph of the error in decoding caused by linear interpolation, in accordance with one embodiment.



FIG. 4B is a graph of the error in decoding caused by linear interpolation, over a limited range of x, in accordance with one embodiment.



FIG. 5 is a flowchart of an exemplary method of generating an offset table for use with linear interpolation, in accordance with one embodiment.



FIG. 6 is a flowchart of an exemplary method of generating an offset table for use with the AAC and MP3 formats, in accordance with one embodiment.



FIG. 7 is a flowchart of an exemplary method of calculating an inverse quantization value, in accordance with one embodiment.



FIG. 8A is a graph of the error in decoding caused by linear interpolation, as modified by use of an offset table, in accordance with one embodiment.



FIG. 8B is a graph of the error in decoding caused by linear interpolation, as modified by use of an offset table, over a limited range of x, in accordance with one embodiment.



FIG. 9 is a flowchart of a method of reducing linear interpolation error, in accordance with one embodiment.



FIG. 10 is a block diagram of a system for calculating an inverse quantized value, in accordance with one embodiment.





DETAILED DESCRIPTION

Reference will now be made in detail to several embodiments of the invention. While the invention will be described in conjunction with the alternative embodiment(s), it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternative, modifications, and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.


Furthermore, in the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the claimed subject matter. However, it will be recognized by one skilled in the art that embodiments may be practiced without these specific details or with equivalents thereof. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects and features of the subject matter.


Portions of the detailed description that follows are presented and discussed in terms of a method. Although steps and sequencing thereof are disclosed in figures herein (e.g., FIG. 5) describing the operations of this method, such steps and sequencing are exemplary. Embodiments are well suited to performing various other steps or variations of the steps recited in the flowchart of the figure herein, and in a sequence other than that depicted and described herein.


Some portions of the detailed description are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits that can be performed on computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer-executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout, discussions utilizing terms such as “accessing,” “writing,” “including,” “storing,” “transmitting,” “traversing,” “associating,” “identifying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.


Computing devices typically include at least some form of computer readable media. Computer readable media can be any available media that can be accessed by a computing device. By way of example, and not limitation, computer readable medium may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules, or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile discs (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device. Communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signals such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.


Some embodiments may be described in the general context of computer-executable instructions, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Typically the functionality of the program modules may be combined or distributed as desired in various embodiments.


Although embodiments described herein may make reference to a CPU and a GPU as discrete components of a computer system, those skilled in the art will recognize that a CPU and a GPU can be integrated into a single device, and a CPU and GPU may share various resources such as instruction logic, buffers, functional units and so on; or separate resources may be provided for graphics and general-purpose operations. Accordingly, any or all of the circuits and/or functionality described herein as being associated with GPU could also be implemented in and performed by a suitably configured CPU.


Further, while embodiments described herein may make reference to a GPU, it is to be understood that the circuits and/or functionality described herein could also be implemented in other types of processors, such as general-purpose or other special-purpose coprocessors, or within a CPU.


Basic Computing System


Referring now to FIG. 1, a block diagram of an exemplary computer system 112 is shown. It is appreciated that computer system 112 described herein illustrates an exemplary configuration of an operational platform upon which embodiments may be implemented to advantage. Nevertheless, other computer systems with differing configurations can also be used in place of computer system 112 within the scope of the present invention. That is, computer system 112 can include elements other than those described in conjunction with FIG. 1. Moreover, embodiments may be practiced on any system which can be configured to enable it, not just computer systems like computer system 112. It is understood that embodiments can be practiced on many different types of computer system 112. System 112 can be implemented as, for example, a desktop computer system or server computer system having a powerful general-purpose CPU coupled to a dedicated graphics rendering GPU. In such an embodiment, components can be included that add peripheral buses, specialized audio/video components, IO devices, and the like. Similarly, system 112 can be implemented as a handheld device (e.g., cellphone, etc.) or a set-top video game console device such as, for example, the Xbox®, available from Microsoft Corporation of Redmond, Wash., or the PlayStation3®, available from Sony Computer Entertainment Corporation of Tokyo, Japan. System 112 can also be implemented as a “system on a chip”, where the electronics (e.g., the components 101, 103, 105, 106, and the like) of a computing device are wholly contained within a single integrated circuit die. Examples include a hand-held instrument with a display, a car navigation system, a portable entertainment system, and the like.


Computer system 112 comprises an address/data bus 100 for communicating information, a central processor 101 coupled with bus 100 for processing information and instructions; a volatile memory unit 102 (e.g., random access memory [RAM], static RAM, dynamic RAM, etc.) coupled with bus 100 for storing information and instructions for central processor 101; and a non-volatile memory unit 103 (e.g., read only memory [ROM], programmable ROM, flash memory, etc.) coupled with bus 100 for storing static information and instructions for processor 101. Moreover, computer system 112 also comprises a data storage device 104 (e.g., hard disk drive) for storing information and instructions.


Computer system 112 also comprises an optional graphics subsystem 105, an optional alphanumeric input device 106, an optional cursor control or directing device 107, and signal communication interface (input/output device) 108. Optional alphanumeric input device 106 can communicate information and command selections to central processor 101. Optional cursor control or directing device 107 is coupled to bus 100 for communicating user input information and command selections to central processor 101. Signal communication interface (input/output device) 108, which is also coupled to bus 100, can be a serial port. Communication interface 108 may also include wireless communication mechanisms. Using communication interface 108, computer system 112 can be communicatively coupled to other computer systems over a communication network such as the Internet or an intranet (e.g., a local area network), or can receive data (e.g., a digital television signal). Computer system 112 may also comprise graphics subsystem 105 for presenting information to the computer user, e.g., by displaying information on an attached display device 110, connected by a video cable 111. In some embodiments, graphics subsystem 105 is incorporated into central processor 101. In other embodiments, graphics subsystem 105 is a separate, discrete component. In other embodiments, graphics subsystem 105 is incorporated into another component. In other embodiments, graphics subsystem 105 is included in system 112 in other ways.


Inverse Quantization


Inverse quantization (IQ) is used in many different digital media applications. In a number of these applications, e.g., AAC and MP3 decoding, a nonlinear inverse quantization is specified. For example, IQ in AAC and MP3 decoding is performed using the equation presented below, in Table 1. In this situation, x is the quantized integral value, and can range from 0 to 8207, inclusive.









TABLE 1







IQ = x4/3









Two typical implementation schemes have been developed, to address nonlinear inverse quantization, such as that called for by the AAC and MP3 standards. The first such implementation uses a full-size lookup table for the entire possible range of values. In the case of AAC and MP3, where x may range from 0 to 8207, the lookup table has 8208 entries, and requires somewhat more than 32 kB to store each of these (usually) four byte entries. This implementation, as it can use exact values for all possible entries, introduces very little error, at the cost of a significant use of memory.


The second implementation uses a much smaller lookup table, e.g., 256 entries and 1 kB of memory. For values of x larger than those that appear in the lookup table, linear interpolation is used to approximate values. This approach requires much less memory usage, but requires several expensive hardware elements.


With reference now Figures to 2A and 2B, graphical representations of the inverse quantization equation for AAC and MP3 is provided. These graphical representations are not to scale. FIG. 2A depicts graph 200, a graph of IQ=x4/3, where x ranges from 0 to 8207, and IQ ranges from 0 to approximately 165500 (82074/3). FIG. 2B focuses on a portion of this range, where x ranges from x1 to x2, and IQ ranges from a corresponding Q1 to Q2.



FIG. 2B depicts the calculation of an inverse quantized value, Q 233, using linear interpolation. Using two known values, Q1 231 and Q2 232, and their corresponding x coordinates, x1 221 and x2 222, the slope of the line 240 between Q1 231 and Q2 232 can be determined. From this slope, and x3 223, an interpolation distance, or interpolation value, 241 can be determined; interpolation distance 241 and Q1 231 can then be used to calculate an approximate, or interpolated, Q3 234. The error introduced by linear interpolation is shown as the distance between Q3 233 and approximate Q3 234, indicated here as offset 243.


When calculating inverse quantization for some value x3, e.g., x3 223, using this second approach, if x3 is larger than the lookup table available, then this implementation requires determining several different values. This determination represents a significant investment of resources, as it is necessary to implement a multistage branching operation in hardware.


A second hardware investment is required to in order to implement the calculation of the slope between the two reference points, e.g., the slope of line 240. In some embodiment, this calculation is implemented using a 25-bit by 6-bit multiplier. This implementation also requires a 32-bit by 30-bit multiplier, used to reduce precision from the lookup table, and extract the integer portion of the data.


Efficient Inverse Quantization


Described herein are embodiments which perform nonlinear inverse quantization, within an acceptable margin of error, while requiring fewer resources than the present implementations. For example, in one embodiment, an approach to providing nonlinear inverse quantization for the AAC and MP3 standards is described, which substantially avoids the need for multiple branchings, and eliminates the requirement for the second, large, hardware multiplier.


Also described herein are embodiments which reduce the errors introduced by linear interpolation. In several such embodiments, a small offset table is utilized to correct for the errors introduced by linear interpolation of nonlinear inverse quantization data.


Further, described herein are embodiments which combine reduced hardware requirements for calculating nonlinear inverse quantization data, with the reduction in errors introduced by linear interpolation.


Performing Inverse Quantization


With reference now to FIG. 3A, a flowchart 300 of a method of performing inverse quantization is depicted, in accordance with one embodiment. Although specific steps are disclosed in flowchart 300, such steps are exemplary. That is, embodiments of the present invention are well suited to performing various other (additional) steps or variations of the steps recited in flowchart 300. It is appreciated that the steps in flowchart 300 may be performed in an order different than presented, and that not all of the steps in flowchart 300 may be performed. Further, it is understood that embodiments which implement the method of flowchart 300 may implement this method using software, hardware, or some combination of both approaches.


As shown in FIG. 3, flowchart 300 depicts the inverse quantization of some value, X. In the depicted embodiment, the inverse quantization method utilized conforms to the AAC and MP3 standard. Accordingly, X may range from 0 to a maximum of 8207. In other embodiments, the specific values and ranges utilized below may vary, in accordance with the specifications of different standards; in those embodiments, appropriate values may be selected and appropriate functions performed.


Initially, in step 301, the method of flowchart 300 differentiates between values of X which are present on the lookup table, and those that are not. For example, if the lookup table has a total of 256 entries, the method may differentiate between values of X which are between 0 and 255, and those which are greater than 255. If the value appears on the lookup table, the method continues to step 309. If the value does not appear on the lookup table, the method continues to step 310.


In step 309, the method retrieves the appropriate data from the lookup table, and finishes.


In step 310, the method further differentiates between two possible ranges of values for X. In the depicted embodiment, if X is less than 2048, the method continues to step 320. If not, the method continues to step 321. This value was selected, in the depicted embodiment, to divide the possible range between the two preset bit-shifting operations which occur in steps 320 and 321.


In step 320, two values are calculated: S and D. S is set to X, the value, bit-shifted right by 3 bits. For X values between 256 and 2047, such a shift ensures that S falls between 0 and 255. D is selected, such that X=D+(S<<3); that is, D is the difference between the original X value, and S after it has been bit-shifted back to X's original precision. For example, with reference to FIG. 2B, D is the distance between x3 223 and x1 221.


With reference to steps 330 through 360, the slope of the linear function between Q1 and Q2 is determined, and used to calculate an approximate Q3.


In step 330, the lookup table is referenced for S, and for S+1. This produces two values, Q1 and Q2. In step 340, the difference between Q2 and Q1 is determined. In step 350, the difference between Q2 and Q1 is multiplied by D, and divided by 23. In step 360, the resulting value is added to Q1, to generate an approximate Q3. In this embodiment, these steps are equivalent to the two equations presented in Table 2.













TABLE 2














INTP
=



(


Q
2

-

Q
1


)


(


x
2

-

x
1


)


*

(


x
3

-

x
1


)









Approx






Q
3


=

INTP
+

Q
1

















For example, using FIG. 2B, (Q2 232−Q1 231) divided by (x2 222−x1 221) would yield the slope of line 240. Multiplying that slope by (x3 223−x1 221) gives interpolation distance 241; adding interpolation distance 241 to Q1 provides approximate Q3 234.


With reference to step 380, the approximate Q value calculated above is bit-shifted right 4 places. In the depicted embodiment, this bit-shift operation is selected, in conjunction with the original bit-shift operation performed in step 320, to perform the exponential operation called for by the standard, namely X4/3.


As regards steps 321, 331, 341, 351, 361, and 381, similar functionality is utilized for the case where X>2407. Instead of beginning with a 3-bit shift, however, a 6-bit shift is used.


In step 321, two values are calculated: S and D. S is set to X, the value, bit-shifted right by 6 bits. For X values between 2048 and 8207, such a shift ensures that S falls between 0 and 255. D is selected, such that X=D+(S<<6); that is, D is the difference between the original X value, and S after it has been bit-shifted back to X's original precision. For example, with reference to FIG. 2B, D is the distance between x3 223 and x1 221.


With reference to steps 331, 341, 351, and 361, the slope of the linear function between Q1 and Q2 is determined, and used to calculate an approximate Q3.


In step 331, the lookup table is referenced for S, and for S+1. This produces two values, Q1 and Q2. In step 341, the difference between Q2 and Q1 is determined. In step 351, the difference between Q2 and Q1 is multiplied by D, and divided by 26. In step 361, the resulting value is added to Q1, to generate an approximate Q. In this embodiment, these steps are equivalent to the two equations presented in Table 2.


With reference to step 381, the approximate Q value calculated above is the calculated IQ of X. In effect, the bit-shifting operations which occurred in the preceding steps were equivalent to the required exponential function, x4/3.


With reference now to FIG. 3B, a block diagram of a system 302 for performing inverse quantization is depicted, in accordance with one embodiment. While system 302 is shown as including specific, enumerated features, it is understood that embodiments are well-suited to applications involving addition, fewer, or different elements and/or features. In particular, it is understood that embodiments may utilize alternative hardware components to implement specific functionality.


In the depicted embodiment, system 302 shows an exemplary hardware implementation of the inverse quantization method described by flowchart 300. Initially, a value X is received by system 302, and stored, e.g., in a register 303. In some embodiments, other means for storing may be utilized; e.g., a flip-flop may be used to latch the value X, rather than storing it in a register. Similarly, other values stored in system 302 maybe stored in any convenient manner, in different embodiments.


As shown in FIG. 3B, X is passed to a MUX 312; MUX 312, in the depicted embodiment, is used to select between potential shift operators, N, e.g., between bit-shifting 3 or 6 bits. If X is less than 2048, N=3 is used; if X is greater than or equal to 2048, N=6 is used. As shown, X is passed to a shifter 322, and is shifted N bits, e.g., either 3 or 6, as indicated by MUX 312. The output of shifter 322, S, is then stored in register 323.


In the depicted embodiment, S is passed to another shifter, shifter 326, which left-shifts S by N bits. This shifted value is then passed to subtraction module 328, and is subtracted from the initial X value to produce D. D is stored in register 329.


As shown, S is passed to lookup table 332, to produce value Q1. S is also passed to an adder, to produce S+1, which is similarly passed to lookup table 332, producing value Q2. Q1 is subtracted from Q2 by subtraction module 342. The resulting value is passed to multiplier module 352, where it is multiplied by D. That product is then right-shifted N bits by shifter 354. This value is added to Q1, and then passed to truncation module 382. The output of truncation module 382 is IQ(X).


In the depicted embodiment, X is also passed directly to lookup table 332. This path is utilized for values of X which appear on the lookup table, e.g., where X is less than 256. MUX 399 uses X to select between these two functional paths, as appropriate.


Linear Interpolation Error


With reference now to FIG. 4A, a graph 400 of the error in decoding caused by this method is presented, in accordance with one embodiment. Error, as used herein, is a measure of the difference between the mathematically correct value of IQ(X), and the IQ interpolated (X) calculated using the method of Flowchart 300. For example, 2574/3, using floating point number calculation, the 13-bit fixed point result should be 13385485. Using the method described in flowchart 300, the result is 13385799. Accordingly, the error is 314.


In the depicted graph, X values run from 0 to 8207, with error ranging from 0 to nearly 12000. These results are sufficient for this embodiment to pass compliance tests for the AAC and MP3 formats.


As depicted in FIG. 4A, error is divided into 3 sections: 0≦X≦255, 256≦X≦2047, and 2048≦X≦8207. Error in the first range is effectively zero, as the lookup table contains precise entries for each of these values. Error in the second interval is non-zero, but relatively small, as the errors introduced by linear interpolation are still fairly small in this range. Error in the third interval is greater, but still within the limits enforced by the AAC and MP3 standards.


With reference now to FIG. 4B, a graph 450, a portion of graph 400, is depicted, in accordance with one embodiment. Graph 450 shows the error over the interval of 1800≦X≦3000.


As noted previously, and as illustrated by offset 243, using linear interpolation for nonlinear quantization introduces an additional error. In some embodiments, this linear interpolation error can be reduced by the use of an offset table. The offset table is generated, using a number of reference point spread across the entirety of the range of possible values. These offset values can then be used, e.g., added in, when calculating the approximate inverse quantization value.


Offset Table Generation


Described below, with reference to FIG. 5, is a method that can be used for generating such an offset table. While the discussion that follows focuses on applications to the MP3 and AAC standards, is understood that embodiments are well suited for use with many different applications of linear interpolation.


With reference to FIG. 5, a flowchart 500 of a method of generating an offset table for use with linear interpolation is depicted, in accordance with one embodiment. Although specific steps are disclosed in flowchart 500, such steps are exemplary. That is, embodiments of the present invention are well suited to performing various other (additional) steps or variations of the steps recited in flowchart 500. It is appreciated that the steps in flowchart 500 may be performed in an order different than presented, and that not all of the steps in flowchart 500 may be performed. Further, it is understood that embodiments which implement the method of flowchart 500 may implement this method using software, hardware, or some combination of both approaches.


With reference now to step 510, the method initially examines each possible value of X in a given range. In some embodiment, e.g., for the AAC and MP3 standards, it may be desirable to only examine a portion of the possible range of values of X. Specifically, in one embodiment, the range from 2048 to 8207 is examined; within this range, the value of D will vary from zero to 63. Moreover, the size of the offset table which will be generated may vary across different embodiments. In one embodiment, where the standard being implemented is for the AAC and MP3 formats, an offset table having 64 entries is convenient, as it allows one entry per possible value of D. It is understood that different embodiments are well-suited for applications with offset tables of differing sizes. In some embodiments, the use of any offset table will decrease interpolation error; in several such embodiments, the larger the offset table used, the greater the improvement in performance.


With reference to step 520, the interpolated value for the inverse quantization of the current value of X is calculated. Which method is used to calculate this interpolated value will vary, across different embodiments. In one embodiment, the method set forth in flowchart 300 may be utilized.


With reference now to step 530, the true value of the inverse quantization for the current value of X is calculated. In one embodiment, this step entails using the actual equations provided by a given standard, in order to calculate the mathematically precise value of the inverse quantization for the current value of X. For example, when implementing the AAC and MP3 formats, the equation provided in Table 1 is utilized, in order to determine the exact value of the inverse quantization of a given value of X.


With reference now to step 540, the interpolation error is calculated, using the difference between the interpolated value and the true value for the current value of X. Step 540 allows for the computation of the exact error, within precision, between the interpolated value and the true value for the inverse quantization of a particular value of X.


In some embodiments, steps 520 to 540 are repeated for some or all of the possible values of X in the given range.


With reference now to step 550, the offset table is generated, with interpolation correction values derived from the calculated differences between the interpolated and true values. In different embodiments, different approaches will be utilized. In one embodiment, for example, where the AAC and MP3 formats are to be implemented, a 64 entry offset table is used, to provide one offset value for each possible value of D. In this embodiment, the average of the minimum interpolation error and the maximum interpolation error for a given value of D across the entire range from 2048 to 8207 is calculated, and used as an interpolation correction value for that value of D. In other embodiment, the size of the offset table may vary, and the approach used to generate an interpolation correction value may also very.


With reference to FIG. 6, a flowchart 600 of a method of generating an offset table for use with the AAC and MP3 formats is depicted, in accordance with one embodiment. Although specific steps are disclosed in flowchart 600, such steps are exemplary. That is, embodiments of the present invention are well suited to performing various other (additional) steps or variations of the steps recited in flowchart 600. It is appreciated that the steps in flowchart 600 may be performed in an order different than presented, and that not all of the steps in flowchart 600 may be performed. Further, it is understood that embodiments which implement the method of flowchart 600 may implement this method using software, hardware, or some combination of both approaches.


With reference first to step 610, two 64 entry arrays are initialized. In the depicted embodiment, one array, the offset minimum array, is initialized to maximum values, while the other, the offset maximum array, is initialized to minimum values.


With reference to step 620, the range of possible X values from 2048 to 8207 is examined.


With reference to steps 630 through 650, the interpolated value of the inverse quantization of X is calculated. In step 630, two values are calculated: S and D. S is set to X, the value, bit-shifted right by 6 bits. For X values between 2048 and 8207, such a shift ensures that S falls between 0 and 255. D is selected, such that X=D+(S<<6); that is, D is the difference between the original X value, and S after it has been bit-shifted back to X's original precision. For example, with reference to FIG. 2B, D is the distance between x3 223 and x1 221.


In step 640, the lookup table is referenced for S, and for S+1. This produces two values, Q1 and Q2. In step 650, the difference between Q2 and Q1 is determined, multiplied by D, and divided by 26. The resulting value is added to Q1, to generate the interpolated value of the inverse quantization of X. In this embodiment, these steps are equivalent to the two equations presented in Table 2.


With reference to step 660, the true value of the inverse quantization of X is calculated, using the equation provided in Table 1.


With reference to step 670, the interpolation error between the interpolated value and the true value of the inverse quantization of X is calculated.


With reference to step 680, if the interpolation error is greater than the currently stored maximum interpolation error for this value of D, the interpolation error is stored in the offset maximum array. If the interpolation error is less than the currently stored minimum interpolation error for this value of D, the interpolation error is stored in the offset minimum array.


In the depicted embodiment, steps 620 through 680 are repeated for all values of X within the defined range. In this manner, the maximum and minimum interpolation errors for the entire range for each value of D are stored in the two arrays.


In step 690, an average interpolation error is calculated for each value of D, by adding the minimum and maximum interpolation errors for a particular value of D, and dividing by two. The average interpolation errors are used to populate a 64 entry offset table.


As noted above, it is understood that embodiments are well-suited to applications wherever linear interpolation is utilized. In some embodiments, linear interpolation is utilized where inverse quantization is called for, e.g., for the AAC and MP3 formats.


Inverse Quantization with Offset


With reference now to FIG. 7, a flowchart 700 of a method of calculating an inverse quantization value is depicted, in accordance with one embodiment. Although specific steps are disclosed in flowchart 700, such steps are exemplary. That is, embodiments of the present invention are well suited to performing various other (additional) steps or variations of the steps recited in flowchart 700. It is appreciated that the steps in flowchart 700 may be performed in an order different than presented, and that not all of the steps in flowchart 700 may be performed. Further, it is understood that embodiments which implement the method of flowchart 700 may implement this method using software, hardware, or some combination of both approaches.


As shown in FIG. 7, flowchart 700 depicts the inverse quantization of some value, X. The method described by flowchart 700 is similar to that presented by FIG. 3, with the addition of the use of an offset table, to reduce the errors introduced by linear interpolation. In the depicted embodiment, the inverse quantization method utilized conforms to the AAC and MP3 standard. Accordingly, X may range from 0 to a maximum of 8207. A 64 entry offset table is utilized, derived using the method described in flowchart 600. In other embodiments, the specific values and ranges utilized below may vary, in accordance with the specifications of different standards; in those embodiments, appropriate values may be selected and appropriate functions performed.


Initially, in step 701, the method of flowchart 700 differentiates between values of X which are present on the lookup table, and those that are not. For example, if the lookup table has a total of 256 entries, the method may differentiate between values of X which are between 0 and 255, and those which are greater than 255. If the value appears on the lookup table, the method continues to step 709. If the value does not appear on the lookup table, the method continues to step 710.


In step 709, the method retrieves the appropriate data from the lookup table, and finishes.


In step 710, the method further differentiates between two possible ranges of values for X. In the depicted embodiment, if X is less than 2048, the method continues to step 720. If not, the method continues to step 721. This value was selected, in the depicted embodiment, to divide the possible range between the two preset bit-shifting operations which occur in steps 720 and 721.


In step 720, two values are calculated: S and D. S is set to X, the value, bit-shifted right by 3 bits. For X values between 256 and 2047, such a shift ensures that S falls between 0 and 255. D is selected, such that X=D+(S<<3); that is, D is the difference between the original X value, and S after it has been bit-shifted back to X's original precision. For example, with reference to FIG. 2B, D is the distance between x3 223 and x1 221.


With reference to steps 730 through 760, the slope of the linear function between Q1 and Q2 is determined, and used to calculate an interpolated Q.


In step 730, the lookup table is referenced for S, and for S+1. This produces two values, Q and Q2. In step 740, the difference between Q2 and Q1 is determined. In step 750, the difference between Q2 and Q1 is multiplied by D, and divided by 23. In step 760, the resulting value is added to Q1, to generate an interpolated Q3. In this embodiment, these steps are equivalent to the two equations presented above, in Table 2.


For example, using FIG. 2B, (Q2 232−Q1 231) divided by (x2 222−x1 221) would yield the slope of line 240. Multiplying that slope by (x3 223−x1 221) gives interpolation distance 241; adding interpolation distance 241 to Q1 provides approximate Q3 234.


With reference to step 770, an offset table is referenced for the value of D, and the resulting interpolation correction value is subtracted from the interpolated Q3.


With reference to step 780, the corrected Q3 value calculated above is bit-shifted right 4 places. In the depicted embodiment, this bit-shift operation is selected, in conjunction with the original bit-shift operation performed in step 720, to perform the exponential operation called for by the standard, namely X4/3.


As regards steps 721, 731, 741, 751, 761, 771, and 781, similar functionality is utilized for the case where X>2407. Instead of beginning with a 3-bit shift, however, a 6-bit shift is used.


In step 721, two values are calculated: S and D. S is set to X, the value, bit-shifted right by 6 bits. For X values between 2048 and 8207, such a shift ensures that S falls between 0 and 255. D is selected, such that X=D+(S<<6); that is, D is the difference between the original X value, and S after it has been bit-shifted back to X's original precision. For example, with reference to FIG. 2B, D is the distance between x3 223 and x1 221.


With reference to steps 731, 741, 751, and 761, the slope of the linear function between Q1 and Q2 is determined, and used to calculate an approximate Q3.


In step 731, the lookup table is referenced for S, and for S+1. This produces two values, Q1 and Q2. In step 741, the difference between Q2 and Q1 is determined. In step 751, the difference between Q2 and Q1 is multiplied by D, and divided by 26. In step 761, the resulting value is added to Q1, to generate an approximate Q3. In this embodiment, these steps are equivalent to the two equations presented in Table 2.


With reference to step 771, an offset table is referenced for the value of D, and the resulting interpolation correction value is subtracted from the interpolated Q3.


With reference to step 781, the corrected Q3 value calculated above is the calculated IQ of X.


As with the method of flowchart 300 and system 302, above, many hardware implementations of the method of flowchart 700 are utilized, in different embodiments. In one embodiment, system 302 is modified to incorporate an offset table, e.g., by subtracting an appropriate interpolation correction value, retrieved from an offset table, from the calculated interpolated value.


Corrected Linear Interpolation Error


With reference now to FIG. 8A, a graph 800 of the error in decoding caused by linear interpolation, corrected through the use of an offset table is presented, in accordance with one embodiment. Error, as used herein, is a measure of the difference between the mathematically correct value (the true value) of IQ(X), and the IQ(X) calculated using the method of flowchart 700.


In the depicted graph, X values run from 0 to 8207, with error ranging from 0 to nearly 3500. These results are sufficient for this embodiment to pass compliance tests for the AAC and MP3 formats.


As depicted in FIG. 4B, error is divided into 3 sections: 0≦X≦255, 256≦X≦2047, and 2048≦X≦8207. Error in the first range is effectively zero, as the lookup table contains precise entries for each of these values. Error in the second interval is non-zero, but relatively small; the use of an offset table reduces the errors in this region, as compared to the error introduced by the method of flowchart 300. Error in the third interval is greater, but again is substantially reduced as compared to the method of flowchart 300, and well within the compliance limits enforced by the AAC and MP3 standards. Use of a 64 entry, 128 byte offset table greatly reduces interpolation error.


With reference now to FIG. 8B, a graph 850, a portion of graph 800, is depicted, in accordance with one embodiment. Graph 850 shows the error over the interval of 1800≦X≦2700.


Reducing Interpolation Error Through the Use of an Offset Table


As described above, an offset table can be generated and utilized, in some embodiments, to reduce the error introduced by linear interpolation. In different embodiments, different approaches can be utilized for performing inverse quantization. Further, in different embodiments, linear interpolation may be utilized for different purposes. The use of the offset table also extends to many different embodiments in which different kinds of interpolation are used. For example, in one embodiment, the offset table is utilized to correct for errors introduced by spline interpolation, or polynomial interpolation.


In some embodiments, the value of the offset table is to allow multiple values to be grouped, with a single corresponding offset correction value. This allows a memory savings over, e.g., providing offset correction values for every possible value, while still reducing the error introduced by interpolation. For example, a single offset correction value may be applied to a range of values. For a single value within that range, the offset correction value may eliminate interpolation error; for the remaining values in the range, error will be substantially reduced, as opposed to not using the offset correction value.


With reference now to FIG. 9, a flowchart 900 of a method of reducing linear interpolation error is depicted, in accordance with one embodiment. Although specific steps are disclosed in flowchart 900, such steps are exemplary. That is, embodiments of the present invention are well suited to performing various other (additional) steps or variations of the steps recited in flowchart 900. It is appreciated that the steps in flowchart 900 may be performed in an order different than presented, and that not all of the steps in flowchart 900 may be performed. Further, it is understood that embodiments which implement the method of flowchart 900 may implement this method using software, hardware, or some combination of both approaches.


In step 910, an offset correction table is generated. In different embodiments, the contents of this offset correction table may vary. Further, in different embodiments, different approaches to generating the offset table may be utilized. For example, the approaches described in flowchart 500 and flowchart 600 may be utilized, where appropriate.


In step 920, in the depicted embodiment, an approximate inverse quantized value is calculated. While the depicted embodiment describes inverse quantization, it is understood that this usage is exemplary only. As noted above, embodiments are not limited to inverse quantization, and include applications involving other utilizations of linear interpolation.


With reference to step 930, an offset correction value is retrieved from the offset correction table. In different embodiments, different approaches may be utilized in retrieving the offset correction value. For example, with reference to FIG. 7, the value D is used to retrieve an offset correction value, as D corresponds to the portion of the initial value not used in calculating the approximate inverse quantized value. In other embodiments, other approaches are utilized.


With reference to step 940, a corrected inverse quantized value is calculated, from the approximate inverse quantized value and the offset correction value. In different embodiments, different approaches may be followed for calculating a corrected value. For example, with reference to FIG. 7, the offset correction value is subtracted from the approximate inverse quantized value.


System for Calculating an Inverse Quantized Value


With reference to FIG. 10, a system 1000 for calculating an inverse quantized value is depicted, in accordance with one embodiment. While system 1000 is depicted as having specific, enumerated features, elements, and arrangements, it is understood that embodiments are well suited to applications involving different, fewer, or additional elements or features, or alternative arrangements of features or elements.


System 1000, as shown, receives an initial value 1001 (X), and stores it in a storage means 1010. In different embodiments, different storage means 1010 are utilized. For example, in one embodiment, storage means 1010 comprises a register.


System 1000 also includes a selection means 1020. In the depicted embodiment, selection means 1020 is used for selecting between multiple operations to perform on initial value 1001. In different embodiments, the nature of the operation being selected may vary. For example, in one embodiment, selection means 1020 chooses between two bit shifting operations to be performed on the initial value 1010. Further, the nature of selection means 1020 may vary, across different embodiments. For example, in one embodiment, selection means 1020 comprises a MUX.


System 1000 includes performing means 1030. As shown, performing means 1030 uses the selected operation, selected operation 1021, and performs it on initial value 1001. The nature of performing means 1030 may vary, across different embodiments. For example, performing means 1030 may comprise a shifter, in an embodiment where selected operation 1021 comprises a shift operation.


System 1000 is shown as incorporating lookup table 1040. In the depicted embodiment, lookup table 1040 receives modified value 1031 from performing means 1030, and retrieves several quantized values based on modified value 1031. In other embodiments, lookup table 1040 may be used in other ways, or to store and retrieve different information.


System 1000 includes calculation means 1050. As shown, calculation means 1050 receives retrieved values from lookup table 1040, e.g., several quantized values 1041. Calculation means 1050 uses the values retrieved by lookup table 1040 to calculate an approximate inverse quantized value 1051. In different embodiments, calculation means 1050 operates in different ways. For example, in one embodiment, calculation means 1050 may use the system and method described in FIGS. 3A and 3B.


As shown, system 1000 includes offset table 1060. In the depicted embodiment, offset table 1060 is used to help reduce linear interpolation error. As shown, offset table 1060 receives modified value 1031 and initial value 1001. From these values, offset table 1060 can retrieve offset correction value 1061. In other embodiments, other approaches are utilized for calculating an offset correction value.


System 1000 is also depicted as including correction module 1070. In the depicted embodiment, correction module 1070 receives approximate inverse quantized value 1051 and offset correction value 1061, and uses these values to produce a corrected inverse quantized value 1071. In different embodiments, correction module 1070 operates in different ways. For example, in some embodiments, correction module 1070 may subtract offset correction value 1061 from approximate inverse quantized value 1051.


Embodiments of the present invention are thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the following claims.

Claims
  • 1. A method of performing inverse quantization on a quantized integral value, comprising: determining whether said quantized integral value is within a first range of possible values or a second range of possible values; calculating, within an electronic system, an interpolated inverse quantization value from said quantized integral value, wherein said calculating comprising bit shifting said quantized integral value a first predetermined number of bits when said quantized integral value is within said first range of possible values and said calculating comprising bit shifting said quantized integral value a second predetermined number of bits when said quantized integral value is within said second range of possible values, wherein said calculating comprises calculating a first intermediary value by bit shifting said quantized integral value at least one of said first predetermined number of bits and said second predetermined number of bits, and wherein said interpolated inverse quantization value is determined based on an offset accessed from a data source based on said quantized integral value; andcalculating a second intermediary value from said quantized integral value and said first intermediary value.
  • 2. The method of claim 1, further comprising: determining whether a lookup table entry for said quantized integral value is available; andretrieving said lookup table entry.
  • 3. The method of claim 1, wherein said calculating comprises: retrieving a first inverse quantized value and a second inverse quantized value from a lookup table, using said first intermediary value; andcalculating an interpolation value from said first inverse quantized value, said second inverse quantized value, said first intermediary value, and said second intermediary value.
  • 4. The method of claim 3, wherein said calculating further comprises: calculating said interpolated inverse quantization value from said interpolation value and said first inverse quantization value.
  • 5. The method of claim 3, wherein said calculating further comprises: calculating said interpolated inverse quantization value by performing a second bit shifting operation, said second bit shifting operation associated with said first range of possible values or said second range of possible values.
  • 6. The method of claim 1, further comprising: modifying said interpolated inverse quantization value with reference to an offset table.
  • 7. The method of claim 1, wherein said inverse quantization is associated with a digital media format.
  • 8. The method of claim 7, wherein said digital media format is substantially compliant with a version of the MP3 format.
  • 9. The method of claim 7, wherein said digital media format is substantially compliant with a version of the AAC format.
  • 10. An article of manufacture including a tangible computer-readable storage medium having instructions stored thereon that, if executed by a computing device, cause the computing device to perform inverse quantization on a quantized integral value comprising: determining whether said quantized integral value is within a first range of possible values or a second range of possible values; andcalculating an interpolated inverse quantization value from said quantized integral value, wherein said calculating comprising bit shifting said quantized integral value a first predetermined number of bits when said quantized integral value is within said first range of possible values and said calculating comprising bit shifting said quantized integral value a second predetermined number of bits when said quantized integral value is within said second range of possible values, wherein said calculating comprises calculating a first intermediary value by bit shifting said quantized integral value at least one of said first predetermined number of bits and said second predetermined number of bits, and wherein said interpolated inverse quantization value is determined based on an offset accessed from a data source based on said quantized integral value; andcalculating a second intermediary value from said quantized integral value and said first intermediary value.
  • 11. The article of manufacture of claim 10, wherein said quantization further comprises: determining whether a lookup table entry for said quantized integral value is available; andretrieving said lookup table entry.
  • 12. The article of manufacture of claim 10, wherein said calculating comprises: retrieving a first inverse quantized value and a second inverse quantized value from a lookup table, using said first intermediary value; andcalculating an interpolation value from said first inverse quantized value, said second inverse quantized value, said first intermediary value, and said second intermediary value.
  • 13. The article of manufacture of claim 12, wherein said calculating further comprises: calculating said interpolated inverse quantization value from said interpolation value and said first inverse quantization value.
  • 14. The article of manufacture of claim 12, wherein said calculating further comprises: calculating said interpolated inverse quantization value by performing a second bit shifting operation, said second bit shifting operation associated with said first range of possible values or said second range of possible values.
  • 15. The article of manufacture of claim 10, wherein said operations further comprise: modifying said interpolated inverse quantization value with reference to an offset table.
  • 16. The article of manufacture of claim 10, wherein said inverse quantization is associated with a digital media format.
  • 17. The article of manufacture of claim 16, wherein said digital media format is substantially compliant with a version of the MP3 format.
  • 18. The article of manufacture of claim 16, wherein said digital media format is substantially compliant with a version of the AAC format.
  • 19. A system of performing inverse quantization on a quantized integral value, comprising: means for determining whether said quantized integral value is within a first range of possible values or a second range of possible values; andmeans for calculating an interpolated inverse quantization value from said quantized integral value, wherein said means for calculating comprising means for bit shifting said quantized integral value a first predetermined number of bits when said quantized integral value is within said first range of possible values and means for bit shifting said quantized integral value a second predetermined number of bits when said quantized integral value is within said second range of possible values, wherein said means for calculating comprises means for calculating a first intermediary value by bit shifting said quantized integral value at least one of said first predetermined number of bits and said second predetermined number of bits, and wherein said interpolated inverse quantization value is determined based on an offset accessed from a data source based on said quantized integral value; andmeans for calculating a second intermediary value from said quantized integral value and said first intermediary value.
  • 20. The system of claim 19, further comprising: means for determining whether a lookup table entry for said quantized integral value is available; andmeans for retrieving said lookup table entry.
  • 21. The system of claim 19, further comprising: means for retrieving a first inverse quantized value and a second inverse quantized value from a lookup table, using said first intermediary value.
US Referenced Citations (119)
Number Name Date Kind
4665556 Fukushima et al. May 1987 A
5163136 Richmond Nov 1992 A
5189671 Cheng Feb 1993 A
5420872 Hyodo et al. May 1995 A
5426731 Masukane et al. Jun 1995 A
5585931 Juri et al. Dec 1996 A
5774206 Wasserman et al. Jun 1998 A
5796743 Bunting et al. Aug 1998 A
5818529 Asamura et al. Oct 1998 A
5821886 Son Oct 1998 A
5850482 Meany et al. Dec 1998 A
5946037 Ahnn Aug 1999 A
5969750 Hsieh et al. Oct 1999 A
5990812 Bakhmutsky Nov 1999 A
6008745 Zandi et al. Dec 1999 A
6023088 Son Feb 2000 A
6041403 Parker et al. Mar 2000 A
6041431 Goldstein Mar 2000 A
6047253 Nishiguchi et al. Apr 2000 A
6047357 Bannon et al. Apr 2000 A
6144322 Sato Nov 2000 A
6157741 Abe et al. Dec 2000 A
6161531 Hamburg et al. Dec 2000 A
6246347 Bakhmutsky Jun 2001 B1
6298370 Tang et al. Oct 2001 B1
6317063 Matsubara Nov 2001 B1
6339658 Moccagatta et al. Jan 2002 B1
6404928 Shaw et al. Jun 2002 B1
6441757 Hirano Aug 2002 B1
6462744 Mochida et al. Oct 2002 B1
6480489 Muller et al. Nov 2002 B1
6493872 Rangan et al. Dec 2002 B1
6507614 Li Jan 2003 B1
6529631 Peterson et al. Mar 2003 B1
6543023 Bessios Apr 2003 B2
6552673 Webb Apr 2003 B2
6556252 Kim Apr 2003 B1
6563440 Kangas May 2003 B1
6563441 Gold May 2003 B1
6573946 Gryskiewicz Jun 2003 B1
6577681 Kimura Jun 2003 B1
6587057 Scheuermann Jul 2003 B2
6654539 Duruoz et al. Nov 2003 B1
6675282 Hum et al. Jan 2004 B2
6696992 Chu Feb 2004 B1
6718507 Johnston et al. Apr 2004 B1
6738522 Hsu et al. May 2004 B1
6795503 Nakao et al. Sep 2004 B2
6839624 Beesley et al. Jan 2005 B1
6891976 Zheltov et al. May 2005 B2
6925119 Bartolucci et al. Aug 2005 B2
6981073 Wang et al. Dec 2005 B2
7016547 Smirnov Mar 2006 B1
7051123 Baker et al. May 2006 B1
7068407 Sakai et al. Jun 2006 B2
7068919 Ando et al. Jun 2006 B2
7069407 Vasudevan et al. Jun 2006 B1
7074153 Usoro et al. Jul 2006 B2
7113115 Partiwala et al. Sep 2006 B2
7113546 Kovacevic et al. Sep 2006 B1
7119813 Hollis et al. Oct 2006 B1
7129862 Shirdhonkar et al. Oct 2006 B1
7132963 Pearlstein et al. Nov 2006 B2
7158539 Zhang et al. Jan 2007 B2
7209636 Imahashi et al. Apr 2007 B2
7230986 Wise et al. Jun 2007 B2
7248740 Sullivan Jul 2007 B2
7286543 Bass et al. Oct 2007 B2
7289047 Nagori Oct 2007 B2
7324026 Puri et al. Jan 2008 B2
7327378 Han et al. Feb 2008 B2
7372378 Sriram May 2008 B2
7372379 Jia et al. May 2008 B1
7432835 Ohashi et al. Oct 2008 B2
7606313 Raman et al. Oct 2009 B2
7613605 Funakoshi Nov 2009 B2
7627042 Raman et al. Dec 2009 B2
7724827 Liang et al. May 2010 B2
7765320 Vehse et al. Jul 2010 B2
7812927 Kurosawa Oct 2010 B2
8032367 Takamizawa Oct 2011 B2
20010010755 Ando et al. Aug 2001 A1
20010026585 Kumaki Oct 2001 A1
20020094031 Ngai et al. Jul 2002 A1
20020135683 Tamama et al. Sep 2002 A1
20030043919 Haddad Mar 2003 A1
20030067977 Chu et al. Apr 2003 A1
20030142105 Lavelle et al. Jul 2003 A1
20030156652 Wise et al. Aug 2003 A1
20030179706 Goetzinger et al. Sep 2003 A1
20030191788 Auyeung et al. Oct 2003 A1
20030196040 Hosogi et al. Oct 2003 A1
20040028127 Subramaniyan Feb 2004 A1
20040028142 Kim Feb 2004 A1
20040056787 Bossen Mar 2004 A1
20040059770 Bossen Mar 2004 A1
20040067043 Duruoz et al. Apr 2004 A1
20040081245 Deeley et al. Apr 2004 A1
20040096002 Zdepski et al. May 2004 A1
20040109059 Kawakita Jun 2004 A1
20040130553 Ushida et al. Jul 2004 A1
20040145677 Raman et al. Jul 2004 A1
20050008331 Nishimura et al. Jan 2005 A1
20050123274 Crinon et al. Jun 2005 A1
20050147375 Kadono Jul 2005 A1
20050182778 Heuer et al. Aug 2005 A1
20050207497 Rovati et al. Sep 2005 A1
20060013321 Sekiguchi et al. Jan 2006 A1
20060083306 Hsu Apr 2006 A1
20060133500 Lee et al. Jun 2006 A1
20060176309 Gadre et al. Aug 2006 A1
20060215916 Kimura Sep 2006 A1
20060256120 Ushida et al. Nov 2006 A1
20070006060 Walker Jan 2007 A1
20070041653 Lafon Feb 2007 A1
20070288971 Cragun et al. Dec 2007 A1
20080069464 Nakayama Mar 2008 A1
20080162860 Sabbatini et al. Jul 2008 A1
20080317138 Jia Dec 2008 A1
Foreign Referenced Citations (6)
Number Date Country
101017574 Aug 2007 CN
06276394 Sep 1994 JP
09261647 Oct 1997 JP
2000049621 Feb 2000 JP
1020030016859 Mar 2003 KR
0124425 Apr 2001 WO
Non-Patent Literature Citations (1)
Entry
English Translation of Office Action for Chinese Patent Application No. 200810212373.X, Entitled: Decoding Variable Length Codes in JPEG Applications, Mar. 30, 2010.