The present disclosure relates, generally, to power converters that convert DC power to AC power, and more particularly, to power converters used in photovoltaic applications.
Photovoltaic (PV) cells may generate power that can be used for purposes such as supplying power to a utility grid. However, PV cells generate direct current (DC) power and utility grids use alternating current (AC) power. Thus, the DC power generated by a PV cells must be converted to AC power in order to be used within a utility grid. Power inverters may be used to provide such conversion. It is desired to perform the DC to AC power conversion with the greatest possible efficiency. During conversion various environmental conditions may exist, such as uneven distribution of solar energy across an array of PV cells, that may interfere with performing the conversion as efficiently as possible.
According to one aspect of the disclosure, an apparatus may include a plurality of power inverters. Each power inverter may receive direct current (DC) power from a respective DC power source and respectively provide AC power to an AC load. The apparatus may also include a primary controller that may generate a primary control signal based on the total AC current and the total AC voltage being delivered to the AC load by the plurality of inverters. The apparatus may also include a plurality of secondary controllers that may each receive the primary control signal and produce a respective secondary control signal based on the primary control signal. The respective secondary control signal for each of the plurality of secondary controllers may control a corresponding one or more of the plurality of inverters to provide the respective AC power.
According to another aspect of the disclosure, a method of controlling AC power delivered to an AC load may include producing the AC power with an array of inverters based on an amount of received respective DC power. The method may further include generating a first control signal in response to the AC power. The method may further include generating a plurality of second control signals in response to the first control signal. The method may further include controlling respective output AC power of each inverter of the array of inverters based on a corresponding one of the second control signals and the AC power may a combination of the respective output AC power of each inverter of the array of inverters.
According to another aspect of the disclosure, a computer-readable medium may include a plurality of instructions executable by a processor. The computer-readable medium may include instructions to direct an array of inverters to produce AC power based on an amount of power received by the inverters. The computer-readable medium may further include instructions to generate a first control signal in response to the AC power. The computer-readable medium may further include instructions to generate a plurality of second control signals in response to the first control signal. The computer-readable medium may further include instructions to control respective output AC power of each inverter of the array of inverters based on a corresponding one of the second control signals with the AC power being a combination of the respective output AC power of each inverter of the array of inverters.
The inverter module 104 may include a master controller 108 to provide one or more control signals 110 to each of the inverter sub-modules 106. Each of the inverter sub-modules 106 may include a local controller (see
Each inverter sub-module 106 also includes an energy storage component 208 electrically coupled to the corresponding boost converter 200. In the example of
Each inverter sub-module 106 may also include an output bridge 210 that includes a set of switches 212, 213, 214, and 215. Each of the sets of switches 212 through 215 may receive a respective control signal (qo1x-qo4x), respectively, used to turn each respective switch 212 through 215 on and off. In one example, the switches 212 through 215 may be metal oxide semiconductor field effect transistors (MOSFETs), insulated gate bipolar transistors (IGBTs), or any other switch type suitable for power conversion switching. The switches 212 through 215 may be operated to convert the DC power stored in the energy storage component 208 to AC power to deliver to the AC load 220. In
An output inductance may be electrically coupled to the inverter sub-modules 106. In one example, the output inductance may be split into two output inductances L1o and L2o. In
The electrically coupled inverter sub-modules 106 may provide a single output voltage vout and output current iout to the AC load 220. In the configuration of
Each MPPT controller 302 may receive the respective cell voltage vcellx and cell current icellx and generate the boost converter switch control signals (qB1x, qB2x) for the associated inverter sub-module 106. The master controller 108 may receive the bus voltage vbusx for each inverter sub-module 106, the output voltage vout, and the output current iout.
p(t)=Po−Po*cos(2*ωs*t+φ)), Eqn. 1
where ωs is the frequency of an AC load.
In one example, the master controller 108 receives the DC bus voltages from the inverter sub-modules 106 represented as Vbusx. The master controller 108 may generate the summed squares of the bus voltages may be used to estimate the total available power current available from the array of PV cells 102. Using energy conservation and neglecting circuit losses, the approximated power available from the array of PV cells is:
Due to the numerical stability of the derivative calculation in Eqn. 2, the derivative may be approximated with the transfer function of:
The master controller 108 may be configured to multiply the sum of the squared bus voltages by a factor of ½Cbus using multiplier block 402 and provide the product to a lead compensator 404 using the transfer function of Eqn. 3. The output of the lead compensator 404 may be summed with the current power being received by the AC load 220 to determine the power stored in the storage components 208 and to determine the total power generated by PV module 100 (Pnet). The power Pnet may be received by a transfer function 406 and multiplied by sqrt(2)(1/VLLms) at the multiplier block 408 to generate the desired approximated current to be provided by the inverter module 104 represented by the approximated desired current signal iapprox.
The master controller 108 may also generate a current adjustment signal iadj representative of the amount the approximated desired current signal iapprox is to be adjusted. The current adjustment signal iadj may be based on the sum of the bus voltages (vbusx) for each of the inverter sub-modules 106. The sum of the bus voltages may be received by a transfer function 410. The difference between the output of the transfer function 410 and a desired system voltage Vsysbus* may be received by a proportional-integral (PI) controller 412. The PI controller 412 may compensate for any error present in the difference between the output of the transfer function 410 and the desired system voltage Vsysbus*. The output of the PI controller 412 may be the current adjustment signal iadj.
The approximated desired current signal iapprox and the current adjustment signal iadj may be combined to generate the command current peak ipk*. The peak current command may be multiplied by sin(ωst) (ωs is the desired output frequency of the inverter sub-module 106) at multiplier block 414 to generate the current command signal i* representative of the desired current to be provided to the AC load 220. The current command signal i* may be provided to a PI controller 416 and compared to the power provided to the AC load 220 based on the actual output voltage vout and the output current iout. A gain block 418 may receive the output of the PI controller 416 with the output of the gain block 418 providing the master control signal (Msys) 304.
The master controller 108 may be analog-based, digital-based, or some combination thereof. In digital-based implementations, the master controller 108 may include a processor and a memory device. The memory device may include one or more memories and may be non-transitory computer-readable storage media or memories, such as a cache, buffer, RAM, removable media, hard drive or other computer readable storage media. Computer readable storage media may include various types of volatile and nonvolatile storage media. Various processing techniques may be implemented by the processor such as multiprocessing, multitasking, parallel processing and the like, for example. The processor may include one or more processors.
The local control signal Mx may be compared to a pair of triangular carrier waveforms (tri( ) and −tri( )) generated by the master controller 108 (not shown). Each pair of triangular carrier waveforms for each sub-inverter 106 may be phase shifted by a unique multiple of Tc/n, where Tc is the period of the carrier waveform. In alternative examples, sawtooth carrier waveforms may also be used. A first comparator 506 and a second comparator 508 may be used to compare each one of the triangle carrier waveform pairs with the local control signal Mx. The output of the first comparator 506 may be used to generate the local control signals qo1x and qo2x. The output of the second comparator 508 may be used to generate the local control signals qo3x and qo4x. The control signals qo1x through qo4x may be pulse width modulated (PWM) signals. Other manners of generating PWM signals may be used such as through timers.
There is a plurality of advantages of the present disclosure arising from the various features of the apparatuses, circuits, and methods described herein. It will be noted that alternative examples of the apparatuses, circuits, and methods of the present disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of the apparatuses, circuits, and methods that incorporate one or more of the features of the present disclosure and fall within the spirit and scope of the present disclosure.
This application claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 61/417,453 filed on Nov. 29, 2010, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3670230 | Rooney et al. | Jun 1972 | A |
4114048 | Hull | Sep 1978 | A |
4217633 | Evans | Aug 1980 | A |
4277692 | Small | Jul 1981 | A |
4287465 | Godard et al. | Sep 1981 | A |
4651265 | Stacey et al. | Mar 1987 | A |
4661758 | Whittaker | Apr 1987 | A |
4707774 | Kajita | Nov 1987 | A |
4709318 | Gephart et al. | Nov 1987 | A |
4719550 | Powell et al. | Jan 1988 | A |
4725740 | Nakata | Feb 1988 | A |
4994953 | Haak | Feb 1991 | A |
5041959 | Walker | Aug 1991 | A |
5148043 | Hirata et al. | Sep 1992 | A |
5160851 | McAndrews | Nov 1992 | A |
5191519 | Kawakami | Mar 1993 | A |
5272613 | Buthker | Dec 1993 | A |
5309073 | Kaneko et al. | May 1994 | A |
5343380 | Champlin | Aug 1994 | A |
5473528 | Hirata | Dec 1995 | A |
5668464 | Krein | Sep 1997 | A |
5677833 | Bingley | Oct 1997 | A |
5684385 | Guyonneau et al. | Nov 1997 | A |
5721481 | Narita et al. | Feb 1998 | A |
5745356 | Tassitino | Apr 1998 | A |
5796182 | Martin | Aug 1998 | A |
5801519 | Midya et al. | Sep 1998 | A |
5886890 | Ishida et al. | Mar 1999 | A |
5929537 | Glennon | Jul 1999 | A |
5978236 | Faberman et al. | Nov 1999 | A |
5982645 | Levran et al. | Nov 1999 | A |
6046402 | More | Apr 2000 | A |
6154379 | Okita | Nov 2000 | A |
6157168 | Malik | Dec 2000 | A |
6169678 | Kondo et al. | Jan 2001 | B1 |
6180868 | Yoshino et al. | Jan 2001 | B1 |
6201180 | Meyer et al. | Mar 2001 | B1 |
6201319 | Simonelli et al. | Mar 2001 | B1 |
6222745 | Amaro et al. | Apr 2001 | B1 |
6225708 | Furukawa | May 2001 | B1 |
6259017 | Takehara et al. | Jul 2001 | B1 |
6268559 | Yamawaki | Jul 2001 | B1 |
6285572 | Onizuka et al. | Sep 2001 | B1 |
6291764 | Ishida et al. | Sep 2001 | B1 |
6311279 | Nguyen | Oct 2001 | B1 |
6356471 | Fang | Mar 2002 | B1 |
6369461 | Jungreis et al. | Apr 2002 | B1 |
6381157 | Jensen | Apr 2002 | B2 |
6445089 | Okui | Sep 2002 | B1 |
6462507 | Fisher | Oct 2002 | B2 |
6489755 | Boudreaux et al. | Dec 2002 | B1 |
6563234 | Hasegawa et al. | May 2003 | B2 |
6605881 | Takehara et al. | Aug 2003 | B2 |
6614132 | Hockney et al. | Sep 2003 | B2 |
6624533 | Swanson | Sep 2003 | B1 |
6657321 | Sinha | Dec 2003 | B2 |
6700802 | Ulinski et al. | Mar 2004 | B2 |
6727602 | Olson | Apr 2004 | B2 |
6750391 | Bower et al. | Jun 2004 | B2 |
6765315 | Hammerstrom | Jul 2004 | B2 |
6770984 | Pai | Aug 2004 | B2 |
6795322 | Aihara et al. | Sep 2004 | B2 |
6838611 | Kondo et al. | Jan 2005 | B2 |
6847196 | Garabandic | Jan 2005 | B2 |
6881509 | Jungreis | Apr 2005 | B2 |
6882063 | Droppo et al. | Apr 2005 | B2 |
6950323 | Achleitner | Sep 2005 | B2 |
6954366 | Lai et al. | Oct 2005 | B2 |
7031176 | Kotsopoulos et al. | Apr 2006 | B2 |
7072195 | Xu | Jul 2006 | B2 |
7091707 | Cutler | Aug 2006 | B2 |
7193872 | Siri | Mar 2007 | B2 |
7233130 | Kay | Jun 2007 | B1 |
7289341 | Hesterman | Oct 2007 | B2 |
7319313 | Dickerson et al. | Jan 2008 | B2 |
7324361 | Siri | Jan 2008 | B2 |
7339287 | Jepsen et al. | Mar 2008 | B2 |
7365998 | Kumar | Apr 2008 | B2 |
7405494 | Tassitino, Jr. et al. | Jul 2008 | B2 |
7420354 | Cutler | Sep 2008 | B2 |
7432691 | Cutler | Oct 2008 | B2 |
7463500 | West | Dec 2008 | B2 |
7477037 | Amorino et al. | Jan 2009 | B2 |
7502697 | Holmquist et al. | Mar 2009 | B2 |
7521914 | Dickerson et al. | Apr 2009 | B2 |
7531993 | Udrea et al. | May 2009 | B2 |
7551460 | Lalithambika et al. | Jun 2009 | B2 |
7577005 | Angerer et al. | Aug 2009 | B2 |
7592789 | Jain | Sep 2009 | B2 |
7609040 | Jain | Oct 2009 | B1 |
7626834 | Chisenga et al. | Dec 2009 | B2 |
7638899 | Tracy et al. | Dec 2009 | B2 |
7643319 | Wagoner | Jan 2010 | B2 |
7646116 | Batarseh et al. | Jan 2010 | B2 |
7660139 | Garabandic | Feb 2010 | B2 |
7667610 | Thompson | Feb 2010 | B2 |
7679160 | Udrea et al. | Mar 2010 | B2 |
7710752 | West | May 2010 | B2 |
7733679 | Luger et al. | Jun 2010 | B2 |
7768155 | Fornage | Aug 2010 | B2 |
7796412 | Fornage | Sep 2010 | B2 |
RE41965 | West | Nov 2010 | E |
7839022 | Wolfs | Nov 2010 | B2 |
7855906 | Klodowski et al. | Dec 2010 | B2 |
RE42039 | West et al. | Jan 2011 | E |
7899632 | Fornage et al. | Mar 2011 | B2 |
7916505 | Fornage | Mar 2011 | B2 |
8053783 | Amaratunda et al. | Nov 2011 | B2 |
8223515 | Abolhassani et al. | Jul 2012 | B2 |
20010043050 | Fisher | Nov 2001 | A1 |
20020017822 | Umemura et al. | Feb 2002 | A1 |
20020196026 | Kimura et al. | Dec 2002 | A1 |
20030231517 | Bixel | Dec 2003 | A1 |
20040208029 | Caruthers et al. | Oct 2004 | A1 |
20050180181 | Gaudreau et al. | Aug 2005 | A1 |
20050213272 | Kobayashi | Sep 2005 | A1 |
20060067137 | Udrea | Mar 2006 | A1 |
20060083039 | Oliveira | Apr 2006 | A1 |
20070035261 | Amorino et al. | Feb 2007 | A1 |
20070040539 | Cutler | Feb 2007 | A1 |
20070040540 | Cutler | Feb 2007 | A1 |
20070133241 | Mumtaz et al. | Jun 2007 | A1 |
20070221267 | Fornage | Sep 2007 | A1 |
20080055952 | Chisenga et al. | Mar 2008 | A1 |
20080078436 | Nachamkin et al. | Apr 2008 | A1 |
20080106921 | Dickerson et al. | May 2008 | A1 |
20080203397 | Amaratunga et al. | Aug 2008 | A1 |
20080266922 | Mumtaz et al. | Oct 2008 | A1 |
20080272279 | Thompson | Nov 2008 | A1 |
20080283118 | Rotzoll et al. | Nov 2008 | A1 |
20080285317 | Rotzoll | Nov 2008 | A1 |
20080304296 | NadimpalliRaju et al. | Dec 2008 | A1 |
20090000654 | Rotzoll et al. | Jan 2009 | A1 |
20090020151 | Fornage | Jan 2009 | A1 |
20090066357 | Fornage | Mar 2009 | A1 |
20090079383 | Fornage et al. | Mar 2009 | A1 |
20090080226 | Fornage | Mar 2009 | A1 |
20090084426 | Fornage et al. | Apr 2009 | A1 |
20090086514 | Fornage et al. | Apr 2009 | A1 |
20090097283 | Krein et al. | Apr 2009 | A1 |
20090147554 | Adest et al. | Jun 2009 | A1 |
20090184695 | Mocarski | Jul 2009 | A1 |
20090200994 | Fornage | Aug 2009 | A1 |
20090225574 | Fornage | Sep 2009 | A1 |
20090230782 | Fornage | Sep 2009 | A1 |
20090242272 | Little et al. | Oct 2009 | A1 |
20090243587 | Fornage | Oct 2009 | A1 |
20090244929 | Fornage | Oct 2009 | A1 |
20090244939 | Fornage | Oct 2009 | A1 |
20090244947 | Fornage | Oct 2009 | A1 |
20090296348 | Russell et al. | Dec 2009 | A1 |
20100085035 | Fornage | Apr 2010 | A1 |
20100088052 | Yin et al. | Apr 2010 | A1 |
20100091532 | Fornage | Apr 2010 | A1 |
20100106438 | Fornage | Apr 2010 | A1 |
20100139945 | Dargatz | Jun 2010 | A1 |
20100175338 | Garcia Cors | Jul 2010 | A1 |
20100176771 | Fieldhouse et al. | Jul 2010 | A1 |
20100181830 | Fornage et al. | Jul 2010 | A1 |
20100195357 | Fornage et al. | Aug 2010 | A1 |
20100214808 | Rodriguez | Aug 2010 | A1 |
20100222933 | Smith et al. | Sep 2010 | A1 |
20100236612 | Khajehoddin et al. | Sep 2010 | A1 |
20100263704 | Fornage et al. | Oct 2010 | A1 |
20100283325 | Marcianesi et al. | Nov 2010 | A1 |
20100309695 | Fornage | Dec 2010 | A1 |
20110012429 | Fornage | Jan 2011 | A1 |
20110019444 | Dargatz et al. | Jan 2011 | A1 |
20110026281 | Chapman et al. | Feb 2011 | A1 |
20110026282 | Chapman et al. | Feb 2011 | A1 |
20110043160 | Serban | Feb 2011 | A1 |
20110049990 | Amaratunga et al. | Mar 2011 | A1 |
20110051820 | Fornage | Mar 2011 | A1 |
20110130889 | Khajehoddin et al. | Jun 2011 | A1 |
20120134186 | Johnson et al. | May 2012 | A1 |
20130155735 | Ilic et al. | Jun 2013 | A1 |
20130308357 | Amano | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
2353422 | Mar 2004 | CA |
2655007 | Aug 2010 | CA |
2693737 | Aug 2010 | CA |
20012131 | Mar 2001 | DE |
1837985 | Sep 2007 | EP |
2419968 | May 2006 | GB |
2421847 | Jul 2006 | GB |
2439648 | Jan 2008 | GB |
2434490 | Apr 2009 | GB |
2454389 | May 2009 | GB |
2455753 | Jun 2009 | GB |
2455755 | Jun 2009 | GB |
1021582 | Apr 2004 | NL |
1021591 | Apr 2004 | NL |
WO 2004008619 | Jan 2004 | WO |
WO 2004010048 | Nov 2004 | WO |
WO 2004100348 | Dec 2005 | WO |
WO 2006048688 | May 2006 | WO |
WO 2007080429 | Jul 2007 | WO |
WO 2009081205 | Jul 2009 | WO |
WO 2009081205 | Oct 2009 | WO |
WO 2009134756 | Nov 2009 | WO |
Entry |
---|
Kutkut, “PV Energy Conversion and System Integration,” Florida Energy Systems Consortium, 2009, 24 pages. |
Kwon et al., “High-efficiency Module-integrated Photovoltaic Power Conditioning System,” IET Power Electronics, doi: 10.1049/iet-pel. 2008.0023, 2008. |
Lohner et al., “A New Panel-integratable Inverter Concept for Grid-Connected Photovoltaic Systems,” IEEE ISIE '96. vol. 2, pp. 827-831, 1996. |
Martins et al., “Analysis of Utility Interactive Photovoltaic Generation System Using a Single Power Static Inverter,” Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, pp. 1719-1722, 2000. |
Martins et al., “Interconnection of a Photovoltaic Panels Array to a Single-Phase Utility Line From a Static Conversion System,” Proc. IEEE Power Electronics Specialists Conf., pp. 1207-1211, 2000. |
Martins et al., “Usage of the Solar Energy from the Photovoltaic Panels for the Generation of Electrical Energy,” The 21st International Telecommunication Energy Conference, 6 pages, 1999. |
Matsui et al., “A New Maximum Photovoltaic Power Tracking Control Scheme Based on Power Equilibrium at DC Link,” Conference Record of the 1999 IEEE Thirty-Fourth IAS Annual Meeting, vol. 2, pp. 804-809, 1999. |
Meinhardt et al., “Miniaturised ‘low profile’ Module Integrated Converter for Photovoltaic Applications with Integrated Magnetic Components,” IEEE APEC '99, vol. 1, pp. 305-311, 1999. |
Meza et al., “Roost-Buck Inverter Variable Structure Control for Grid-Connected Photovoltaic Systems,” IEEE International Symposium on Circuits and Systems, vol. 2, pp. 1318-1321, 2005. |
Midya et al., “Dual Switched Mode Power Converter,” 15th Annual Conference of IEEE Industrial Electronics Society, vol. 1, pp. 155-158, Mar. 1989. |
Midya et al., “Sensorless Current Mode Control—An Observer-Based Technique for DC-DC Converters,” IEEE Transactions on Power Electronics, vol. 16, No. 4, pp. 522-526, Jul. 2001. |
Nikraz et al., “Digital Control of a Voltage Source Inverter in Photovoltaic Applications,” 35th Annual IEEE Power Electronics Specialists Conference, pp. 3266-3271, 2004. |
Oldenkamp et al., “AC Modules: Past, Present and Future, Workshop Installing the Solar Solution,” Jan. 1998, Hatfield, UK, 6 pages. |
Pajic et al., “Unity Power Factor Compensation for Burst Modulated Loads,” IEEE Power Engineering Society General Meeting, vol. 2, pp. 1274-1277, 2003. |
Ramos et al., “A Fixed-Frequency Quasi-Sliding Control Algorithm: Application to Power Inverters Design by Means of FPGA Implementation,” IEEE Transactions on Power Electronics, vol. 18, No. 1, pp. 344-355, Jan. 2003. |
Rodriguez et al., “Analytic Solution to the Photovoltaic Maximum Power Point Problem,” IEEE Transactions on Circuits and Systems, vol. 54, No. 9, pp. 2054-2060, Sep. 2007. |
Rodriguez et al., “Dynamic Stability of Grid-Connected Photovoltaic Systems,” Power Engineering Society General Meeting, vol. 2, pp. 2193-2199, 2004. |
Rodriguez et al., “Long-Lifetime Power Inverter for Photovoltaic AC Modules.” IEEE Transaction on Industrial Electronics, vol. 55, No. 7, pp. 2593-2601, Jul. 2008. |
Ropp et al., “Determining the Relative Effectiveness of Islanding Detection Methods Using Phase Criteria and Nondetection Zones,” IEEE Transactions on Energy Conversion, vol. 15, No. 3, pp. 290-296, Sep. 2000. |
Russell et al., “SunSine300 AC Module, Annual Report Jul. 25, 1995-Dec. 31, 1996,” NREL/SR-520-23432, UC Category 1280, 1997, 31 pages. |
Schmidt et al., “Control of an Optimized Converter for Modular Solar Power Generation,” 20th International Conference on Industrial Electronics, Control and Instrumentation, vol. 1, pp. 479-484, 1994. |
Schutten et al., “Characteristics of Load Resonant Converters Operated in a High-Power Factor Mode,” lEEE, Trans. Power Electronics, vol. 7, No. 2, pp. 5-16, 1991. |
Sen et al., “A New DC-To-AC inverter With Dynamic Robust Performance,” 1998 IEEE Region 10 International Conference on Global Connectivity in Energy, Computer, Communication and Control, vol. 2, pp. 387-390, 1998. |
Shimizu et al., “Flyback-Type Single-Phase Utility Interactive Inverter with Power Pulsation Decoupling on the DC Input for an AC Photvoltaic Module System,” IEEE, Trans. Power Electronics. vol. 21, No. 5, pp. 1264-1272, Sep. 2006. |
Singh et al., “Comparison of PI, VSC and Energy Balance Controller for Single Phase Active Filter Control,” 1998 IEEE Region 10 International Conference on Global Connectivity in Energy, Computer, Communication and Control, vol. 2, pp. 607-614, 1998. |
Strong et al., “Development of Standardized, Low-Cost AC PV Systems—Phase I Annual Report,” NREL/SR-520-23002, Jun. 1997, 18 pages. |
Strong et al., “Development of Standardized, Low-Cost AC PV Systems—Final Technical Report,” NREL/SR-520-26084, Feb. 1999, 27 pages. |
Sung et al., “Novel Concept of a PV Power Generation System Adding the Function of Shunt Active Filter,” 2002 Transmission and Distribution Conference and Exhibition: Asia Pacific, vol. 3, pp. 1658-1663, 2002. |
Takafiashi et al., “Development of Long Life Three Phase Uninterruptible Power Supply Using Flywheel Energy Storage Unit,” Proc. Int'l Conf. Power Electronics,. vol. 1, pp. 559-564, 1996. |
Takahashi et al., “Electrolytic Capacitor-Less PWM Inverter”, in Proceedings of the IPEC '90, Tokyo, Japan, pp. 131-138, Apr. 2-6, 1990. |
Thomas et al., “Design and Performance of Active Power Filters,” IEEE IAS Magazine, 9 pages, 1998. |
Tian, “Solar-Based Single-Stage High-Efficiency Grid-Connected Inverter,” Masters Thesis, University of Central Florida, Orlando, 83 pages, 2005. |
Vezzini et al., “Potential for Optimisation of DC-DC Converters for Renewable Energy by use of High Bandgap Diodes,” 35th Annual IEEE Power Electronics Specialists Conference, vol. 5, 3836-3842, 2004. |
Wada et al., “Reduction Methods of Conducted EMI Noise on Parallel Operation for AC Module Inverters,” 2007 IEEE Power Electronics Specialists Conference, pp. 3016-3021, Jun. 2007. |
Wu et al., “A Single-Phase Inverter System for PV Power Injection and Active Power Filtering With Nonlinear Inductor Consideration,” IEEE Transactions on Industry Applications, vol. 41, No. 4, pp. 1075-1083, 2005. |
Wu, et al., “A 1ω 3W Grid-Connection PV Power inverter with APF Based on Nonlinear Programming and FZPD Algorithm,” Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC '03, vol. 1, pp. 546-5552, 2033. |
Wu, et al., “A 1ω 3W Grid-Connection PV Power Inverter with Partial Active Power Filter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, No. 2, pp. 635-646, Apr. 2003. |
Wu, et al., “PV Power Injection and Active Power Filtering With Amplitude-Clamping and Amplitude-Scaling Algorithms,” IEEE Trans. on Industry Applications, vol. 43, No. 3, pp. 731-741, 2007. |
Xue et al., “Topologies of Single-Phase Inverters for Small Distributed Power Generators: An Overview,” IEEE Transactions on Power Electronics, vol. 19, No. 5, pp. 1305-1314, 2004. |
Ando et al., “Development of Single Phase UPS Having AC Chopper and Active Filter Ability,” IEEE International Conference on Industrial Technology, 10.1109/ICIT.2006.372445, pp. 1498-1503, 2006. |
Biel et al., “Sliding-Mode Control Design of a Boost-Buck Switching Converter for AC Signal Generation,” vol. 51, issue 8, pp. 1539-1551, 2004. |
Biel et al., “Sliding-Mode Control of a Single-Phase AC/DC/AC Converter,” Proceedings of the 40th IEEE Conference on Decision and Control, vol, 1., pp. 903-907, Dec. 2001. |
Bose et al., “Electrolytic Capacitor Elimination in Power Electronic System by High Frequency Filter,” Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting, vol. 1, pp. 869-878, 1991. |
Bower et al., “Innovative PV Micro-inverter Topology Eliminates Electrolytic Capacitors for Longer Lifetime,” Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, vol. 2, pp. 2038-2041, May 2006. |
Bower, “The AC PV Building Block-Ultimate Plug-n-Play That Brings Photovoltaics Directly to the Customer,” Proceedings of the National Center for Photovoltaics (NCPV) and Solar Program Review Meeting, pp. 311-314, May 2003. |
Brekken et al., “Utility-Connected Power Converter for Maximizing Power Transfer From a Photovoltaic Source While Drawing Apple-Free Current,” 2002 IEEE 33rd Annual Power Electronics Specialists Conference, vol. 3, pp. 1518-1522, 2002. |
Brekken, “Utility-Connected Power Converter for Maximizing Power Transfer From a Photovoltaic Source,” Thesis Submitted to the Faculty of the Graduate School of the University of Minnesota, Jun. 2002, 56 pages. |
Bush, “UK Solar Firm Discloses Novel Inverter Topology,” ElectronicsWeekly.com, Apr. 2011, last accessed Aug. 30, 2011 at http://www.electronicsweekly.com/Articles/2011/04/26/50953/UK-solar-firrn-discloses-novel-inverter-topology.htm. |
Chang et al., “The Impact of Switching Strategies on Power Ouality for Integral Cycle Controllers,” IEEE Transactions on Power Delivery, vol. 18, No. 3, pp. 1073-1078, Jul. 2003. |
Chisenga, “Development of a Low Power Photovoltaic Inverter for Connection to the Utility Grid,” PhD Thesis, Fitzwilliarn College, Cambridge, 173 pages, 2007. |
Di Napoli et al., “Multiple-Input DC-DC Power Converter for Power-Flow Management in Hybrid Vehicles,” Conference Rec. IEEE Industrial Applications Soc. Annual Meeting, pp. 1578-1585, 2002. |
Edelmoser, “Improved 2kw Solar inverter With Wide Input Voltage Range,” IEEE 10th Mediterranean Conference, MEleCon 2000, vol. 2, pp. 810-813, 2000. |
Enphase Energy, “Application Note: Multi-Tenant Design Guidelines,” rev. 1, 5 pages, 2008. |
Enphase Energy, “Enphase Field Wiring Diagram—M190 & M210 Microinverters—240v, Single Phase,” Drawing No. 144-00001, rev. 6, 1 page, 2009. |
Enphase Energy, “Enphase Micro-Inverter Technical Data,” Doc. No. 142-00004, rev. 2, 2 pages, 2008. |
Esram et al., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Transactions on Energy Conversion, vol. 22, No. 2, pp. 439-449, Jun. 2007. |
Henze et al., “A Novel AC Module with High-Voltage Panels in CIS Technology,” 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, ISBN 3-936336-24-8, 8 pages, Sep. 2008. |
Hu et al., “Efficiency Improvement of Grid-tied Inverters at Low Input Power Using Pulse Skipping Control Strategy,” Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 627-633, Feb. 2010. |
Hung et al., “Analysis and Implementation of a Delay-compensated Deadbeat Current Controller for Solar Inverters,” IEEE Proceedings—Circuits, Devices and Systems, pp. 279-286, 2001. |
Itoh et al., “Ripple Current Reduction of a Fuel Cell for a Single-Phase isolated Converter using a DC Active.Filter with a Center Tap,” Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, APEC '09, pp. 1813-1818, 2009. |
Jantsch et al., “AC PV Module Inverters With Full Sine Wave Burst Operation Mode for Improved Efficiency of Grid Connected Systems at Low Irradiance,” Proceedings of the 14th European Photovoltaic Solar Energy Conference, 5 pages, 1997. |
Jeong et al., “An Improved Method for Anti-Islanding by Reactive Power Control,” pp. 965-970, 2005. |
Jung et al., “A Feedback Linearizing Control Scheme for a PWM Converter-Inverter Having a Very Small DC-Link Capacitor,” IEEE Transactions on Industry Applications, vol. 35., issue 5, pp. 1124-1131, 1999. |
Jung et al., “High-frequency DC Link Inverter for Grid-Connected Photovoltaic System,” Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, pp. 1410-1413, 2002. |
Kern, “SunSine300: Manufacture of an AC Photovoltaic Module, Final Report, Phases I & II, Jul. 25, 1995-Jun. 30, 1998,” NREL/SR-520-26085, 1999, 32 pages. |
Khajehoddin et al., “A Nonlinear Approach to Control Instantaneous Power for Single-phased Grid-connected Photovoitaic Systems,” IEEE Enemy Conversion Congress and Exposition (ECCE), pp. 2206-2212, 2009. |
Khajehoddin et al., “A Novei Topology and Control Strategy for Maximum Power Point Trackers and Multi-string Grid-connected PV Inverters,” Applied Power Electronics Conference, APEC08, pp. 173-178, 2008. |
Khajehoddin et al., “A Robust Power Decoupler and Maximum Power Point Tracker Topology for a Grid-Connected Photovoltaic System,” IEEE Power Eiectronics Specialists Conference, PESC08, pp. 66-69, 2008. |
Kim et al., “New Control Scheme for AC-DC-AC Converter Without DC Link Eiectrolytic Capactor,” 24th Annual IEEE Power Electronics Specialists Conference, PESC '93 Record., pp. 300-305, 1993. |
Kitano et al., “Power Sensor-less MPPT Control Scheme Utilizing Power Balance at DC Link—System Design to Ensure Stability and Response,” The 27th Annual Conference of the IEEE industrial Electronics Society, vol. 2, pp. 1309-1314, 2001. |
Kjaer et al., “A Novel Single-Stage Inverter for the AC-module with Reduced Low-Frequency Ripple Penetration,” EPE 2003, ISBN 90-75815-07-7, 10 pages, 2003. |
Kjaer et al., “A Review of Single-phase Grid-connected Inverters for Photovoltaic Modules,” IEEE Trans on Power Electronics, vol. 41, No. 5, pp. 1292-1306, 2005. |
Kjaer et al., “Design Optimization of a Single Phase Inverter for Photovoltaic Applications,” IEEE 34th Annual Power Electronics Specialist Conference, PESC '03, vol. 3, pp. 1183-1190, 2003. |
Kjaer et al., “Power Inverter Topologies for Photovoltaic Modules—A Review,” Conf. record of the 37th Industry Applications Conference, vol. 2, pp. 782-788, 2002. |
Kjaer, “Design and Control of an Inverter for Photovoltaic Applications,” PhD Thesis, Aalborg University Institute of Energy Technology, 236 pages, 2005. |
Kjaer, “Selection of Topologies for the PHOTOENERGY™ Project,” Aalborg University Institute of Energy Technology, 37 pages, 2002. |
Kotsopoulos et al., “A Predictive Control Scheme for DC Voltage and AC Current in Grid-Connected Photovoltaic Inverters with Minimum DC Link Capacitance,” the 27th Annual Conference of the IEEE Industrial Electronics Society, vol. 3, pp. 1994-1999, 2001. |
Kotsopoulos et al., “Predictive DC Voltage Control of Single-Phase PV Inverters with Small DC Link Capacitance,” 2003 lEEE International Symposium on Industrial Electronics, vol. 2, pp. 793-797, 2003. |
International Search Report and Written Opinion for International Application No. PCT/US2011/061364, dated Mar. 16, 2012, 11 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2011/061364, dated Jun. 4, 2013, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20120134186 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61417453 | Nov 2010 | US |