Inverted embolic protection filter

Information

  • Patent Grant
  • 8070769
  • Patent Number
    8,070,769
  • Date Filed
    Monday, May 6, 2002
    22 years ago
  • Date Issued
    Tuesday, December 6, 2011
    13 years ago
Abstract
An embolic protection filter having an inverted membrane with improved blood perfusion characteristics is disclosed. An embolic protection filter in accordance with the present invention comprises a filter frame disposable about a guidewire, a support hoop coupled to a plurality of expandable struts, and an inverted membrane for filtering embolic debris. The inverted membrane has a tapered proximal section and an enlarged diameter distal section. Features of the present invention permit the perfusion of blood through the filter irrespective of embolic debris entrained therein.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of embolic protection devices. More specifically, the present invention pertains to embolic protection filters having improved blood perfusion characteristics.


BACKGROUND OF THE INVENTION

Intravascular filters such as embolic protection filters are generally placed within a body lumen, such as an artery or vein, downstream of a therapeutic site to filter embolic debris from the blood stream. Examples of therapeutic procedures employing such filters include angioplasty, atherectomy, thrombectomy and stent placement. In a typical procedure, a guidewire is transluminally inserted into the patient and placed across the site of the lesion. An embolic protection filter is then advanced along the guidewire and placed distal the lesion. A therapeutic device such as a dilatation or atherectomy catheter is then advanced along the guidewire and placed proximal the therapeutic site to perform the procedure. The therapeutic device is then engaged, forcing the embolic debris to become dislodged from the walls of the vessel and flow downstream towards the distal vasculature, where it is collected and stored by the filter.


There are numerous types of interventional devices adapted to collect embolic debris released into the blood stream during a therapeutic procedure. Typically, these devices contain a mesh or microporous membrane attached to a support structure having struts, wires, and/or ribs that support the filter within a blood vessel when deployed. Generally, the shape of these filters include a proximal mouth or opening that tapers distally to a closed end portion. Examples of such configurations include baskets, parachutes, or sleeves. In a typical application, embolic debris enters the proximal end of the device, and flows distally where it is stored at the closed end portion of the filter.


Depending on the amount of embolic debris dislodged from the vessel wall, the embolic protection filter may become partially or fully occluded throughout the course of the therapeutic procedure. As a result of the buildup of embolic debris within the filter, the perfusion of blood through the filter diminishes over time.


SUMMARY OF THE INVENTION

The present invention relates generally to the field of embolic protection devices. More specifically, the present invention pertains to embolic protection filters having improved blood perfusion characteristics. In an exemplary embodiment of the present invention, an inverted embolic protection filter comprises a filter frame disposable about a guidewire, a support hoop coupled to a plurality of expandable struts adapted to expand in an outward direction within a body lumen, and an inverted membrane for filtering embolic debris, the inverted membrane having a tapered proximal section and an enlarged diameter distal section. The inverted membrane can be configured such that the perfusion of blood through the filter remains relatively constant irrespective of the amount of embolic debris collected therein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an inverted embolic protection filter in accordance with an embodiment of the present invention showing the filter in a radially deployed position.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 is a perspective view of an inverted embolic protection filter 10 in accordance with an exemplary embodiment of the present invention. As shown in FIG. 1, embolic protection filter 10 includes a filter frame 12 disposed about a guidewire 14. Guidewire 14 has a proximal end 16, a distal end 18, and a distal stop 20. Filter frame 12 comprises a first tubular member 22 disposable about guidewire 14, and a second tubular member 24 disposable about guidewire 14 distal the first tubular member 22.


In the exemplary embodiment illustrated in FIG. 1, embolic protection filter 10 is slidably and rotationally disposed about guidewire 14. The first tubular member 22 and second tubular member 24 each define a lumen (not shown) having an inner diameter that is slightly larger than the outer diameter of the guidewire 14, thereby permitting the embolic protection filter 10 to freely slide and rotate about the guidewire 14. An optional coating may be applied to the inner diameter of each tubular member 22, 24 and/or the guidewire 14 to provide a smooth, lubricious surface to facilitate movement of the embolic protection filter 10 along the guidewire 14. For example, a polymeric material such as polytetrafluoroethylene (PTFE) can be applied to the tubular members 22, 24 and/or the outer surface of the guidewire 14.


In an alternative implementation (not shown), embolic protection filter 10 may be secured to the guidewire 14 prior to insertion into the patient's vessel. In this configuration, the first tubular member 22 is secured to the guidewire 14, whereas the second tubular 24 is movably disposed along the guidewire 14. Attachment of the first tubular member 22 to the guidewire 14 may be accomplished by any number of suitable attachment means such as crimping, soldering, bonding, welding, brazing or any combination thereof.


Filter frame 12 can further include a support hoop 26 coupled to a plurality of self-expanding struts 30. Each of the expandable struts 30 is attached at a proximal portion 32 to the support hoop 26, and at a distal portion 34 to the second tubular member 24. The self-expanding struts 30 are biased to self-expand in an outward direction, and can be utilized to deploy the support hoop 26 within a body lumen. In addition, the support hoop 26 may include a preformed shape that facilitates radial deployment (and subsequent removal) of the device within the lumen. For example, the support hoop 26 may include one or more reduced diameter portions disposed about its circumference that permit the support hoop 26 to easily fold or bend into a collapsed position during transport.


To bias the expandable struts 30 in an outward direction, each expandable strut 30 may be pre-formed using a bendable material such as stainless steel or platinum, or a super-elastic material such as nickel-titanium alloy (Nitinol). Nickel-titanium alloy is preferred for its ability to undergo substantial bending or flexing with relatively little residual strain. It is contemplated, however, that other suitable materials can be utilized to bias the expandable struts 30 in an outward direction.


Also attached to support hoop 26 are several optional retrieval struts 36 each having a proximal portion 38 and a distal portion 40. The proximal portion 38 of each retrieval strut 36 is attached to the first tubular member 22. The distal portion 38 of each retrieval strut 36, in turn, is attached to the support hoop 26. The retrieval struts 36 are utilized in the delivery and subsequent retrieval of the embolic protection filter 10. As with the self-expanding struts 30, the retrieval struts 36 are biased to self-expand in an outward direction when unconstrained, and provide additional structural support for the embolic protection filter 10.


Coupled at a proximal end to the first tubular member 22, and extending distally through the mouth formed by support hoop 26, is an inverted membrane 44. In the exemplary embodiment illustrated in FIG. 1, inverted membrane 44 is substantially conical in shape, having a tapered proximal section 46 that extends distally to an enlarged diameter distal section 48. The tapered proximal section 46 of inverted membrane 44 is attached to the first tubular member 22. The enlarged diameter distal section 48 of inverted membrane 44 forms a fold or crease, wherein a length 42 of the inverted membrane 44 folds back and extends proximally towards the support hoop 26.


Inverted membrane 44 can be comprised of a microporous membrane made from a polymeric material such as polypropylene (PP), polyvinylchloride (PVC), polyamide (nylon), polyurethane, polyester, polyethylene tetraphlalate, polyether-ether ketone (PEEK), polyether block amide (PEBA), polytetrafluoroethylene (PTFE) or any mixture, blend or combination thereof Alternatively, inverted membrane 44 can be formed of a mesh screen comprising several woven or braided wires. These woven or braided wires may be made of any number of suitable biocompatible materials such as stainless steel, nickel-titanium alloy or platinum.


Perfusion of blood through the inverted membrane 44 is accomplished through several openings or pores 52 formed in the mesh screen or microporous membrane. The openings or pores 52 are preferably adapted to filter embolic debris contained in the blood stream while substantially permitting the flow of blood therethrough.


In certain embodiments of the present invention, embolic protection filter 10 may include an anti-inflammatory agent to reduce damage to the patient's vascular tract caused during therapeutic the procedure. Examples of such anti-inflammatory agents include dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, and mesalamine or any suitable combination or mixture thereof. In other embodiments, the embolic protection filter 10 may contain an anti-thrombogenic coating to prevent the formation of clots within the vasculature. Examples of suitable anti-thrombogenic coatings include heparin (and derivatives thereof), urokinase and dextrophenylalanine proline arginine chloromethylketone.


In use, embolic protection filter 10 is advanced distally along guidewire 14 and placed distal a lesion or other occlusion within the patient's vessel. To facilitate transport of the filter 10 through the vessel, a delivery sheath 15 comprising a tubular member having a reduced profile and an inner lumen adapted to transport the embolic protection filter 10 in a collapsed position is advanced through the vessel along the guidewire 14. A distal stop 20 disposed about the distal end 18 of guidewire 14 prevents distal movement of the device therebeyond. Once the delivery sheath 15 containing the collapsed filter 10 is in place distal the lesion, the delivery sheath 15 is retracted proximally, causing the embolic protection filter 10 to deploy within the vessel as shown in FIG. 1. A therapeutic device such as an angioplasty or atherectomy catheter can then be advanced along the guidewire 14 and placed proximal the lesion. The therapeutic device is then engaged within the vessel, forcing the embolic debris to become dislodged and flow downstream towards the embolic protection filter 10.


As the embolic debris enters the embolic protection filter 10 (as indicated by the arrow in FIG. 1), it is initially deposited on the inverted membrane 44 at or near the tapered proximal section 46. At this location, the velocity of blood flow is generally greatest since it is located at or near the center portion of the vessel. The embolic debris is then deflected distally, where it becomes entrained at or near the fold or crease formed at the enlarged diameter distal section 48. At the enlarged diameter distal section 48, the velocity of the blood flow is generally less than at the tapered proximal section 46 since it is located at or near the vessel wall. Since the embolic debris collects at a location where the velocity of blood flow is generally less, the embolic debris entrained within the embolic protection filter 10 does not substantially interfere with the perfusion of blood through the inverted membrane 44 at or near the tapered proximal section 46. As a result, the flow of blood through inverted membrane 44 remains relatively constant, irrespective of the amount of embolic debris collected by the embolic protection filter 10.


To retrieve embolic protection filter 10 from the body, the delivery sheath 15 is advanced distally along the guidewire 14 until it is proximal the embolic protection filter 10. Continued advancement of the delivery sheath 15 distally causes the portion of the inverted membrane 44 along length 42 to re-invert, allowing the inverted membrane 44, support hoop 26 and support struts 30 to collapse inwardly within the lumen of the delivery sheath 15. Alternatively, when the optional retrieval struts 36 are employed, continued advancement of the delivery sheath 15 against the retrieval struts 36 causes the support hoop 26, support struts 30 and the retrieval struts 36 to collapse inwardly within the lumen of the delivery sheath 15. Once collapsed, the delivery sheath 15 and embolic protection filter 10 containing the collected embolic debris can then be removed from the body.


Having thus described the exemplary embodiments of the present invention, those of skill in the art will readily appreciate that other embodiments may be made and used which fall within the scope of the claims attached hereto. Numerous advantages of the invention covered by this document have been set forth in the foregoing description. It will be understood, however, that this disclosure is, in many respects, only illustrative. Changes may be made in details, particular in matters of shape, size and arrangement of parts without exceeding the scope of the invention.

Claims
  • 1. An embolic protection filter comprising: a filter frame including a proximal tubular member and a distal tubular member disposed about a guidewire;wherein the distal tubular member is slidable about the guidewire;a support hoop coupled to a plurality of expandable struts, said plurality of expandable struts biased to expand in an outward direction within a body lumen; andan inverted membrane attached at a first end to the support hoop and at a second end to the proximal tubular member, said inverted membrane having a proximally tapered proximal section and an enlarged diameter distal section, the junction between the enlarged diameter distal section and the proximally tapered proximal section forming a folded or creased portion wherein a length of the inverted membrane folds back and extends outwardly from the enlarged diameter distal section and proximally terminating at the support hoop;wherein the proximally tapered proximal section of the inverted membrane is attached to the proximal tubular member and extends through the support hoop to the folded or creased portion.
  • 2. The embolic protection filter of claim 1, further including a plurality of retrieval struts each having a proximal end and a distal end, the proximal end attached to the proximal tubular member, the distal end attached to the support hoop.
  • 3. The embolic protection filter of claim 1, wherein a portion of said filter frame is secured to the guidewire.
  • 4. The embolic protection filter of claim 1, wherein said guidewire further includes a distal stop, and wherein the filter frame is slidably and rotationally disposed about the guidewire.
  • 5. The embolic protection filter of claim 1, wherein said plurality of expandable struts are biased to self-expand within the body lumen.
  • 6. The embolic protection filter of claim 1, wherein said plurality of expandable struts are formed of a metal.
  • 7. The embolic protection filter of claim 6, wherein said metal is nickel-titanium alloy.
  • 8. The embolic protection filter of claim 1, wherein said inverted membrane is a microporous membrane.
  • 9. The embolic protection filter of claim 8, wherein said microporous membrane is comprised of a polymeric material.
  • 10. The embolic protection filter of claim 9, wherein said polymeric material is selected from the group consisting of polypropylene, polyvinylchloride, polyamide, polyurethane, polyester, polyethylene tetraphlalate, polyether-ether ketone, polyether block amide and polytetrafluoroethylene.
  • 11. The embolic protection filter of claim 1, wherein said inverted membrane comprises a mesh screen.
  • 12. The embolic protection filter of claim 11, wherein said mesh screen is formed of a metal.
  • 13. The embolic protection filter of claim 12, wherein said metal is selected from the group consisting of stainless steel, nickel-titanium alloy and platinum.
  • 14. The embolic protection filter of claim 1, wherein said support hoop has a pre-formed shape.
  • 15. The embolic protection filter of claim 1, further comprising a delivery sheath having an inner lumen adapted to contain the embolic protection filter in a collapsed position.
  • 16. The embolic protection filter of claim 1, wherein the tapered proximal section of said inverted membrane is disposed proximal the support hoop.
  • 17. The embolic protection filter of claim 1, wherein said inverted membrane is substantially conical in shape.
  • 18. The embolic protection filter of claim 1, wherein the proximal tubular member is ecured to the guidewire.
US Referenced Citations (149)
Number Name Date Kind
3472230 Fogarty Oct 1969 A
3952747 Kimmell, Jr. Apr 1976 A
3996938 Clark, III Dec 1976 A
4046150 Schwartz et al. Sep 1977 A
4425908 Simon Jan 1984 A
4590938 Segura et al. May 1986 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4650466 Luther Mar 1987 A
4706671 Weinrib Nov 1987 A
4723549 Wholey et al. Feb 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4790813 Kensey Dec 1988 A
4794928 Kletschka Jan 1989 A
4807626 McGirr Feb 1989 A
4842579 Shiber Jun 1989 A
4873978 Ginsburg Oct 1989 A
4921478 Solano et al. May 1990 A
4921484 Hillstead May 1990 A
4926858 Gifford, III et al. May 1990 A
4969891 Gewertz Nov 1990 A
4998539 Delsanti Mar 1991 A
5002560 Machold et al. Mar 1991 A
5011488 Ginsburg Apr 1991 A
5053008 Bajaj Oct 1991 A
5071407 Termin et al. Dec 1991 A
5100423 Fearnot Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5133733 Rasmussen et al. Jul 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5152777 Goldberg et al. Oct 1992 A
5160342 Reger et al. Nov 1992 A
5224953 Morgentaler Jul 1993 A
5329942 Gunther et al. Jul 1994 A
5330484 Gunther Jul 1994 A
5354310 Garnie et al. Oct 1994 A
5376100 Lefebvre Dec 1994 A
5421832 Lefebvre Jun 1995 A
5423742 Theron Jun 1995 A
5449372 Schmaltz et al. Sep 1995 A
5456667 Ham et al. Oct 1995 A
5462529 Simpson et al. Oct 1995 A
5536242 Willard et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5658296 Bates et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5695519 Summers et al. Dec 1997 A
5720764 Naderlinger Feb 1998 A
5728066 Daneshvar Mar 1998 A
5749848 Jang et al. May 1998 A
5769816 Barbut et al. Jun 1998 A
5779716 Cano et al. Jul 1998 A
5792157 Mische et al. Aug 1998 A
5795322 Bouewijn Aug 1998 A
5800457 Gelbfish Sep 1998 A
5800525 Bachinski et al. Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5827324 Cassell et al. Oct 1998 A
5833644 Zadno-Azizi et al. Nov 1998 A
5833650 Imran Nov 1998 A
5846260 Maahs Dec 1998 A
5848964 Samuels Dec 1998 A
5876367 Kaganov et al. Mar 1999 A
5895399 Barbut et al. Apr 1999 A
5910154 Tsugita et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5925016 Chornenky et al. Jul 1999 A
5925060 Forber Jul 1999 A
5925062 Purdy Jul 1999 A
5935139 Bates Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5941896 Kerr Aug 1999 A
5947995 Samuels Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5980555 Barbut et al. Nov 1999 A
5989281 Barbut et al. Nov 1999 A
5993469 McKenzie et al. Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6001118 Daniel et al. Dec 1999 A
6007557 Ambrisco et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013085 Howard Jan 2000 A
6027520 Tsugita et al. Feb 2000 A
6042598 Tsugita et al. Mar 2000 A
6051014 Jang Apr 2000 A
6051015 Maahs Apr 2000 A
6053932 Daniel et al. Apr 2000 A
6059814 Ladd May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson et al. May 2000 A
6068645 Tu May 2000 A
6086605 Barbut et al. Jul 2000 A
6117154 Barbut et al. Sep 2000 A
6129739 Khosravi Oct 2000 A
6136016 Barbut et al. Oct 2000 A
6142987 Tsugita Nov 2000 A
6146396 Konya et al. Nov 2000 A
6152946 Broome et al. Nov 2000 A
6165200 Tsugita et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171328 Addis Jan 2001 B1
6179851 Barbut et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6179861 Khosravi et al. Jan 2001 B1
6203561 Ramee et al. Mar 2001 B1
6206868 Parodi Mar 2001 B1
6214025 Thistle et al. Apr 2001 B1
6214026 Lepak et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6224620 Maahs May 2001 B1
6231544 Tsugita et al. May 2001 B1
6235044 Root et al. May 2001 B1
6235045 Barbut et al. May 2001 B1
6238412 Dubrul et al. May 2001 B1
6245087 Addis Jun 2001 B1
6245088 Lowery Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6258115 Dubrul Jul 2001 B1
6264663 Cano Jul 2001 B1
6264672 Fisher Jul 2001 B1
6270513 Tsugita et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6277139 Levinson et al. Aug 2001 B1
6280413 Clark et al. Aug 2001 B1
6287321 Jang Sep 2001 B1
6290710 Cryer et al. Sep 2001 B1
6309399 Barbut et al. Oct 2001 B1
6319268 Ambrisco et al. Nov 2001 B1
6344049 Levinson et al. Feb 2002 B1
6346116 Brooks et al. Feb 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6391044 Yadav et al. May 2002 B1
6485501 Green Nov 2002 B1
6517559 O'Connell Feb 2003 B1
6540722 Boyle et al. Apr 2003 B1
6605102 Mazzocchi et al. Aug 2003 B1
6635070 Leeflang et al. Oct 2003 B2
6837898 Boyle et al. Jan 2005 B2
7491215 Vale et al. Feb 2009 B2
20010044634 Michael et al. Nov 2001 A1
20020042627 Brady et al. Apr 2002 A1
20020123766 Seguin et al. Sep 2002 A1
20020138094 Borillo et al. Sep 2002 A1
20030130684 Brady et al. Jul 2003 A1
20030163158 White Aug 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20040254601 Eskuri Dec 2004 A1
Foreign Referenced Citations (109)
Number Date Country
28 21 048 Jul 1980 DE
34 17 738 Nov 1985 DE
40 30 998 Oct 1990 DE
199 16 162 Oct 2000 DE
0 200 688 Nov 1986 EP
0 293 605 Dec 1988 EP
0 411 118 Feb 1991 EP
0 427 429 May 1991 EP
0 437 121 Jul 1991 EP
0 472 334 Feb 1992 EP
0 472 368 Feb 1992 EP
0 533 511 Mar 1993 EP
0 655 228 Nov 1994 EP
0 686 379 Jun 1995 EP
0 696 447 Feb 1996 EP
0 737 450 Oct 1996 EP
0 743 046 Nov 1996 EP
0 759 287 Feb 1997 EP
0 771 549 May 1997 EP
0 784 988 Jul 1997 EP
0 852 132 Jul 1998 EP
0 934 729 Aug 1999 EP
1 127 556 Aug 2001 EP
1 247 500 Feb 2002 EP
2 580 504 Oct 1986 FR
2 643 250 Aug 1990 FR
2 666 980 Mar 1992 FR
2 694 687 Aug 1992 FR
2 768 326 Mar 1999 FR
2 020 557 Jan 1983 GB
8-187294 Jul 1996 JP
764684 Sep 1980 SU
WO 8809683 Dec 1988 WO
WO 9203097 Mar 1992 WO
WO 9414389 Jul 1994 WO
WO 9424946 Nov 1994 WO
WO 9601591 Jan 1996 WO
WO 9610375 Apr 1996 WO
WO 9619941 Jul 1996 WO
WO 9623441 Aug 1996 WO
WO 9633677 Oct 1996 WO
WO 9717100 May 1997 WO
WO 9727808 Aug 1997 WO
WO 9742879 Nov 1997 WO
WO 9802084 Jan 1998 WO
WO 9802112 Jan 1998 WO
WO 9823322 Jun 1998 WO
WO 9833443 Aug 1998 WO
WO 9834673 Aug 1998 WO
WO 9836786 Aug 1998 WO
WO 9838920 Sep 1998 WO
WO 9838929 Sep 1998 WO
WO 9839046 Sep 1998 WO
WO 9839053 Sep 1998 WO
WO 9846297 Oct 1998 WO
WO 9847447 Oct 1998 WO
WO 9849952 Nov 1998 WO
WO 9850103 Nov 1998 WO
WO 9851237 Nov 1998 WO
WO 9855175 Dec 1998 WO
WO 9909895 Mar 1999 WO
WO 9922673 May 1999 WO
WO 9923976 May 1999 WO
WO 9925252 May 1999 WO
WO 9930766 Jun 1999 WO
WO 9940964 Aug 1999 WO
WO 9942059 Aug 1999 WO
WO 9944510 Sep 1999 WO
WO 9944542 Sep 1999 WO
WO 9955236 Nov 1999 WO
WO 9958068 Nov 1999 WO
WO 0007521 Feb 2000 WO
WO 0007655 Feb 2000 WO
WO 0009054 Feb 2000 WO
WO 0016705 Mar 2000 WO
WO 0049970 Aug 2000 WO
WO 0053120 Sep 2000 WO
WO 0067664 Nov 2000 WO
WO 0067665 Nov 2000 WO
WO 0067666 Nov 2000 WO
WO 0067668 Nov 2000 WO
WO 0067669 Nov 2000 WO
WO 0105462 Jan 2001 WO
WO 0108595 Feb 2001 WO
WO 0108596 Feb 2001 WO
WO 0108742 Feb 2001 WO
WO 0108743 Feb 2001 WO
WO 0110320 Feb 2001 WO
WO 0115629 Mar 2001 WO
WO 0121077 Mar 2001 WO
WO 0121100 Mar 2001 WO
WO 0126726 Apr 2001 WO
WO 0135857 May 2001 WO
WO 0143662 Jun 2001 WO
WO 0147579 Jul 2001 WO
WO 0149208 Jul 2001 WO
WO 0149209 Jul 2001 WO
WO 0149215 Jul 2001 WO
WO 0149355 Jul 2001 WO
WO 0152768 Jul 2001 WO
WO 0158382 Aug 2001 WO
WO 0160442 Aug 2001 WO
WO 0167989 Sep 2001 WO
WO 0170325 Sep 2001 WO
WO 0170326 Sep 2001 WO
WO 0172205 Oct 2001 WO
WO 0187183 Nov 2001 WO
WO 0189413 Nov 2001 WO
WO 0191824 Dec 2001 WO
Related Publications (1)
Number Date Country
20030208224 A1 Nov 2003 US