The invention relates to an inverter circuit according to the preamble of claim 1.
An inverter circuit of this generic type is disclosed in DE 101 03 031 A1, and an equivalent circuit of such an inverter circuit is shown in greater detail in
In the embodiment of the subsystem 10 shown in
In both diagrams of the two embodiments of the subsystem 10, both the terminals of the storage capacitor 9 are fed out of the subsystem 10 and form two connecting terminals X3 and X4. As shown in
According to DE 101 03 031 A1, the subsystems 10 of each phase module 100 of the inverter circuit shown in
In order for the inverter shown in
Failure of one of the semiconductor switches 1, 3, 5 or 7 which can be switched off in the subsystem 10 or of an associated drive circuit means that the correct operation of this subsystem 10 is impaired, i.e. the subsystem 10 can no longer be driven in one of the possible switching states I, II or III. By short-circuiting the subsystem 10 at its terminals X1 and X2, no more energy is supplied to this subsystem 10. This definitely rules out consequential damage such as overheating and fire during continued operation of the converter. Such a short-circuit-like conducting link between the connecting terminals X1 and X2 of a faulty subsystem 10 must carry safely and without overheating at least the operating current of one converter valve T1, . . . , T6 of the phase module 100 in which the faulty subsystem 10 is connected.
U.S. Pat. No. 5,986,909 A discloses an inverter circuit, which has at least two subsystems electrically connected in series per phase module. In this known inverter circuit, frequency converters are used as the subsystems, each of which have an uncontrolled six-terminal diode bridge on the line side, and a two-phase self-commutated PWM converter on the load side. On the DC side, these two inverters are electrically connected together by a DC link circuit. On the line side, these subsystems are each connected to a secondary winding of a mains transformer. On the load side, the subsystems of a phase module are electrically connected in series. In this known inverter circuit, faulty subsystems are short-circuited, where a solenoid switch, a spring-operated contact, antiparallel thyristors or two semiconductor switches which can be switched off connected back-to-back in series are used as the bypass circuit for the load-side terminals of each subsystem. The mechanical short-circuiters require more frequent maintenance because of their mechanical design. The electrical short-circuiters each require a power supply lying at a high potential and a control device that must be connected on the control side to an inverter controller in a manner allowing signal transmission.
DE 103 23 220 A1 also discloses an inverter circuit, whose phase modules comprise at least two subsystems electrically connected in series. Each subsystem of this known inverter circuit has the form of a full-bridge circuit of a voltage converter, except that it is used as a single two-terminal network. The bridge circuit comprises four semiconductor switches which can be switched off having diodes connected in antiparallel. A storage capacitor is connected across the DC-side terminals. In order to be able to short-circuit a faulty subsystem, each subsystem comprises a protective component, which is electrically connected in parallel with the storage capacitor. A ring-back diode or a short-circuiting thyristor is used as the protective components. If a short-circuiting thyristor is used, which is connected to the storage capacitor in a low inductance manner, a sensor circuit and a trigger circuit are also needed.
In the event of a fault in a semiconductor switch which can be switched off of a subsystem, a high short-circuit current flows that can result in arcing or even the semiconductor module exploding. This short-circuit current discharges the storage capacitor. Owing to the ring-back diode connected in parallel with the storage capacitor, the short-circuit current commutates from the faulty semiconductor module to this ring-back diode, which is designed so that it becomes shorted in the event of a fault in the subsystem. In the embodiment using the short-circuiting thyristor, the DC-side short-circuit is detected by the sensor circuit, which activates the trigger circuit so that the short-circuiting thyristor triggers and becomes shorted as a result of the short-circuit current commutated to it. The disadvantage of this protective circuit is that the subsystems need to be modified in their design. In addition, a sensor circuit and a trigger circuit are required that initiate the triggering of the short-circuiting thyristor within a few milliseconds. In addition, the short-circuiting thyristor must be connected to the storage capacitor in a low inductance manner.
Hence the object of the invention is to develop the known inverter circuit containing distributed energy stores in such a way that the aforementioned disadvantages no longer occur.
This object is achieved according to the invention by the characterizing feature of claim 1.
By electrically connecting a protective component in parallel with the connecting terminals of each system, the facility is provided of being able to short-circuit this subsystem in the event of a fault. Since this protective component is connected across the connecting terminals of the subsystem, the design of the subsystem is unaffected. This means that subsystems that still do not have a protective component, can subsequently be provided with such a component. The protective components are designed such that they go into a short-circuit-like state after absorbing a defined amount of overvoltage energy. This means that these protective components become shorted in the event of a fault in a corresponding subsystem, whereby this protective system is short-circuited.
For a protective component of a faulty subsystem to be able to become shorted, it is first necessary to determine which of the subsystems present in the phase modules of the inverter circuit is faulty. As soon as a faulty subsystem is located, a defined amount of overvoltage energy is fed to the faulty subsystem by driving one or more fault-free subsystems selectively. For this purpose, it is possible to drive into a switching state I for a predetermined time period at least one subsystem of a phase module, in which the faulty subsystem is disposed, of the inverter circuit. In addition, in each of the fault-free phase modules of the inverter circuit, additionally at least one subsystem is driven into a switching state II for a predetermined time period.
Instead of driving an additional subsystem in a faulty phase module into the switching state I, and an additional subsystem in each of the fault-free phase modules into the switching state II, all of the subsystems of each of the fault-free phase modules can be driven into the switching state II, and all the fault-free subsystems of the faulty phase module can be driven into the switching state I. A maximum adjustable overvoltage can thereby be applied across the faulty subsystem, so that it drives a current through the input-side protective component that results in this protective component becoming shorted.
The switching period is suitably adjusted in order to limit the peak value of the current through the protective component to values that are admissible for the intact semiconductor switches which can be switched off. The number of subsystems that are driven additionally into a switching state I and II can be used to adjust incrementally the overvoltage applied across the faulty subsystem.
The invention is explained in further detail with reference to the drawing, which shows schematically a number of embodiments of a protective component according to the invention.
The embodiment of the protective component 12 shown in
The embodiment of the protective component 12 shown in
The embodiment of the protective component 12 shown in
The control method according to the invention shall now be described in greater detail with reference to the equivalent circuit shown in
In the equivalent circuit shown in
Voltage detection with subsequent comparison with a preset tolerance band is used to determine when there is a fault in a subsystem 10. In addition, other faults can also result in failure of the subsystem, e.g. malfunctioning of the electronics, or a communications fault. These faults are detected by the controller and also necessarily result in the short-circuiting of a subsystem. If the shaded subsystem 10 of the converter valve T2 now fails, then the maximum amount of energy available to generate a defined overvoltage energy to cause the protective component 12 of the shaded subsystem 10 of the thyristor valve T2 to become shorted is the energy contained in all the subsystems 10 of the phase module 100 containing the converter valves T3 and T4 and of the phase module 100 containing the converter valves T5 and T6. For this purpose, all the subsystems 10 of these two fault-free phase modules 100 could be driven into the switching state II, while all the fault-free subsystems 10 of the faulty phase module 10 are driven into the switching state I. In switching state II, the terminal voltage UX21 lying across the subsystem 10 equals the capacitor voltage UC lying across the storage capacitor 9. In switching state I, the terminal voltage UX21 lying across the subsystem 10 equals zero. The currents iK1, iK2 and iK3 identified by the arrows in
Since the maximum available energy is easily sufficient, this described control method is modified. In the modified control method, in the faulty phase module 100, which comprises the two converter valves T1 and T2 according to the equivalent circuit of
The subsystems 10 used, and the respective number per phase module 100, must be chosen to ensure that both the current directions shown in
By means of this drive of the subsystems 10 of the phase modules 100 of a multi-phase inverter circuit, the DC voltage across the DC busbars P0 and N0, and the AC voltage across the load terminals L1, L2 and L3 are only slightly affected compared with normal operation, and only for the time period.
A height of the resultant current pulse admissible for intact semiconductor switches which can be switched off can be calculated in advance, as already mentioned. The current pulse can also be measured if there are measurements of the branch currents available. In this way, it is possible to work with a variable time period that is adjusted so as to achieve a predetermined maximum current.
Said switching states of the time period can also be driven repeatedly many times, with the number of these driven switching states and a time interval between these repetitions being chosen so that a storage capacitor 9 of a faulty subsystem 10 that is fully discharged in the limiting case is re-charged as quickly as possible.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 040 543.6 | Aug 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/064828 | 7/31/2006 | WO | 00 | 2/26/2008 |