This application claims priority to Korean Patent Application No. 2005-115621 filed on Nov. 30, 2005 and all the benefits accruing therefrom under 35 USC § 119, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to electronic display devices. More particularly, the present invention relates to an inverter circuit capable of driving a discharge tube, a backlight assembly including the inverter circuit, and a liquid crystal display (“LCD”) including the backlight assembly.
2. Description of the Related Art
Illustratively, discharge tubes may be implemented using cold cathode fluorescent lamps (“CCFLs”) as described hereinafter, but it is to be clearly understood that the present invention is not limited to CCFLs. For example, the present invention may be implemented in a system that turns on a plurality of discharge tubes in response to an applied alternating current (“AC”) voltage, wherein these discharge tubes are not construed as being limited to the CCFL.
A conventional LCD uses a CCFL as a backlight. In recent years, large LCD televisions have been developed which use correspondingly large LCD displays. Accordingly, plural CCFLs are used to provide a backlight for these large LCD displays.
The phosphor 322 coated in the glass tube 321 is excited by the ultraviolet ray 324 to a high energy level. Light is emitted at a wavelength corresponding to an energy difference occurring when the excited phosphor atoms return to a low energy level from the high energy level. The CCFL 301 emits light having a wavelength determined by the phosphor atom. Also, the CCFL 301 has a negative resistance characteristic in that impedance is reduced as a function of increasing current flowing therethrough. Also, because it is difficult to fabricate the CCFLs having the same (or uniform) impedance, the impedances of the CCFLs are dispersed throughout an arbitrary range.
The following approaches have been proposed to solve problems occurring when the number of CCFLs increases. For example, a structure may be employed in which a number of inverter transformers increases according to the number of CCFLs used. As illustrated in the prior art configuration of
To reduce the size of the inverter circuit, driving a plurality of CCFLs 301 to 310 using a single inverter transformer may be considered as illustrated in the prior art configuration of
However, the structure of
However, as described above, two secondary coils have to be constructed to provide opposite polarities with respect to each other in order to obtain voltages of reverse phase at the secondary sides of the inverter transformer 901 for a differential voltage implementation. It is difficult to obtain the AC voltages 95 and 96 for these reverse phases from the two secondary coils. When the AC voltages 95 and 96 of the reverse phases generated from the secondary coils of the inverter transformer 901 are not uniform, variations are observed in the currents flowing through the CCFLs 301 to 310, thereby causing bright areas or dim areas or both.
Also, as described above, the CCFLs have a negative resistance characteristic. When the CCFLs 301 to 310 are connected in parallel to the inverter transformer 901, it is assumed that a current begins to flow through a specific CCFL having a relatively low impedance compared with the remaining CCFLs of CCFLs 301 to 310. In this case, current is concentrated in the specific CCFL because the current flows more easily as the resistance of the specific CCFL decreases. As a result, the bright areas occur at one or more CCFLs, thereby shortening the lifespan of the CCFLs.
To avoid the aforementioned problem, a balance circuit may be connected in series with the CCFLs.
[Related reference 1] Japanese Patent Laid-open Publication No. 2004-335443
[Related reference 2] Japanese Patent Laid-open Publication No. 2005-203347
When the impedance of a CCFL increases because the lifetime of the CCFL is nearly at an end, the Q of an inverter resonance circuit becomes high so that a relatively high voltage is generated. Therefore, a corona discharge is easily generated between a line disposed between the secondary coil of the inverter transformer and another line. The corona discharge gradually carbonizes an insulating coating of the lines, thereby causing short circuiting of the lines.
The balance transformer 400 used in the inverter circuit for turning on the CCFLs 301 to 310 for the backlight of the conventional LCD of
Exemplary embodiments of the present invention provide an inverter circuit capable of detecting an abnormal state such as a high voltage discharge in a circuit to drive a discharge tube.
Exemplary embodiments of the present invention also provide a backlight assembly including the foregoing inverter circuit.
Exemplary embodiments of the present invention also provide a liquid crystal display using the aforementioned backlight assembly.
Pursuant to one illustrative aspect of the present invention, an inverter circuit includes a plurality of inverter transformers that supply AC voltage to a plurality of discharge tubes, and a plurality of balance transformers having primary coils inserted in series between a reference terminal of the secondary coils of the inverter transformers and ground. The inverter transformers are arranged such that the AC voltage at a respective first terminal of each secondary coil has a substantially opposite polarity with respect to the AC voltage at a corresponding second terminal of each secondary coil. The secondary coils of the balance transformers are connected in series to form a loop. One node of the loop is grounded, and a voltage detection node is located on the loop. At least one secondary coil of the secondary coils of the balance transformers is interposed between the grounded node of the loop and the voltage detection node.
The voltage detection node is a circuit node on the loop where half of the secondary coils of the balance transformers are interposed between the voltage detection node and the grounded node.
Each of the inverter transformers may include two primary coils and two secondary coils, wherein a first secondary coil of the two secondary coils is arranged to have an AC voltage of opposite polarity with respect to a second secondary coil of the two secondary coils.
Each of the inverter transformers may include a single primary coil and two secondary coils, wherein a first secondary coil of the two secondary coils is arranged to have an AC voltage of opposite polarity with respect to a second secondary coil of the two secondary coils.
The discharge tubes include a first discharge tube and a second discharge tube. The first discharge tube, the primary coils of the balance transformers, and the second discharge tube are connected in series across opposite polarity AC voltages outputted from the secondary coils of the inverter transformers. The secondary coils of the balance transformers are connected in series to form the loop.
Respective primary coils of the balance transformers are connected in series between ground and corresponding terminals of each of the discharge tubes that are not connected to the inverter transformers.
The inverter circuit further includes a comparator to compare the voltage at the voltage detection node with a predetermined reference voltage. The comparator generates a control voltage at either a low level or a high level when the voltage of the voltage detection node is higher than the reference voltage.
The inverter circuit compares the voltage of the voltage detection node with the reference voltage and adjusts a current supplied to the discharge tubes based on the comparison, wherein the adjustment includes cutting off a voltage supplied to the discharge tubes as a function of the comparison.
In another aspect of the present invention, a backlight assembly includes a plurality of discharge tubes, a plurality of inverter transformers supplying AC voltage to the plurality of discharge tubes, and a plurality of respective balance transformers having primary coils inserted in series between corresponding reference terminals of the secondary coils of the inverter transformers and ground. The inverter transformers are arranged such that the AC voltage at a first terminal of each secondary coil has an opposite polarity with respect to the AC voltage at a second terminal of each secondary coil. The secondary coils of the balance transformers are connected in series to form a loop. One circuit node of the loop is grounded and a voltage detection node is located on the loop. At least one secondary coil of the secondary coils of the balance transformers is interposed between the grounded node of the loop and the voltage detection node.
The discharge tubes may be cold cathode fluorescent lamps (CCFLs).
The voltage detection node is a circuit node on the loop where half of the secondary coils of the balance transformers are interposed between the voltage detection node and the grounded node.
Each of the inverter transformers may have two primary coils and two secondary coils, wherein a first secondary coil of the two secondary coils is arranged to have an AC voltage of opposite polarity with respect to a second secondary coil of the two secondary coils.
Each of the inverter transformers may have a single primary coil and two secondary coils, wherein a first secondary coil of the two secondary coils is arranged to have an AC voltage of opposite polarity with respect to a second secondary coil of the two secondary coils.
The discharge tubes include a first discharge tube and a second discharge tube. The first discharge tube, the primary coils of the balance transformers, and the second discharge tube are connected in series across opposite polarity AC voltages outputted from the secondary coils of the inverter transformers. The secondary coils of the balance transformers are connected in series to form the loop.
The primary coils of respective balance transformers are connected in series between ground and corresponding terminals of each discharge tube that are not connected to any inverter transformer.
The backlight assembly further includes a comparator to compare the voltage of the voltage detection node with a predetermined reference voltage. The comparator generates a control voltage at either a low level or a high level when the voltage of the voltage detection node is higher than the reference voltage.
The backlight assembly compares the voltage of the voltage detection node with the reference voltage, adjusts a current supplied to the discharge tubes based on the comparison, and may cut off a voltage supplied to the discharge tubes based on the comparison.
Pursuant to another illustrative embodiment of the present invention, a liquid crystal display includes a liquid crystal panel that displays an image and an inverter circuit. The liquid crystal panel includes a plurality of gate lines, a plurality of data lines approximately orthogonal to the gate lines, a plurality of switching elements connected to the gate lines and the data lines, and a liquid crystal element connected to the switching elements. The inverter circuit includes a plurality of inverter transformers that supplies AC voltages to a plurality of discharge tubes, and a plurality of balance transformers having primary coils inserted in series between a reference terminal of each secondary coil of the inverter transformers and a ground. The inverter transformers are arranged such that a first terminal of each secondary coil has an AC voltages of opposite polarity with respect to a second terminal of each secondary coil. The secondary coils of the balance transformers are connected in series to form a loop. One node of the loop is grounded and a voltage detection node is located on the loop. At least one secondary coil of the secondary coils of the balance transformers is interposed between the grounded node of the loop and the voltage detection node.
Liquid crystal displays as described herein may be used for liquid crystal monitors.
Liquid crystal displays as described herein may be used in liquid crystal television sets.
The accompanying drawings, which are included to provide a further understanding of the invention, illustrate embodiment(s) of the invention and together with the description serve to explain the principles of the invention. In the drawings:
The invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown.
This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout.
It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another elements as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Embodiments of the present invention are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments of the present invention. As such, variations from the shapes of is the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the present invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the present invention.
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments illustrated hereinafter, and the embodiments herein are rather introduced to provide an easy and complete understanding of the scope and spirit of the present invention.
The secondary coil of the inverter transformer 901 is provided to output AC high voltages 95 and 96 having a phase differential therebetween of 180 degrees.
A first CCFL 301, a primary coil of a balance transformer 401, and a second CCFL 302 are connected in series across the AC high voltage 95 and the AC high voltage 96. Next, operation of balance transformers 400 inserted between two CCFLs in series will be described. The balance transformers 401 to 410 are arranged such that their primary coils have opposite polarities with respect to their secondary coils. In each of respective balance transformers 401 to 410, when a current flows through two CCFLs disposed at the primary coil of the balance transformer, a current flows through the primary coil of a corresponding balance transformer connected in series with the two CCFLs.
This causes a current to flow through the secondary coils of the balance transformers 401 to 410. Because the secondary coils of the balance transformers 401 to 410 are connected in series with each other to form a loop, a current flowing through the loop of the secondary coils forces a current to flow through the primary coils of the respective balance transformers 401 to 410, so that the currents flowing through the respective CCFLs are controlled in the same manner.
In such a structure, one circuit node of the secondary coil loop of the balance transformers 401 to 410 is grounded, and the voltage detection node 501 is located on the loop. The secondary coil of at least one balance transformer is interposed between the voltage detection node 501 and the grounded node. A voltage sufficient for the balance transformers 401 to 410 to maintain balance of the CCFLs 301 to 310 is generated from the voltage detection node 501. A suitable voltage detection node 501 may be a circuit node on the loop where the number of the secondary coils of the balance transformers is 401 to 410 is half the number of coils from the grounded node.
Next, operation of a balance transformer group 600 inserted between the secondary coil of the inverter transformer 901 and the ground will be described. The primary coil of the balance transformer 601 is arranged to have an opposite polarity with respect to the secondary coil of the balance transformer 601, and the primary coil of the balance transformer 602 is arranged to have substantially the same polarity with respect to the secondary coil of the balance transformer 602. As in the case of the balance transformer group 400, a current flowing through the secondary coils of two balance transformers 601 and 602 of the balance transformer group 600 forms a loop. In the balance transformers 601 and 602, when a current flows through the inverter transformer 901 connected to the primary coils of the balance transformers 601 and 602, a current also flows through the secondary coils of the balance transformers 601 and 602. Since the secondary coils of the two balance transformers 601 and 602 are connected in series to form the loop, a current flowing through the secondary coil of one balance transformer forces a current to flow through the primary coil of the other balance transformer. Consequently, the currents flowing through the secondary coils of the two inverter transformers having opposite phases are controlled such that these currents are flowing in the same direction.
According to the present configuration in which the balance transformer group 600 is inserted between the secondary coil of the inverter transformer 901 and ground, it is possible to detect an abnormal high voltage discharge occurring between a line disposed between the inverter transformer 901 and the CCFL 300 and another line, while it is virtually impossible to detect such an abnormal high voltage discharge at the voltage detection node 501 of the balance transformer group 400.
Next, a device using the voltage detected at the voltage detection node 501 or 502 of the inverter circuit will be described.
Referring to
Referring to
The AC/DC power supply 10 includes an AC/DC rectifier 12 and a DC/DC converter 13. The AC/DC power supply 10 converts an external AC voltage in an approximate range of about 100 V to 240 V into a DC voltage, and outputs the DC voltage to the LCD module 20.
The LCD module 20 includes a DC/DC converter 21, a common electrode voltage (Vcom) generator 22, a gamma voltage (γ) generator 23, an LCD panel 24, an inverter circuit 90, and a backlight assembly 30. The LCD module 20 receives the DC voltage from the AC/DC power supply 10 and displays an image supplied from an external graphics controller (not shown).
The common electrode voltage generator 22 generates a common electrode voltage Vcom based on the DC voltage. The level of this DC voltage is shifted by the. DC/DC converter 21, and the DC/DC converter 21 supplies the common electrode voltage Vcom to the LCD panel 24.
The gamma voltage generator 23 generates a gamma voltage Vdd based on the level-shifted DC voltage and supplies the gamma voltage to the LCD panel 24. Although the common electrode voltage generator 22 and the gamma voltage generator 23 are shown as being separated from the LCD panel 24 in
As described above, the LCD includes the AC/DC power supply 10 and the LC module 20. When an abnormal state or condition such as an abnormal discharge occurs, the output voltage level of the AC/DC power supply 10 is controlled using the control voltage 43 (either a low level or a high level voltage as discussed previously) from the voltage comparator of
Referring to
When an abnormal state or condition, such as a corona discharge, an arc discharge, etc., occurs in the line between the secondary coil of the inverter transformer 901A/B and the CCFLs of the CCFL unit 300, or when an abnormal state such as an open circuit or a short circuit occurs due to a malfunction of one or more of the CCFLs of the CCFL unit 300, the controller 92 adjusts the driving frequency and driving voltage of the backlight assembly 30 according to the low level voltage or the high level voltage from the voltage comparator 40 that detects the voltage at the voltage detection nodes 501 and 502. For example, when the PWM oscillation is used to control the inverter circuit 90, the driving frequency and the driving voltage of the backlight assembly 30 are adjusted by controlling a pulse duty ratio. In this manner, when the abnormal state or condition such as a corona discharge occurs in the line disposed between the secondary coil of the inverter transformer 901A/B and the CCFLs and another line, or when an abnormal state such as an open circuit or short circuit due to the damage of the CCFLs occurs, the foregoing abnormal states can be immediately avoided.
In addition, the present invention can improve the performance of the LCD by applying the inverter circuit to the LCD.
Referring to
The display unit 170 includes a liquid crystal panel 171 that displays an image, and a data printed circuit 172 and a gate printed circuit 173 that both generate driving signals to drive the liquid crystal panel 171. The data printed circuit 172 and the gate printed circuit 173 are electrically connected to the liquid crystal panel 171, illustratively through a data tape carrier package (TCP) and a gate TCP 175, respectively.
The liquid crystal panel 171 includes a thin film transistor (“TFT”) substrate 176, a color filter substrate 177 disposed to face the TFT substrate 176, and a liquid crystal layer 178 interposed between the TFT substrate 176 and the color filter substrate 177.
The TFT substrate 176 is a transparent glass substrate in which switching TFTs (not shown) are arranged in a matrix. Source terminals and gate terminals of the TFTs are connected to data lines and gate lines, respectively. Also, a common electrode (not shown) formed of a transparent conductive material is connected to drain terminals of the TFTs.
For example, the color filter substrate 177 may include red, green, and blue (“RGB”) pixels (not shown) that are formed using a thin film process. The color filter substrate 177 includes the common electrode.
The case 180 has a bottom plate 181 and sidewalls 182 extending from edges of the bottom plate 181 to provide a receiving space. The case 180 receives the backlight assembly 110 and the liquid crystal panel 171.
The bottom plate 181 has a size sufficient to receive the backlight assembly 110. It is acceptable if similar or identical shapes are used for the bottom plate 181 and the backlight assembly 110. In this embodiment, the bottom plate 181 and the backlight assembly 110 have a rectangular plate-like shape. The sidewalls 182 are extended from the edges of the bottom plate 181 in a substantially vertical direction so that the backlight assembly 110 cannot be readily released from the case 180.
In this embodiment, the LCD 100 further includes an inverter circuit 160 and a top chassis 190.
The inverter circuit 160 is disposed outside the case 180 to generate a discharge voltage to drive the backlight assembly 110. The discharge voltage generated from the inverter circuit 160 is applied to the backlight assembly 110 through a first voltage line 163 and a second voltage line 164. The first voltage line 163 and the second voltage line 164 are electrically connected to a first electrode 140a and a second electrode 140b formed on either or both sides of the backlight assembly 110. The first voltage line 163 and the second voltage line 164 may be directly connected to the first electrode 140a and the second electrode line 140b. Also, the first voltage line 163 and the second voltage line 164 may be connected to the first electrode 140a and the second electrode line 140b through an additional connecting member (not shown). Moreover, the balance transformer groups 400 and 600 may be built in the inverter circuit 160 or the backlight assembly 110.
The top chassis 190 is coupled to the case 180 while surrounding the edges of the liquid crystal panel 171. The top chassis 190 can prevent the liquid crystal panel 171 from being damaged due to externally applied mechanical impacts. Also, the top chassis 190 can prevent the liquid crystal panel from being released from the case 180.
The liquid crystal panel 100 may further include at least one optical sheet 195 so as to improve characteristics of light emitted from the backlight assembly 110. The optical sheet 195 may optionally include at least one of a diffusion sheet to diffuse the light, or a prism sheet to condense the light.
According to the present invention, when an abnormal state or condition such as a corona discharge occurs in the line between the secondary coil of the inverter transformer and the discharge tube, the current flows through the primary coil of the balance transformer serially connected to the inverter transformer. The current then flows through the secondary coil of the balance transformer, thereby changing an electrical load applied to the reference phase or the reverse phase attributable to the serial insertion of the balance circuit between the secondary coil of the inverter transformer and ground. Since the secondary coil is connected in series to the secondary coil of another balance transformer, the current flowing through the secondary coil forces the current to flow through the primary coil of each balance transformer. Consequently, the currents of the respective inverter transformers are controlled to flow in the same direction. A voltage necessary to maintain the balance of the balance transformer is generated by detecting the voltage at the contact node (detection node) located on the loop of the secondary coils of the balance transformers in a state wherein one node of the secondary coil is grounded. Using this characteristic, it is possible to detect an abnormal state of high voltage discharge such as a corona discharge between the lines disposed between the secondary coil of the inverter transformer and the CCFL and another line.
Also, it is possible to detect an abnormal state or condition such as an open circuit or a short circuit caused by current concentration on a specific CCFL and the resulting malfunction of the CCFLs.
In addition, abnormal discharges, such as a corona discharge caused when a failure occurs between the line disposed between the secondary coil of the inverter transformer and the CCFL and another line, and abnormal states such as an open circuit or a short circuit caused by current concentration on a specific CCFL and consequent damage to the CCFLs may be detected in the form of voltages using the inverter circuits and comparing these detected voltages with the reference voltage. When the detected voltage exceeds the reference voltage, the comparator outputs the control signal (the control signal may be in the form of either a high level voltage or low level voltage). Therefore, an abnormal state or condition can be immediately or promptly avoided by stopping the driving of the inverter or controlling the driving voltage.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention. Thus, it is intended that the present invention cover such modifications and variations, the invention being characterized with reference to the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10-2005-115621 | Nov 2005 | KR | national |