1. Technical Field
Embodiments of the present disclosure relate to inverter circuits, and particularly to an inverter circuit with a protection circuit.
2. Description of Related Art
Discharge lamps, such as Cold Cathode Fluorescent Lamps (CCFLs) and External Electrode Fluorescent Lamps (EEFLs), have been broadly used as light sources in liquid crystal display (LCD) systems. The discharge lamps are often driven by high voltage. To protect the discharge lamps and ensure proper operation, a detection circuit detects voltage applied to the discharge lamps and current flowing through the discharge lamps.
In a normal status, the PWM controller and driving circuit 161 controls output of the power stage circuit 11 according to a feedback signal to adjust current flowing through the light source module 14. In an abnormal status of the inverter circuit, the voltage applied to or current flowing through the light source module 14 exceeds individual predetermined threshold, and the latch signal generator 162 generates a latch signal according to the output of the voltage detection circuit 13 or the feedback circuit 15. In addition, the PWM controller and driving circuit 161 outputs a switch signal according to the latch signal to the power stage circuit 11, to cut power to the light source module 14.
Frequently, the PWM controller and driving circuit 161 and the latch signal generator 162 are integrated into the PWM control circuit 16 normally a chip. Thus, in different inverter circuits, a detection circuit is designed based on actual selected PWM control circuit 16 to provide protection. In addition, parameters of the PWM control circuit 16 are fixed and cannot be modified.
The input signal circuit 20 provides electrical signals. In one embodiment, the electrical signals comprise direct circuit (DC) signals or on/off signals. The power stage circuit 21 is connected to the input signal circuit 20 to convert the received DC signals into square-wave signals. The transformer circuit 22 is connected to the power stage circuit 21 to convert the square-wave signals to alternating current (AC) signals capable of driving the light source module 24. In one example, the AC signals are sine-wave signals. The transformer circuit 22 comprises a transformer T and a capacitor C. A primary winding of the transformer T is connected to the power stage circuit 21, and the secondary winding thereof is connected to the light source module 24 via the capacitor C. The voltage detection circuit 23 is connected between a high voltage terminal and a low voltage terminal of the secondary winding of the transformer T, for detecting voltage applied on the light source module 24 and output a detected voltage signal Vin1. When any lamp in the light source module 24 is disconnected, voltage overload on the transformer T occurs. Thus, there is a need to detect the voltage overload signal.
The feedback circuit 25 is connected between the light source module 24 and the PWM control circuit 27, for feeding current flowing through the light source module 24 to output a current feedback signal. The protection circuit 26 is connected to the input signal circuit 20, the voltage detection circuit 23, the feedback circuit 25 and the PWM control circuit 27, for outputting a latch signal Vout according to the detected voltage signal or the current feedback signal. In one embodiment, the feedback circuit 25 feeds the current flowing through the light source module 24 to the protection circuit 26 and the PWM control circuit 27, respectively.
In a normal state, the PWM control circuit 27 controls output of the power stage circuit 21 according to the current feedback signal. In an abnormal state, the voltage signal detected by the voltage detection circuit 23 or the current fed back by the current feedback circuit 25 are respectively beyond a voltage predetermined threshold or a current predetermined threshold, and the protection circuit 26 outputs a latch signal Vout to the PWM control circuit 27 according to the detected voltage signal Vin1 or the current feedback signal Vin2. Additionally, the PWM control circuit 27 is also connected to the input signal circuit 20 and the power stage circuit 21, for outputting a switch signal to the power stage circuit 21 according to the latch signal Vout. Here, the electrical signal output from the input signal circuit 20 is an external power signal of the protection circuit 26, that is, the input signal circuit 20 also provides electrical signals to the protection circuit 26. In one embodiment, the power stage circuit 21 stops converting the electrical signals to the square-wave signals once the switch signal is received.
Here, when the voltage applied to or the current flowing through the light source module 24 is abnormal, the protection circuit 26 outputs a latch signal Vout, such as a high logic level (e.g., a logical 1), and, as the PWM control circuit 27 has no output to the power stage circuit 21, the inverter circuit is cut off. Because the electrical signals are the external power signals of the protection circuit 26, the latch signal Vout is output to the power stage circuit 21 continuously if the electrical signals are not cut off. In other words, the protection circuit 26 does not output the latch signal Vout only if the electrical signals are not provided to the protection circuit 26. In one embodiment, when the output of the input signal circuit 20 is cut off, the protection circuit 26 has no output and the inverter circuit is restarted.
A base of the transistor Q1 is connected to the abnormal signal detection terminal P1, and the emitter thereof is grounded. A base of the transistor Q2 is connected to a collector of the transistor Q1, an emitter thereof receives the electrical signals output from the input signal circuit 20, and a collector thereof is connected to the base of the transistor Q1. A base of the transistor Q3 also receives the electrical signals output from the input signal circuit 20, and a collector thereof is defined as an output of the protection circuit 26, for outputting the latch signal Vout, and an emitter thereof is grounded.
The resistor R1 is connected between the abnormal signal detection terminal P1 and the base of the transistor Q1, and the capacitor C1 is connected between the base of the transistor Q1 and ground. Here, the resistor R1 and the capacitor C1 form a delaying circuit to delay abnormal signal input to the abnormal signal detection terminal P1 to determine whether the abnormal signal is correct.
The resistor R2 is connected to the capacitor C1 in parallel, to form a discharge loop with the capacitor C1. When the inverter circuit is restarted, energy stored in the capacitor C1 is discharged via the resistor R2. In addition, when the transistor Q2 is on, the resistor R2 limits current therethrough.
The resistor R3 is connected between the collector of the transistor Q1 and the base of the transistor Q2, for providing a bias voltage to the transistor Q2.
One end of the fourth resistor R4 is connected to the input signal circuit 10 to receive the electrical signals, and the other end thereof is connected to the collector of the transistor Q1. The resistor R5 is connected between the collector of the transistor Q1 and the base of the transistor Q3, and the resistor R6 is connected between the base of the transistor Q3 and ground. The capacitor C2 is connected to the resistor R6 in parallel. Similarly, the resistor R5 and the capacitor C2 form another delaying circuit, and the resistor R6 and the capacitor C2 form another discharge loop.
The resistor R7 is connected between the input signal circuit 20 and the collector of the transistor Q3, for limiting current flowing through the transistor Q3.
When the protection circuit 26 receives no abnormal detected voltage signal Vin1 or abnormal current signal Vin2, that is, the abnormal signal detection terminal P1 of the latch signal generator 262 has no input, the transistors Q1, Q2 are off and the transistor Q3 is on. Thus, the collector of the transistor Q3 outputs a low logic level (e.g., a logical 0) as the latch signal Vout. When the abnormal detected voltage signal Vin1 or the abnormal current signal Vin2 is input to the protection circuit 26, that is, the abnormal signal detection terminal P1 of the latch signal generator 262 receives a signal, the transistors Q1 and Q2 are on and the transistor Q3 is off. Thus, the collector of the transistor Q3 outputs a high logic level as the latch signal Vout.
In the inverter circuit, the protection circuit 26 functions independent of the PWM control circuit 27. Thus, in different inverter circuits with different PWM control circuits 16, protection circuits are not necessarily present.
Although the features and elements of the present disclosure are described in various inventive embodiment in particular combinations, each feature or element can be configured alone or in various within the principles of the present disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0067584 | Jun 2008 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20020014905 | Kumagai | Feb 2002 | A1 |
20050024900 | Hachiya | Feb 2005 | A1 |
20050035729 | Lev et al. | Feb 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20090302768 A1 | Dec 2009 | US |