Inverted group delay circuit

Information

  • Patent Grant
  • 11728796
  • Patent Number
    11,728,796
  • Date Filed
    Wednesday, June 30, 2021
    3 years ago
  • Date Issued
    Tuesday, August 15, 2023
    a year ago
Abstract
An inverted group delay circuit is provided. The inverted group delay circuit can offset a group delay between a pair of signals. In a non-limiting example, the inverted group delay circuit can be configured to offset a group delay (e.g., negative group delay) between a time-variant voltage and a time-variant envelope of an analog signal. More specifically, the inverted group delay circuit can output an inverted time-variant voltage having an opposing phase and time-adjusted relative to the time-variant voltage to thereby offset the group delay between the time-variant voltage and the time-variant envelope. As such, the inverted group delay circuit can be provided in a power management integrated circuit (PMIC) to improve timing alignment between a time-variant voltage(s) and a time-variant analog signal(s) at a power amplifier(s), thus helping to reduce potential amplitude distortion when the analog signal(s) is amplified by the power amplifier(s).
Description
FIELD OF THE DISCLOSURE

The technology of the disclosure relates generally to a group delay circuit.


BACKGROUND

Mobile communication devices have become increasingly common in current society for providing wireless communication services. The prevalence of these mobile communication devices is driven in part by the many functions that are now enabled on such devices. Increased processing capabilities in such devices means that mobile communication devices have evolved from being pure communication tools into sophisticated mobile multimedia centers that enable enhanced user experiences.


A fifth-generation new radio (5G-NR) wireless communication system is widely regarded as a technological advancement that can achieve significantly higher data throughput, improved coverage range, enhanced signaling efficiency, and reduced latency compared to the existing third-generation (3G) and fourth-generation (4G) communication systems. A 5G-NR mobile communication device usually transmits and receives a radio frequency (RF) signal(s) in a millimeter wave (mmWave) RF spectrum that is typically above 6 GHz. Notably, the RF signal(s) transmitted in the mmWave RF spectrum may be more susceptible to propagation attenuation and interference that can result in substantial reduction in data throughput. To help mitigate propagation attenuation and maintain desirable data throughput, the 5G-NR mobile communication device employs a power amplifier(s) to amplify the RF signal(s) before transmitting in the mmWave RF spectrum.


Envelope tracking (ET) is a power management technique designed to improve operating efficiency of the power amplifier(s). Specifically, the power amplifier(s) is configured to amplify the RF signal(s) based on a time-variant voltage that closely tracks a time-variant power envelope of the RF signal(s). The time-variant voltage is typically generated by a power management circuit in the wireless communication device by first detecting the time-variant power envelop of the RF signal(s) and subsequently mapping the detected time-variant power envelope to a set of target voltage values prestored in a lookup table (LUT). Notably, the inherent processing delay associated with a power management circuit can inadvertently cause the time-variant voltage to lag behind the time-variant power envelope of the RF signal(s). As a result, the peaks of the time-variant voltage may become misaligned with the peaks of the time-variant power envelope, which may cause the power amplifier(s) to clip and distort the RF signal(s). In this regard, it is desirable to ensure that the power management circuit can maintain good alignment between the time-variant voltage and the time-variant power envelope of the RF signal(s).


SUMMARY

Aspects disclosed in the detailed description include an inverted group delay circuit. The inverted group delay circuit can offset a group delay between a pair of signals. In a non-limiting example, the inverted group delay circuit can be configured to offset a group delay (e.g., negative group delay) between a time-variant voltage and a time-variant envelope of an analog signal. More specifically, the inverted group delay circuit can output an inverted time-variant voltage having an opposing phase and time-adjusted relative to the time-variant voltage to thereby offset the group delay between the time-variant voltage and the time-variant envelope. As such, the inverted group delay circuit can be provided in a power management integrated circuit (PMIC) to improve timing alignment between a time-variant voltage(s) and a time-variant analog signal(s) at a power amplifier(s), thus helping to reduce potential amplitude distortion when the analog signal(s) is amplified by the power amplifier(s).


In one aspect, an inverted group delay circuit is provided. The inverted group delay circuit includes a tunable resistor-capacitor (RC) circuit. The tunable RC circuit is configured to output a time-variant voltage having a group delay relative to a time-variant envelope of an analog signal. The inverted group delay circuit also includes an operational amplifier. The operational amplifier includes an inverting terminal coupled to the tunable RC circuit to receive the time-variant voltage. The operational amplifier also includes an output terminal configured to output an inverted time-variant voltage having an opposing phase and time-adjusted relative to the time-variant voltage to thereby offset the group delay.


In another aspect, a PMIC is provided. The PMIC includes a target voltage circuit. The target voltage circuit includes an envelope detector circuit configured to detect a time-variant envelope of an analog signal. The detected time-variant envelope is delayed from the time-variant envelope of the analog signal by a first temporal delay. The target voltage circuit also includes an analog look-up table (LUT) circuit configured to generate a time-variant target voltage based on the detected time-variant envelope of the analog signal. The time-variant target voltage is delayed from the detected time-variant envelope of the analog signal by a second temporal delay. The target voltage circuit also includes an inverted group delay circuit. The inverted group delay circuit includes a tunable RC circuit. The tunable RC circuit is configured to output the time-variant target voltage having a group delay comprising at least the first temporal delay and the second temporal delay. The inverted group delay circuit also includes an operational amplifier. The operational amplifier includes an inverting terminal coupled to the tunable RC circuit to receive the time-variant target voltage. The operational amplifier also includes an output terminal configured to output an inverted time-variant target voltage having an opposing phase and time-adjusted relative to the time-variant target voltage to thereby offset the group delay.


Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings incorporated in and forming a part of this specification illustrate several aspects of the disclosure and, together with the description, serve to explain the principles of the disclosure.



FIG. 1A is a schematic diagram of an exemplary existing power management integrated circuit (PMIC) that may cause amplitude distortion in an analog signal as a result of an inherent processing delay in the existing PMIC;



FIG. 1B is a graphic diagram providing an exemplary illustration of a group delay between a time-variant envelope of the analog signal and a target voltage caused by the inherent processing delay in the existing PMIC of FIG. 1A;



FIG. 1C is a graphic diagram providing an exemplary illustration as to how the inherent processing delay in the existing PMIC of FIG. 1A can cause the amplitude distortion in the analog signal;



FIG. 2 is a schematic diagram of an exemplary PMIC configured according to embodiments of the present disclosure to offset various group delays incurred in the PMIC;



FIG. 3 is a graphic diagram providing an exemplary illustration of an inverted time-variant target voltage that is time-adjusted relative to a time-variant envelope to substantially offset a group delay(s);



FIG. 4A is a schematic diagram of a conventional inverted amplifier circuit;



FIG. 4B is a schematic diagram of a conventional non-inverted amplifier circuit;



FIG. 5 is a schematic diagram of an exemplary inverted group delay circuit configured according to an embodiment of the present disclosure;



FIG. 6A is a schematic diagram providing an exemplary illustration of the inverted group delay circuit of FIG. 5 operable to offset a negative group delay;



FIG. 6B is a schematic diagram providing an exemplary illustration of the inverted group delay circuit of FIG. 5 operable to offset a positive group delay; and



FIG. 7 is a schematic diagram providing an exemplary differential inverted group delay circuit.





DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.


Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


Aspects disclosed in the detailed description include an inverted group delay circuit. The inverted group delay circuit can offset a group delay between a pair of signals. In a non-limiting example, the inverted group delay circuit can be configured to offset a group delay (e.g., negative group delay) between a time-variant voltage and a time-variant envelope of an analog signal. More specifically, the inverted group delay circuit can output an inverted time-variant voltage having an opposing phase and time-adjusted relative to the time-variant voltage to thereby offset the group delay between the time-variant voltage and the time-variant envelope. As such, the inverted group delay circuit can be provided in a power management integrated circuit (PMIC) to improve timing alignment between a time-variant voltage(s) and a time-variant analog signal(s) at a power amplifier(s), thus helping to reduce potential amplitude distortion when the analog signal(s) is amplified by the power amplifier(s).


Before discussing a PMIC employing the inverted group circuit of the present disclosure, starting at FIG. 2, a brief overview of an existing PMIC that may cause amplitude distortion in an analog signal as a result of an inherent processing delay associated with the existing PMIC is first provided with reference to FIGS. 1A-1C.



FIG. 1A is a schematic diagram of an exemplary existing PMIC 10 that that may cause amplitude distortion in an analog signal 12 as a result of an inherent processing delay in the existing PMIC 10. The existing PMIC 10 is configured to provide a time-variant voltage VCC to a power amplifier 14 for amplifying the analog signal 12. The analog signal 12 may be generated by a transceiver circuit 16 and provided to a signal processing circuit 18 in an intermediate frequency (IF). The signal processing circuit 18 may upconvert the analog signal 12 from the IF to a carrier frequency and provide the analog signal 12 to the power amplifier 14 for amplification.


The analog signal 12 is associated with a time-variant envelope 20 that rises and falls over time. Thus, to prevent potential amplitude distortion in the analog signal 12 and ensure higher operating efficiency of the power amplifier 14, it is necessary for the existing PMIC 10 to generate the time-variant voltage VCC to closely track the time-variant envelope 20.


In other words, the time-variant voltage VCC needs to be aligned with the time-variant envelope 20 as closely as possible. As such, the existing PMIC 10 is configured to include a target voltage circuit 22 and an envelope tracking (ET) integrated circuit (ETIC) 24. The target voltage circuit 22 includes an envelope detector circuit 26 and an analog lookup table (LUT) circuit 28. The envelope detector circuit 26 is configured to detect the time-variant envelope 20 of the analog signal 12 and provide a detected time-variant envelope 20′ to the analog LUT circuit 28. The analog LUT circuit 28 is configured to generate a target voltage VTGT from the detected time-variant envelope 20′ and provide the target voltage VTGT to the ETIC 24. The ETIC 24, in turn, generates the time-variant voltage VCC based on the target voltage VTGT.


In this regard, since the target voltage VTGT tracks the detected time-variant envelope 20′ and the time-variant voltage VCC tracks the target voltage VTGT, the time-variant voltage VCC will end up rising and falling along with the time-variant envelope 20. Notably, the envelope detector circuit 26 and the analog LUT circuit 28 can cause an inherent processing delay. As a result, as shown in FIG. 1B, the detected time-variant envelope 20′ will lag behind the time-variant envelope 20 associated with the analog signal 12 and the target voltage VTGT will lag behind the detected time-variant envelope 20′.



FIG. 1B is a graphic diagram providing an exemplary illustration of a group delay ΔT between the time-variant envelope 20 of the analog signal 12 and the target voltage VTGT caused by the inherent processing delay in the existing PMIC 10 of FIG. 1A. Common elements between FIGS. 1A and 1B are shown therein with common element numbers and will not be re-described herein.


As shown in FIG. 1B, the detected time-variant envelope 20′ is delayed from the time-variant envelope 20 of the analog signal 12 by a first temporal delay ΔT1, and the target voltage VTGT is delayed from the detected time-variant envelope 20′ by a second temporal delay ΔT2. The group delay ΔT, which refers generally to an actual transit time of a signal (e.g., the target voltage VTGT or the time-variant voltage VCC) through a device (e.g., the conventional PMIC 10) under test as a function of frequency, can thus include the first temporal delay ΔT1, the second temporal delay ΔT2, and/or the inherent processing delay of the ETIC 24. Understandably, the group delay ΔT can cause timing misalignment between the time-variant voltage VCC and the time-variant envelope 20 at the power amplifier 14.


As illustrated in FIG. 1C, the misalignment between the time-variant voltage VCC and the time-variant envelope 20 of the analog signal 12 can cause amplitude distortion in the analog signal 12. FIG. 1C is a graphic diagram providing an exemplary illustration as to how the inherent processing delay in the existing PMIC 10 of FIG. 1A can cause amplitude distortion in the analog signal 12.


If the time-variant envelope 20 and the time-variant voltage VCC are perfectly aligned, an instantaneous amplitude of the analog signal 12 (not shown), which is represented by a voltage Vs, would substantially equal the time-variant voltage VCC at time tx. However, as shown in FIG. 1C, the time-variant voltage VCC lags behind the time-variant envelope 20 by the group delay ΔT. As such, at time tx, the power amplifier 14 (not shown) receives a lower voltage V′CC, instead of the time-variant voltage VCC. In this regard, the time-variant voltage VCC deviates from the time-variant envelope 20 by a voltage differential Δv at time tx. Consequently, the power amplifier 14 may clip the analog signal 12 to cause an amplitude distortion. As such, it is desirable to reduce the misalignment between the time-variant voltage VCC and the time-variant envelope 20 of the analog signal 12 as much as possible.


In this regard, FIG. 2 is a schematic diagram of an exemplary PMIC 30 configured according to embodiments of the present disclosure to offset various group delays incurred in the PMIC 30.


The PMIC 30 is configured to provide a time-variant voltage VCC to a power amplifier 32 for amplifying an analog signal 34. The analog signal 34 may be generated by a transceiver circuit 36 and provided to a signal processing circuit 38 in the IF. The signal processing circuit 38 may upconvert the analog signal 34 from the IF to a carrier frequency and provide the analog signal 34 to the power amplifier 32 for amplification.


The analog signal 34 is associated with a time-variant envelope 40 that rises and falls over time. Thus, to prevent potential amplitude distortion in the analog signal 34 and ensure higher operating efficiency of the power amplifier 32, it is necessary to generate the time-variant voltage VCC to closely track the time-variant envelope 40.


In this regard, the PMIC 30 is configured to include a target voltage circuit 42. As discussed below, the target voltage circuit 42 is configured to generate an inverted time-variant target voltage VTGT-R(t) that is time-adjusted relative to the time-variant envelope 40 of the analog signal 34 to offset a group delay(s) incurred in the PMIC 30. Herein, a first signal is said to be time-adjusted relative to a second signal when the first signal is advanced in time to eliminate a negative group delay from the second signal or delayed in time to eliminate a positive group delay from the second signal.


Accordingly, an ETIC 44 in the PMIC 30 can generate a time-variant voltage VCC based on the inverted time-variant target voltage VTGT-R(t) and provide the time-variant voltage VCC to the power amplifier 32 for amplifying the analog signal 34. Since the inverted time-variant target voltage VTGT-R(t) is better aligned with the time-variant envelope 40, the time-variant voltage VCC will be better aligned with the time-variant envelope 40 as a result. Therefore, it is possible to reduce or even avoid potential amplitude distortion to the analog signal 34 during amplification.


In a non-limiting example, the target voltage circuit 42 includes an envelope detector circuit 46 and an analog LUT circuit 48. The envelope detector circuit 46 is configured to detect the time-variant envelope 40 of the analog signal 34 and provide a detected time-variant envelope 40′ to the analog LUT circuit 48. The analog LUT circuit 48 is configured to generate a target voltage VTGT(t) based on the detected time-variant envelope 40′ of the analog signal 34. Like the envelope detector circuit 26 and the analog LUT circuit 28 in the existing PMIC 10 of FIG. 1A, the envelope detector circuit 46 and the analog LUT circuit 48 can each cause certain processing delays. As a result, the detected time-variant envelope 40′ may be delayed from the time-variant envelope 40 of the analog signal 34 by a first temporal delay ΔT1 and the target voltage VTGT(t) may be delayed from the detected time-variant envelope 40′ by a second temporal delay ΔT2. In addition, the ETIC 44 can also incur a certain processing delay that may further delay the time-variant voltage VCC from the target voltage VTGT(t) by a third temporal delay ΔT3. As a result, the time-variant voltage VCC may become misaligned from the time-variant envelope 40 by the group delay ΔT that includes the first temporal delay ΔT1, the second temporal delay ΔT2, and the third temporal delay ΔT3.


In an embodiment, the target voltage circuit 42 is configured to include an inverted group delay circuit 50. As shown in FIG. 3, the inverted group delay circuit 50 is configured to generate the inverted time-variant target voltage VTGT(t)-R(t), which is time-adjusted relative to the time-variant envelope 40 of the analog signal to offset the group delay ΔT that includes at least the first temporal delay ΔT1 and the second temporal delay ΔT2.



FIG. 3 is a graphic diagram providing an exemplary illustration of the inverted time-variant target voltage VTGT-R(t) that is time-adjusted relative to the time-variant envelope 40 to substantially offset the first temporal delay ΔT1 and the second temporal delay ΔT2. Common elements between FIGS. 2 and 3 are shown therein with common element numbers and will not be re-described herein.


As shown in FIG. 3, the target voltage VTGT(t) as originally generated by the analog LUT circuit 48 lags behind the time-variant envelope 40 by the group delay ΔT that includes a sum of the first temporal delay ΔT1 and the second temporal delay ΔT2. In contrast, the inverted time-variant target voltage VTGT-R(t) is time-adjusted to substantially offset the first temporal delay ΔT1 and the second temporal delay ΔT2 to thereby be better aligned with the time-variant envelope 40. Herein, the inverted time-variant target voltage VTGT-R(t) is said to substantially offset the first temporal delay ΔT1 and the second temporal delay ΔT2 when a temporal gap ΔT between the inverted time-variant target voltage VTGT-R(t) and the time-variant envelope 40 is less than 10% of the group delay ΔT. As a result of improved alignment with the time-variant envelope 40, it is possible to reduce or even avoid amplitude distortion at the power amplifier 32.


Before discussing the inverted group delay circuit 50 of the present disclosure, starting at FIG. 5, a brief overview of inverted and non-inverted amplifiers is first provided with reference to FIGS. 4A and 4B, respectively.



FIG. 4A is a schematic diagram of a conventional inverted amplifier circuit 52. The conventional inverted amplifier circuit 52 receives an input voltage VIN via a voltage input 54 and outputs an inverted output voltage VOUT via a voltage output 56. The conventional inverted amplifier circuit 52 also includes an operational amplifier 58, which includes an inverting terminal 60, a non-inverting terminal 62, and an output terminal 64. The inverting terminal 60 is coupled to the voltage input 54 via an input resistor RIN to receive the input voltage VIN. The non-inverting terminal 62 is coupled to a ground (GND). The output terminal 64 is coupled to the voltage output 56. The conventional inverted amplifier circuit 52 also includes a feedback resistor RF that is coupled between the inverting terminal 60 and the output terminal 64.


The conventional inverted amplifier circuit 52 is configured to output the inverted output voltage VOUT that is 180° out of phase from the input voltage VIN. The conventional inverted amplifier circuit 52 generates a voltage gain AV as shown in equation (Eq. 1) below.

AV=VOUT/VIN=−RF/RIN  (Eq. 1)



FIG. 4B is a schematic diagram of a conventional non-inverted amplifier circuit 66. The conventional non-inverted amplifier circuit 66 receives an input voltage VIN via a voltage input 68 and outputs a non-inverted output voltage VOUT via a voltage output 70. The conventional non-inverted amplifier circuit 66 also includes an operational amplifier 72, which includes an inverting terminal 74, a non-inverting terminal 76, and an output terminal 78. The non-inverting terminal 76 is coupled to the voltage input 68 to receive the input voltage VIN. The inverting terminal 74 is coupled to the GND via an input resistor RIN. The output terminal 78 is coupled to the voltage output 56. The conventional non-inverted amplifier circuit 66 also includes a feedback resistor RF that is coupled between the inverting terminal 74 and the output terminal 78.


The conventional non-inverted amplifier circuit 66 is configured to output the inverted output voltage VOUT that is in phase with the input voltage VIN. The conventional non-inverted amplifier circuit 66 generates a voltage gain AV as shown in equation (Eq. 2) below.

AV=VOUT/VIN=(1+RF/RIN)  (Eq. 2)



FIG. 5 is a schematic diagram of an exemplary inverted group delay circuit 80 configured according to an embodiment of the present disclosure and can be provided in the PMIC 30 of FIG. 2 as the inverted group delay circuit 50. Common elements between FIGS. 2 and 5 are shown therein with common element numbers and will not be re-described herein.


In a specific embodiment disclosed herein, the inverted group delay circuit 80 is configured to offset the group delay ΔT between the time-variant target voltage VTGT(t) or the time-variant voltage VCC(t) and the time-variant envelope 40 of the analog signal 34. However, it should be appreciated that the inverted group delay circuit 80 can be configured flexibly and utilized broadly to correct a positive group delay ΔT and/or a negative group delay −ΔT between any pair of signals.


In a non-limiting example, the inverted group delay circuit 80 includes a tunable resistor-capacitor (RC) circuit 82 and an operational amplifier 84. The tunable RC circuit 82 includes a first voltage input 86 and a second voltage input 88 each coupled to a switch circuit 90. The tunable RC circuit 82 also includes a resistor R1 and a tunable capacitor C1 that are coupled in parallel between a common node 92 and the switch circuit 90. For example, the switch circuit 90 includes a first switch S1 and a second switch S2. The first switch S1 is coupled between the first voltage input 86 and the second voltage input 88. The second switch S2 is coupled between the second voltage input 88 and the tunable capacitor C1. Although the inverted group delay circuit 80 is shown to include the tunable capacitor C1, it should be appreciated that the tunable capacitor C1 can be replaced by a tunable resistor.


In examples discussed herein, the tunable RC circuit 82 is configured to output a time-variant voltage VTGT(t), which is equivalent to and referred interchangeably as the time-variant target voltage VTGT(t) in FIG. 2. In this regard, according to the previous discussion in FIG. 2, the time-variant target voltage VTGT(t) is delayed from the time-variant envelope 40 of the analog signal 34 by the group delay ΔT.


The operational amplifier 84 includes an inverting terminal 94, a non-inverting terminal 96, and an output terminal 98. The output terminal 98 is coupled to the inverting terminal 94 via a feedback resistor R2.


The inverting terminal 94 is coupled to the common node 92 to receive the time-variant target voltage VTGT(t). The non-inverting terminal 96 is configured to receive a reference voltage VREF so determined to keep the operational amplifier 84 operating in a respective linear region. In a non-limiting example, the reference voltage VREF can be set to 0 V. The output terminal 98 is coupled to a voltage output 100 and configured to output an inverted time-variant voltage −VTGT-R(t), which is equivalent to and referred interchangeably as the inverted time-variant target voltage VTGT-R(t) in FIG. 2. The inverted time-variant target voltage −VTGT-R(t) is so generated to have an opposing phase (180° phase offset) and be time-adjusted relative to the time-variant target voltage VTGT(t) to thereby offset the group delay ΔT, which can be a positive group delay ΔT or a negative group delay −ΔT.


In a non-limiting example, the inverted group delay circuit 80 further includes a control circuit 102, which can be a field-programmable gate array (FPGA), as an example. The control circuit 102 can be configured to determine the group delay ΔT between the time-variant target voltage VTGT(t) and the time-variant envelope 40 of the analog signal 34. In a non-limiting example, the group delay ΔT can be predetermined (e.g., during fabrication and/or calibration) and stored in the control circuit 102. Accordingly, the control circuit 102 can control the tunable RC circuit 82 to output the time-variant target voltage VTGT(t) with the group delay ΔT.


In one embodiment, the inverted group delay circuit 80 can be configured to output the inverted time-variant target voltage VTGT-R(t) that is time-adjusted to offset a negative group delay −ΔT. In this regard, the tunable RC circuit 82 can be configured to receive a positive time-variant target voltage VTGT(t) via the first voltage input 86. The control circuit 102 may close the first switch S1 to couple the first voltage input 86 to the resistor R1 and the tunable capacitor C1, while concurrently opening the second switch S2 to decouple the second voltage input 88 from the resistor R1 and the tunable capacitor C1.



FIG. 6A is a schematic diagram providing an exemplary illustration of the inverted group delay circuit 80 of FIG. 5 operable to offset the negative group delay −ΔT. Common elements between FIGS. 5 and 6A are shown therein with common element numbers and will not be re-described herein.


In a non-limiting example, the inverted group delay circuit 80 operable according to FIG. 6A can implement a transfer function H(s) as expressed in equation (Eq. 3) below.

H(s)=−(R2/R1)*(1+R1*C1*s)  (Eq. 3)


In the equation (Eq. 3) above, s represents a Laplace notation that defines a frequency characteristic of a filter or a network. Notably, the negative group delay −ΔT is a function of the RC constant τ (τ=R1C1) of the tunable RC circuit 82. In this regard, the control circuit 102 may control the tunable capacitor C1 to flexibly adjust the negative group delay −ΔT. Thus, in accordance with the transfer function H(s) above, the inverted group delay circuit 80 can generate the inverted time-variant target voltage −VTGT-R(τ−ΔT) that is time-advanced to offset the negative group delay −ΔT.


In another embodiment, the inverted group delay circuit 80 can be configured to output the inverted time-variant target voltage VTGT-R(t) that is time-adjusted to offset a positive group delay ΔT. In this regard, the tunable RC circuit 82 can be configured to receive a positive time-variant target voltage VTGT(t) via the first voltage input 86 and a negative time-variant target voltage −VTGT(t) via the second voltage input 88. The control circuit 102 may open the first switch S1 to decouple the first voltage input 86 from the tunable capacitor C1, while concurrently closing the second switch S2 to couple the second voltage input 88 to the tunable capacitor C1.



FIG. 6B is a schematic diagram providing an exemplary illustration of the inverted group delay circuit 80 of FIG. 5 operable to offset the positive group delay ΔT. Common elements between FIGS. 5 and 6B are shown therein with common element numbers and will not be re-described herein.


In a non-limiting example, the inverted group delay circuit 80 operable according to FIG. 6B can implement a transfer function H(s) as expressed in equation (Eq. 4) below.

H(s)=−(R2/R1)*(1−R1*C1*s)  (Eq. 4)


Notably, the positive group delay ΔT is a function of the RC constant τ (τ=R1C1) of the tunable RC circuit 82. In this regard, the control circuit 102 may control the tunable capacitor C1 to flexibly adjust the positive group delay ΔT. Thus, in accordance with the transfer function H(s) above, the inverted group delay circuit 80 can generate the inverted time-variant target voltage −VTGT-R(τ+ΔT) that is time-delayed to offset the positive group delay ΔT.


With reference back to FIG. 2, alternative to predetermining and storing the group delay d ΔT in the control circuit 102, the target voltage circuit 42 may be configured to include a delay detector circuit 104 to dynamically determine the group delay ΔT. In one non-limiting example, the delay detector circuit 104 can detect the group delay ΔT that includes the first temporal delay ΔT1 and the second temporal delay ΔT2. In another non-limiting example, the delay detector circuit 104 can detect the group delay ΔT that includes the first temporal delay ΔT1, the second temporal delay ΔT2, and the third temporal delay ΔT3. Accordingly, the delay detector circuit 104 provides the determined group delay ΔT to the inverted group delay circuit 50.


In a non-limiting example, it is possible to employ a pair of the inverted group delay circuit 80 in FIG. 5 to form a differential inverted group delay circuit. In this regard, FIG. 7 is a schematic diagram of an exemplary differential inverted group delay circuit 106 that includes a pair of the inverted group delay circuit 80 of FIG. 5. Common elements between FIGS. 5 and 7 are shown therein with common element numbers and will not be re-described herein.


The differential inverted grope delay circuit 106 includes a positive inverted group delay circuit 80P and a negative inverted group delay circuit 80N. In this regard, the differential inverted group delay circuit 106 can be employed to offset the group delay ΔT when the power amplifier 32 is a differential power amplifier.


Each of the positive inverted group delay circuit 80P and the negative inverted group delay circuit 80N is the same as the inverted group delay circuit 80 of FIG. 5, which includes the tunable RC circuit 82 and the operational amplifier 84. The positive inverted group delay circuit 80P is configured to output a positive inverted time-variant voltage VTGT-R(τ) at a positive voltage output 108P. The negative inverted group delay circuit 80N is configured to output a negative inverted time-variant voltage −VTGT-R(τ) at a negative voltage output 108N. In a non-limiting example, the tunable RC circuit 82 in each of the positive inverted group delay circuit 80P and the negative inverted group delay circuit 80N is coupled to the first voltage input 86 and the second voltage input 88 via a switch circuit 110.


Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. An inverted group delay circuit comprising: a tunable resistor-capacitor (RC) circuit configured to output a time-variant voltage having a group delay relative to a time-variant envelope of an analog signal; andan operational amplifier comprising: an inverting terminal coupled to the tunable RC circuit to receive the time-variant voltage; andan output terminal configured to output an inverted time-variant voltage having an opposing phase and time-adjusted to have one of a positive group delay and a negative group delay relative to the time-variant voltage to thereby offset the group delay, wherein each of the positive group delay and the negative group delay is a function of an RC constant of the tunable RC circuit.
  • 2. The inverted group delay circuit of claim 1, wherein the operational amplifier further comprises: a non-inverting terminal configured to receive a reference voltage; anda feedback resistor coupled between the output terminal and the inverting terminal.
  • 3. The inverted group delay circuit of claim 2, wherein the tunable RC circuit comprises: a first voltage input and a second voltage input coupled to a switch circuit; anda resistor and a tunable capacitor coupled in parallel between the inverting terminal and the switch circuit.
  • 4. The inverted group delay circuit of claim 3, further comprising a control circuit configured to: determine the group delay between the time-variant voltage and the time-variant envelope of the analog signal; andcontrol the tunable capacitor to adjust the RC constant to thereby cause the tunable RC circuit to output the time-variant voltage with the determined group delay.
  • 5. The inverted group delay circuit of claim 4, wherein: the tunable RC circuit is configured to receive a positive time-variant voltage via the first voltage input; andthe control circuit is further configured to: control the switch circuit to cause the first voltage input to be coupled to the resistor and the tunable capacitor; andcontrol the switch circuit to cause the second voltage input to be decoupled from the resistor and the tunable capacitor.
  • 6. The inverted group delay circuit of claim 5, wherein: the group delay between the time-variant voltage and the time-variant envelope comprises the negative group delay; andthe inverted group delay circuit has a transfer function expressed as H(s)=−(R2/R1)*(1+R1*C1*s).
  • 7. The inverted group delay circuit of claim 4, wherein: the tunable RC circuit is configured to receive a positive time-variant voltage via the first voltage input and a negative time-variant voltage via the second voltage input; andthe control circuit is further configured to: control the switch circuit to cause the first voltage input to be coupled to the resistor and decoupled from the tunable capacitor; andcontrol the switch circuit to cause the second voltage input to be coupled to the tunable capacitor and decoupled from the resistor.
  • 8. The inverted group delay circuit of claim 7, wherein: the group delay between the time-variant voltage and the time-variant envelope comprises the positive group delay; andthe inverted group delay circuit has a transfer function expressed as H(s)=−(R2/R1)*(1−R1*C1*s).
  • 9. A power management integrated circuit (PMIC) comprising: a target voltage circuit comprising: an envelope detector circuit configured to detect a time-variant envelope of an analog signal, wherein the detected time-variant envelope is delayed from the time-variant envelope of the analog signal by a first temporal delay;an analog look-up table (LUT) circuit configured to generate a time-variant target voltage based on the detected time-variant envelope of the analog signal, wherein the time-variant target voltage is delayed from the detected time-variant envelope of the analog signal by a second temporal delay; andan inverted group delay circuit comprising: a tunable resistor-capacitor (RC) circuit configured to output the time-variant target voltage having a group delay comprising at least the first temporal delay and the second temporal delay; andan operational amplifier comprising: an inverting terminal coupled to the tunable RC circuit to receive the time-variant target voltage; andan output terminal configured to output an inverted time-variant target voltage having an opposing phase and time-adjusted relative to the time-variant target voltage to thereby offset the group delay.
  • 10. The PMIC of claim 9, wherein: the operational amplifier further comprises: a non-inverting terminal configured to receive a reference voltage; anda feedback resistor coupled between the output terminal and the inverting terminal; andthe tunable RC circuit comprises: a first voltage input and a second voltage input coupled to a switch circuit; anda resistor and a tunable capacitor coupled in parallel between the inverting terminal and the switch circuit.
  • 11. The PMIC of claim 10, wherein the inverted group delay circuit further comprises a control circuit configured to: determine the group delay between the time-variant target voltage and the time-variant envelope; andcontrol the tunable capacitor to thereby cause the tunable RC circuit to output the time-variant target voltage with the determined group delay.
  • 12. The PMIC of claim 11, wherein: the tunable RC circuit is configured to receive a positive time-variant target voltage via the first voltage input; andthe control circuit is further configured to: control the switch circuit to cause the first voltage input to be coupled to the resistor and the tunable capacitor; andcontrol the switch circuit to cause the second voltage input to be decoupled from the resistor and the tunable capacitor.
  • 13. The PMIC of claim 12, wherein: the group delay between the time-variant target voltage and the time-variant envelope corresponds to a negative group delay; andthe inverted group delay circuit has a transfer function expressed as H(s)=−(R2/R1)*(1+R1*C1*s).
  • 14. The PMIC of claim 11, wherein: the tunable RC circuit is configured to receive a positive time-variant target voltage via the first voltage input and a negative time-variant target voltage via the second voltage input; andthe control circuit is further configured to: control the switch circuit to cause the first voltage input to be coupled to the resistor and decoupled from the tunable capacitor; andcontrol the switch circuit to cause the second voltage input to be coupled to the tunable capacitor and decoupled from the resistor.
  • 15. The PMIC of claim 14, wherein: the group delay between the time-variant target voltage and the time-variant envelope corresponds to a positive group delay; andthe inverted group delay circuit has a transfer function expressed as H(s)=−(R2/R1)*(1−R1*C1*s).
  • 16. The PMIC of claim 9 wherein the first temporal delay and the second temporal delay are predetermined and stored in the inverted group delay circuit.
  • 17. The PMIC of claim 9 wherein the target voltage circuit further comprises a delay detector circuit configured to: dynamically determine the first temporal delay and the second temporal delay; andprovide the determined first temporal delay and the determined second temporal delay to the inverted group delay circuit.
  • 18. The PMIC of claim 9 further comprising an envelope tracking integrated circuit (ETIC) configured to generate a time-variant voltage for amplifying the analog signal, wherein the time-variant voltage is delayed from the time-variant target voltage by a third temporal delay.
  • 19. The PMIC of claim 18 wherein the inverted group delay circuit is further configured to generate the inverted time-variant target voltage that is time-adjusted to offset the group delay further comprising the third temporal delay.
  • 20. A differential inverted group delay circuit comprising: a positive inverted group delay circuit configured to output a positive inverted time-variant voltage via a positive voltage output; anda negative inverted group delay circuit configured to output a negative inverted time-variant voltage via a negative voltage output;wherein each of the positive inverted group delay circuit and the negative inverted group delay circuit comprises: a tunable resistor-capacitor (RC) circuit configured to output a time-variant voltage having a group delay relative to a time-variant envelope of an analog signal; andan operational amplifier comprising: an inverting terminal coupled to the tunable RC circuit to receive the time-variant voltage; andan output terminal configured to output a respective one of the positive inverted time-variant voltage and the negative inverted time-variant voltage having an opposing phase and time-adjusted relative to the time-variant voltage to thereby offset the group delay.
RELATED APPLICATIONS

This application claims the benefit of provisional patent application Ser. No. 63/091,687, filed on Oct. 14, 2020, the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (209)
Number Name Date Kind
4477848 McWhirter Oct 1984 A
4827458 D'Alayer de Costemore D'Arc May 1989 A
5304864 Hong et al. Apr 1994 A
5510753 French Apr 1996 A
5838732 Carney Nov 1998 A
6107862 Mukainakano et al. Aug 2000 A
6141377 Sharper et al. Oct 2000 A
6985033 Shirali et al. Jan 2006 B1
7043213 Robinson et al. May 2006 B2
7471155 Levesque Dec 2008 B1
7570931 McCallister et al. Aug 2009 B2
7994862 Pukhovski Aug 2011 B1
8461928 Yahav et al. Jun 2013 B2
8493141 Khlat et al. Jul 2013 B2
8519788 Khlat Aug 2013 B2
8588713 Khlat Nov 2013 B2
8665016 Chowdhury et al. Mar 2014 B2
8718188 Balteanu et al. May 2014 B2
8725218 Brown et al. May 2014 B2
8774065 Khlat et al. Jul 2014 B2
8803603 Wimpenny Aug 2014 B2
8818305 Schwent et al. Aug 2014 B1
8854129 Wilson Oct 2014 B2
8879665 Xia et al. Nov 2014 B2
8913690 Onishi Dec 2014 B2
8989682 Ripley et al. Mar 2015 B2
9018921 Gurlahosur Apr 2015 B2
9020451 Khlat Apr 2015 B2
9041364 Khlat May 2015 B2
9041365 Kay et al. May 2015 B2
9055529 Shih Jun 2015 B2
9065509 Yan et al. Jun 2015 B1
9069365 Brown et al. Jun 2015 B2
9098099 Park et al. Aug 2015 B2
9166538 Hong et al. Oct 2015 B2
9166830 Camuffo et al. Oct 2015 B2
9167514 Dakshinamurthy et al. Oct 2015 B2
9197182 Baxter et al. Nov 2015 B2
9225362 Drogi et al. Dec 2015 B2
9247496 Khlat Jan 2016 B2
9263997 Vinayak Feb 2016 B2
9270230 Henshaw et al. Feb 2016 B2
9270239 Drogi et al. Feb 2016 B2
9271236 Drogi Feb 2016 B2
9280163 Kay et al. Mar 2016 B2
9288098 Yan et al. Mar 2016 B2
9298198 Kay et al. Mar 2016 B2
9344304 Cohen May 2016 B1
9356512 Chowdhury et al. May 2016 B2
9377797 Kay et al. Jun 2016 B2
9379667 Khlat et al. Jun 2016 B2
9445371 Khesbak Sep 2016 B2
9515622 Nentwig et al. Dec 2016 B2
9520907 Peng et al. Dec 2016 B2
9584071 Khlat Feb 2017 B2
9595869 Lerdworatawee Mar 2017 B2
9595981 Khlat Mar 2017 B2
9596110 Jiang et al. Mar 2017 B2
9614477 Rozenblit et al. Apr 2017 B1
9634666 Krug Apr 2017 B2
9748845 Kotikalapoodi Aug 2017 B1
9748912 Choi Aug 2017 B2
9806676 Balteanu et al. Oct 2017 B2
9831834 Balteanu et al. Nov 2017 B2
9837962 Mathe et al. Dec 2017 B2
9923520 Abdelfattah et al. Mar 2018 B1
10003416 Lloyd Jun 2018 B1
10090808 Henzler et al. Oct 2018 B1
10097145 Khlat et al. Oct 2018 B1
10110169 Khesbak et al. Oct 2018 B2
10158329 Khlat Dec 2018 B1
10158330 Khlat Dec 2018 B1
10170989 Balteanu et al. Jan 2019 B2
10181826 Khlat Jan 2019 B2
10291181 Kim et al. May 2019 B2
10326408 Khlat et al. Jun 2019 B2
10382071 Rozek et al. Aug 2019 B2
10476437 Nag et al. Nov 2019 B2
10516368 Balteanu Dec 2019 B2
10530311 Khlat Jan 2020 B2
10615757 Balteanu Apr 2020 B2
10862431 Khlat Dec 2020 B1
10985703 Balteanu Apr 2021 B2
10985711 Balteanu Apr 2021 B2
11303255 Khesbak Apr 2022 B2
20020167827 Umeda et al. Nov 2002 A1
20040266366 Robinson et al. Dec 2004 A1
20050090209 Behzad Apr 2005 A1
20050227646 Yamazaki et al. Oct 2005 A1
20050232385 Yoshikawa et al. Oct 2005 A1
20060240786 Liu Oct 2006 A1
20070052474 Saito Mar 2007 A1
20070258602 Vepsalainen et al. Nov 2007 A1
20090016085 Rader et al. Jan 2009 A1
20090045872 Kenington Feb 2009 A1
20090191826 Takinami et al. Jul 2009 A1
20100308919 Adamski et al. Dec 2010 A1
20110074373 Lin Mar 2011 A1
20110136452 Pratt et al. Jun 2011 A1
20110175681 Inamori et al. Jul 2011 A1
20110279179 Vice Nov 2011 A1
20120194274 Fowers et al. Aug 2012 A1
20120200435 Ngo et al. Aug 2012 A1
20120299645 Southcombe et al. Nov 2012 A1
20120299647 Honjo et al. Nov 2012 A1
20120313701 Khlat Dec 2012 A1
20130021827 Ye Jan 2013 A1
20130100991 Woo Apr 2013 A1
20130130724 Kumar Reddy et al. May 2013 A1
20130162233 Marty Jun 2013 A1
20130187711 Goedken et al. Jul 2013 A1
20130200865 Wimpenny Aug 2013 A1
20130271221 Levesque et al. Oct 2013 A1
20140009226 Severson Jan 2014 A1
20140028370 Wimpenny Jan 2014 A1
20140028390 Davis Jan 2014 A1
20140057684 Khlat Feb 2014 A1
20140103995 Langer Apr 2014 A1
20140155002 Dakshinamurthy et al. Jun 2014 A1
20140184335 Nobbe Jul 2014 A1
20140199949 Nagode et al. Jul 2014 A1
20140210550 Mathe et al. Jul 2014 A1
20140218109 Wimpenny Aug 2014 A1
20140235185 Drogi Aug 2014 A1
20140266423 Drogi et al. Sep 2014 A1
20140266428 Chiron et al. Sep 2014 A1
20140315504 Sakai et al. Oct 2014 A1
20140361830 Mathe et al. Dec 2014 A1
20140361837 Strange et al. Dec 2014 A1
20150048883 Vinayak Feb 2015 A1
20150071382 Wu et al. Mar 2015 A1
20150098523 Lim et al. Apr 2015 A1
20150155836 Midya et al. Jun 2015 A1
20150188432 Vannorsdel et al. Jul 2015 A1
20150236654 Jiang et al. Aug 2015 A1
20150236729 Peng et al. Aug 2015 A1
20150280652 Cohen Oct 2015 A1
20150333781 Alon et al. Nov 2015 A1
20160050629 Khesbak Feb 2016 A1
20160065137 Khlat Mar 2016 A1
20160099687 Khlat Apr 2016 A1
20160105151 Langer Apr 2016 A1
20160118941 Wang Apr 2016 A1
20160126900 Shute May 2016 A1
20160173031 Langer Jun 2016 A1
20160181995 Nentwig et al. Jun 2016 A1
20160187627 Abe Jun 2016 A1
20160197627 Qin et al. Jul 2016 A1
20160226448 Wimpenny Aug 2016 A1
20160294587 Jiang et al. Oct 2016 A1
20170141736 Pratt et al. May 2017 A1
20170302183 Young Oct 2017 A1
20170310398 Masuda Oct 2017 A1
20170317913 Kim et al. Nov 2017 A1
20170338773 Balteanu et al. Nov 2017 A1
20180013465 Chiron et al. Jan 2018 A1
20180048265 Nentwig Feb 2018 A1
20180048276 Khlat et al. Feb 2018 A1
20180076772 Khesbak Mar 2018 A1
20180123453 Puggelli et al. May 2018 A1
20180288697 Camuffo et al. Oct 2018 A1
20180302042 Zhang et al. Oct 2018 A1
20180309414 Khlat et al. Oct 2018 A1
20180367101 Chen et al. Dec 2018 A1
20190044480 Khlat Feb 2019 A1
20190068234 Khlat et al. Feb 2019 A1
20190097277 Fukae Mar 2019 A1
20190109566 Folkmann et al. Apr 2019 A1
20190109613 Khlat et al. Apr 2019 A1
20190222178 Khlat et al. Jul 2019 A1
20190238095 Khlat Aug 2019 A1
20190267956 Granger-Jones et al. Aug 2019 A1
20190222175 Khlat et al. Oct 2019 A1
20200007090 Khlat et al. Jan 2020 A1
20200036337 Khlat Jan 2020 A1
20200106392 Khlat et al. Apr 2020 A1
20200136561 Khlat et al. Apr 2020 A1
20200136563 Khlat Apr 2020 A1
20200136575 Khlat et al. Apr 2020 A1
20200144966 Khlat May 2020 A1
20200153394 Khlat et al. May 2020 A1
20200177131 Khlat Jun 2020 A1
20200204116 Khlat Jun 2020 A1
20200228063 Khlat Jul 2020 A1
20200259456 Khlat Aug 2020 A1
20200259685 Khlat Aug 2020 A1
20200266766 Khlat et al. Aug 2020 A1
20200321848 Khlat Oct 2020 A1
20200328720 Khlat Oct 2020 A1
20200336105 Khlat Oct 2020 A1
20200336111 Khlat Oct 2020 A1
20200350865 Khlat Nov 2020 A1
20200382066 Khlat Dec 2020 A1
20210036604 Khlat et al. Feb 2021 A1
20210184708 Khlat Jun 2021 A1
20210194522 Stockert et al. Jun 2021 A1
20210226585 Khlat Jul 2021 A1
20210234513 Khlat Jul 2021 A1
20210265953 Khlat Aug 2021 A1
20220052646 Khlat Feb 2022 A1
20220052647 Khlat Feb 2022 A1
20220052648 Khlat Feb 2022 A1
20220052649 Retz Feb 2022 A1
20220052650 Khlat Feb 2022 A1
20220052651 Khlat Feb 2022 A1
20220052655 Khlat Feb 2022 A1
20220116029 Khlat Apr 2022 A1
20220165323 Zhu May 2022 A1
20220166416 Zhu May 2022 A1
Foreign Referenced Citations (2)
Number Date Country
3174199 May 2012 EP
2012050257 Apr 2012 WO
Non-Patent Literature Citations (70)
Entry
Non-Final Office Action for U.S. Appl. No. 14/836,634, dated May 16, 2016, 9 pages.
Non-Final Office Action for U.S. Appl. No. 14/868,890, dated Jul. 14, 2016, 13 pages.
Non-Final Office Action for U.S. Appl. No. 15/792,909, dated May 18, 2018, 13 pages.
Notice of Allowance for U.S. Appl. No. 15/459,449, dated Mar. 28, 2018, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/723,460, dated Jul. 24, 2018, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/704,131, dated Jul. 17, 2018, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/728,202, dated Aug. 2, 2018, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Aug. 28, 2018, 11 pages.
Notice of Allowance for U.S. Appl. No. 15/792,909, dated Dec. 19, 2018, 11 pages.
Notice of Allowance for U.S. Appl. No. 15/993,705, dated Oct. 31, 2018, 7 pages.
Pfister, Henry, “Discrete-Time Signal Processing,” Lecture Note, pfister.ee.duke.edu/courses/ece485/dtsp.pdf, Mar. 3, 2017, 22 pages.
Non-Final Office Action for U.S. Appl. No. 15/888,260, dated May 2, 2019, 14 pages.
Non-Final Office Action for U.S. Appl. No. 15/986,948, dated Mar. 28, 2019, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/018,426, dated Apr. 11, 2019, 11 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/902,244, dated Mar. 20, 2019, 6 pages.
Notice of Allowance for U.S. Appl. No. 15/902,244, dated Feb. 8, 2019, 8 pages.
Advisory Action for U.S. Appl. No. 15/888,300, dated Jun. 5, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/984,566, dated May 21, 2019, 6 pages.
Notice of Allowance for U.S. Appl. No. 16/150,556, dated Jul. 29, 2019, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Jun. 27, 2019, 17 pages.
Final Office Action for U.S. Appl. No. 15/986,948, dated Aug. 27, 2019, 9 pages.
Advisory Action for U.S. Appl. No. 15/986,948, dated 8, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/986,948, dated Dec. 13, 2019, 7 pages.
Final Office Action for U.S. Appl. No. 16/018,426, dated Sep. 4, 2019, 12 pages.
Advisory Action for U.S. Appl. No. 16/018,426, dated Nov. 19, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 16/180,887, dated Jan. 13, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/888,300, dated Jan. 14, 2020, 11 pages.
Non-Final Office Action for U.S. Appl. No. 16/122,611, dated Mar. 11, 2020, 16 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated Feb. 25, 2020, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/018,426, dated Mar. 31, 2020, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/174,535, dated Feb. 4, 2020, 7 pages.
Quayle Action for U.S. Appl. No. 16/354,234, dated Mar. 6, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/354,234, dated Apr. 24, 2020, 9 pages.
Non-Final Office Action for U.S. Appl. No. 16/246,859, dated Apr. 28, 2020, 9 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated May 13, 2020, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/155,127, dated Jun. 1, 2020, 8 pages.
Final Office Action for U.S. Appl. No. 16/174,535, dated Jul. 1, 2020, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/284,023, dated Jun. 24, 2020, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/435,940, dated Jul. 23, 2020, 6 pages.
Final Office Action for U.S. Appl. No. 15/888,300, dated Feb. 15, 2019, 15 pages.
Final Office Action for U.S. Appl. No. 16/122,611, dated Sep. 18, 2020, 17 pages.
Advisory Action for U.S. Appl. No. 16/174,535, dated Sep. 24, 2020, 3 pages.
Notice of Allowance for U.S. Appl. No. 16/174,535, dated Oct. 29, 2020, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/246,859, dated Sep. 18, 2020, 8 pages.
Final Office Action for U.S. Appl. No. 16/284,023, dated Nov. 3, 2020, 7 pages.
Quayle Action for U.S. Appl. No. 16/421,905, dated Aug. 25, 2020, 5 pages.
Non-Final Office Action for U.S. Appl. No. 16/416,812, dated Oct. 16, 2020, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/514,051, dated Nov. 13, 2020, 9 pages.
Non-Final Office Action for U.S. Appl. No. 16/774,060, dated Aug. 17, 2020, 6 pages.
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Dec. 1, 2020, 9 pages.
Quayle Action for U.S. Appl. No. 16/589,940, dated Dec. 4, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Jan. 13, 2021, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/284,023, dated Jan. 19, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/416,812, dated Feb. 16, 2021, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/689,236 dated Mar. 2, 2021, 15 pages.
Notice of Allowance for U.S. Appl. No. 16/435,940, dated Dec. 21, 2020, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/774,060, dated Feb. 3, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/590,790, dated Jan. 27, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/661,061, dated Feb. 10, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Apr. 1, 2021, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/582,471, dated Mar. 24, 2021, 11 pages.
Wan, F. et al., “Negative Group Delay Theory of a Four-Port RC-Network Feedback Operational Amplifier,” IEEE Access, vol. 7, Jun. 13, 2019, IEEE, 13 pages.
Notice of Allowance for U.S. Appl. No. 16/689,236 dated Jun. 9, 2021, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/775,554, dated Jun. 14, 2021, 5 pages.
Notice of Allowance for U.S. Appl. No. 16/582,471, dated Jun. 22, 2021, 9 pages.
Non-Final Office Action for U.S. Appl. No. 16/597,952, dated May 26, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/834,049, dated Jun. 24, 2021, 8 pages.
Nakase, et al., “A BiCMOS Wired-OR logic,” IEEE Journal of Solid-State Circuits, vol. 30, Issue 6, Jun. 1995, pp. 622-628.
Williams, Arthur, et al.,“Electronic Filter Design Handbook,” Third Edition, 1995, McGraw-Hill, Inc. pp. 7.10-7.14.
Non-Final Office Action for U.S. Appl. No. 17/406,550, dated Mar. 13, 2023, 25 pages.
Related Publications (1)
Number Date Country
20220116029 A1 Apr 2022 US
Provisional Applications (1)
Number Date Country
63091687 Oct 2020 US