Sash windows assemblies include one or more moveable panels or sashes. These moveable sashes typically slide within or along a window jamb and may include one or more balance assemblies or systems mounted within the space between the sash and the jamb to assist with the sliding movement of the sash. Some known sash windows assemblies allow for the sash to pivot relative to the jamb such that the sash may be tilted inwards for cleaning and/or installation/removal purposes. As such, the balance systems may include a carrier assembly that holds in place within the window jamb to prevent retraction of the balance system due to the titled and/or removed sash.
At least some known inverted constant force window balance systems include a carrier assembly that is coupled to the window sash through a pivot bar. The carrier assembly carries a coil spring having a free end secured to a window jamb channel with a mounting bracket, screw, or other element. As the coil spring unwinds from the sliding movement of the sash, the recoil tendency of the spring produces a retraction force to counter the weight of the window sash. As the window sash tilts, a locking element of the carrier assembly extends outward so as to contact the jamb channel and hold the carrier assembly in place to prevent the coil spring from retracting in the absence of the weight of the sash.
In one aspect, the technology relates to an inverted constant force window balance system including: a carrier assembly including: a housing including a first housing wall and a second housing wall substantially parallel to the first housing wall; a coil spring disposed within the housing, the coil spring including a free end; and a shoe assembly slidably coupled to the housing, wherein the shoe assembly includes a first shoe face and a second shoe face substantially parallel to the first shoe face, wherein the housing is configured to slide between a first position and a second position relative to the shoe assembly, wherein when in the first position, the first housing wall and the second housing wall are substantially non-coplanar with the first shoe face, wherein when in the second position, the first housing wall is substantially coplanar with the first shoe face and substantially non-coplanar with the second shoe face, and wherein the shoe assembly is configured to receive a pivot bar from a window sash and extend at least one brake upon rotation of the pivot bar; and a mounting bracket releasably coupled to the housing opposite the shoe assembly and coupled to the free end of the coil spring.
In an example, at least a portion of the mounting bracket is configured to slideably move in relation to the free end of the coil spring between at least two mounting bracket positions, and when at least a portion of the mounting bracket moves between the at least two mounting bracket positions, the mounting bracket disengages from the housing. In another example, the mounting bracket includes a jamb mount and a coil spring mount, the jamb mount is configured to slide in relation to the coil spring mount between a first jamb mount position and a second jamb mount position, and when in the first jamb mount position, the jamb mount is releasably engaged with the housing and when in the second jamb mount position, the jamb mount is disengaged from the housing. In yet another example, the shoe assembly includes a housing including a first leg and a second leg, the first leg and the second leg are separated by and at least partially define a throat. In still another example, when in the second position, a portion of the throat proximate the second shoe face is configured to receive a pivot bar in a pivot bar insertion direction substantially parallel to the second housing wall. In an example, the shoe assembly further includes a rotatable cam disposed at a lower portion of the throat.
In another example, the rotatable cam defines a keyhole, and in a first rotated position, the keyhole is in communication with the throat, and in a second rotated position, the keyhole is not in communication with the throat. In yet another example, the shoe assembly includes a friction screw extending from the first shoe face to the second shoe face. In still another example, the friction screw defines, at each end, an engagement slot. In an example, the housing is configured to slide between the first position and a third position relative to the shoe assembly, and when in the third position, the second housing wall is substantially coplanar with the second shoe face and substantially non-coplanar with the first shoe face.
In another aspect, the technology relates to a method of installing an inverted constant force window balance system having a mounting bracket, a coil housing, a coil, and a shoe, the method including: inserting the inverted constant force window balance system into a window jamb; sliding the coil housing from a first housing position to a second housing position, wherein in the first housing position, the coil housing is substantially centered on the shoe, and wherein in the second housing position, a first wall of the coil housing is substantially coplanar with a first face of the shoe; and securing the mounting bracket to the window jamb.
In an example, the method further includes sliding the mounting bracket from a first bracket position adjacent the first wall of the coil housing to a second bracket position adjacent a second wall of the coil housing. In another example, securing the mounting bracket and sliding the mounting bracket are performed substantially simultaneously. In yet another example, in the first bracket position, a portion of a first side of the mounting bracket is substantially coplanar with the first wall of the coil housing and in contact with the window jamb. In still another example, after inserting the inverted constant force window balance system into the window jamb, a first side of the mounting bracket is in contact with the jamb channel. In an example, subsequent to sliding the coil housing, the mounting bracket is not in contact with the window jamb, and securing the mounting bracket to the jamb channel includes placing the mounting bracket in contact with the window jamb.
In another example, the method further includes disengaging the mounting bracket from the coil housing. In yet another example, the securing operation and the disengaging operation are performed substantially simultaneously.
In another aspect, the technology relates to an inverted constant force window balance system including a shoe assembly including a friction screw extending from a first shoe face to a second shoe face, wherein the friction screw defines, at each end, an engagement slot.
In an example, a coil housing is detachably connected to the shoe assembly.
There are shown in the drawings examples that are presently preferred, it being understood, however, that the invention is not limited to the precise arrangements and configurations shown.
The examples of a window balance system described herein enable a more efficient inverted constant force balance for use with hung window assemblies. In aspects, the window balance system includes a two-piece mounting bracket that facilitates a more secure connection to a window jamb because a portion slideably mounts flush to the jamb while maintaining connection to the coil spring. Additionally, the mounting bracket may slide along the top of the window balance system enabling the window balance system to be installed on both the left and right side of the window sash (or in each opposing jamb channel) without any modification. As such, the window balance system described herein is not limited to being installed in a single position or orientation. Moreover, a releasable coupling between the mounting bracket and a carrier assembly is robust and decreases undesirable decoupling during shipping, as well as decreases installation time in hung window assemblies.
Furthermore, the window balance system described herein is fully modular and thus can be adapted and configured to a wide range window sash weights from many different window manufacturers. In examples, smaller (e.g., narrower) coil springs and housings may be used with larger (e.g., deeper) shoe assemblies. This allows for a reduction in the numbers of coil springs and coil housings maintained in a balance manufacturer's inventory, while still enabling a wide range of jamb channels depths to be accommodated. The window balance system described herein increases ease of use for installers and adaptability for many different hung window assembly sizes.
Examples of inverted constant force window balances that include certain components and features of the inverted constant force window balances described herein are depicted and described in U.S. Patent Application Publication No. 2018/0291660, the disclosure of which is hereby incorporated by reference herein in its entirety. Further, although the inverted constant force window balances depicted herein utilize only a single leading coil housing, examples may also utilize both leading and trailing coil housings, as such housings are described in the above-referenced publication. In such a configuration, both the leading and trailing coil housings may slide relative to the shoe assembly, wherein the sliding movement is described herein.
Each window sash 12, 14 may also include tilt latches 19, positioned at a top portion of the sash, and pivot bars (as described elsewhere herein) extending from a lower portion of the sash. The tilt latches 19 and pivot bars enable the window sash 12, 14 to pivot relative to, and be removed from, the window jamb 16 and facilitate sash installation and/or window cleaning. Each pivot bar may be coupled to the window balance system, which is configured to enable both the sliding movement of the window sash 12, 14 and the pivoting movement of the window sash 12, 14. Generally, a single window balance system is installed on either side of each window sash 12, 14 and within the corresponding window jamb 16.
The mounting bracket 106 includes a jamb mount 122 and a coil spring mount 124. The jamb mount 122 includes at least one aperture 126 that enables a screw or other fastener element to couple the mounting bracket 106 to a window jamb during installation. The jamb mount 122 also includes a bottom extension element 128 that is configured to be removably received and engaged by a corresponding top receiving element 130 of the leading housing assembly 104. As such, the mounting bracket 106 is releasably coupled to the leading housing assembly 104. The coil spring mount 124 includes a body 132 that is configured to receive the free end 112 of the coil spring 110 so that the mounting bracket 106 is coupled to the coil spring 110.
In this example, the leading housing assembly 104 may be formed by two identical housing members 134, 136 that are joined at a mating plane P. In the shipping configuration 102, the jamb mount 122 is positioned proximate the first housing member 134 so that the jamb mount 122 is off-center relative to the leading housing assembly 104. Further, the housing assembly 104 is positioned such that the mating plane P is substantially aligned with a centerline C of the shoe assembly 108. From the shipping configuration, the window balance system 100 may be positioned in a window jamb on either side of a window. Thereafter, surfaces of the window balance system 100 proximate a rear wall of the jamb channel are aligned. For example, a first mounting surface 122a of the mounting bracket 106 is substantially aligned with a first wall 134a of the first housing member 134. Further, a first shoe face 108a is substantially aligned with the first wall 134a. This process is described in more detail in
Slidable engagement between the coil housing 104 and the shoe assembly 108 is possible due to the presence of at least one extension 138 of the shoe assembly 108 that is slidably engaged with a mating channel 140 of the housing assembly 104, as well as the relative dimensions of the various components of the window balance system 100. The shoe assembly 108 defines a depth Ds (shown in
Once inserted, the coil housing is slid S towards the rear wall 202 of the jamb channel 200, as depicted in
When the window balance system 100 is mounted with the first wall 134a of the first housing member 134 adjacent to the rear wall 202, the jamb mount 122 is fastened to the rear wall 202 such that the top receiving element 130 does not immediately release from the bottom extension element 128. Once the window sash is loaded on the shoe assembly 108, the top receiving element 130 moves in relation to the bottom extension element 128 and the leading housing assembly 104 is released from the mounting bracket 106. The movement of the top receiving element 130 may be sliding, pivoting, twisting, or a combination of two or more of these motions. This forms a first installed configuration, such that the leading housing assembly 104 is enabled to slide up and down within the window jamb and in relation to the mounting bracket 106. Additionally, when the jamb mount 122 is fastened to the window jamb, the jamb mount 122 substantially maintains its position on the coil spring mount 124. That is, proximate a first side 135 thereof as depicted in
Once inserted, the coil housing 104 is slid S towards the rear wall 202 of the jamb channel 200, as depicted in
When the window balance system 100 is mounted with the second wall 136a of the second housing member 136 on the rear wall 202, the jamb mount 122 is fastened to the rear wall 202 such that it moves from a position proximate the first housing member 134 to a position proximate the second housing member 136 and across the mating plane P (shown in
The materials utilized in the engagement systems described herein may be those typically utilized for window and window component manufacture. Material selection for most of the components may be based on the proposed use of the window. Appropriate materials may be selected for the sash retention systems used on particularly heavy window panels, as well as on windows subject to certain environmental conditions (e.g., moisture, corrosive atmospheres, etc.). Aluminum, steel, stainless steel, zinc, or composite materials can be utilized (e.g., for the coil spring mount body to prevent separation with the coil spring). Bendable and/or moldable plastics may be particularly useful. For example, the housing and/or the mounting bracket may be unitarily formed with the engagement member and/or the receiving member. While in other examples, the engagement member and/or receiving member may couple to the housing and/or mounting bracket as an accessory for the window balance system.
Any number of the features of the different examples described herein may be combined into one single example and alternate examples having fewer than or more than all of the features herein described are possible. It is to be understood that terminology employed herein is used for the purpose of describing particular examples only and is not intended to be limiting. It must be noted that, as used in this specification, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
While there have been described herein what are to be considered exemplary and preferred examples of the present technology, other modifications of the technology will become apparent to those skilled in the art from the teachings herein. The particular methods of manufacture and geometries disclosed herein are exemplary in nature and are not to be considered limiting. It is therefore desired to be secured in the appended claims all such modifications as fall within the spirit and scope of the technology. Accordingly, what is desired to be secured by Letters Patent is the technology as defined and differentiated in the following claims, and all equivalents.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 62/790,210, filed on Jan. 9, 2019, the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62790210 | Jan 2019 | US |