The present invention relates to an inverter control device, and particularly to an in-vehicle inverter control device.
There are demands for improvement of reliability from the viewpoint of prevention of failure occurrence during traveling of a vehicle and improvement of an output torque from the viewpoint of weight reduction of the vehicle in hybrid cars and electric cars. Three-phase six-wire type driving devices have been considered in response to such demands, but there is a problem that a 3n-order harmonic current is superimposed on a drive current for driving an electric motor and a loss such as a copper loss increases because the electric motor to which a neutral point is not connected is used.
One of background art in this technical field is JP 2004-80975 A (PTL 1). In this publication, it is described that “a 3n-order harmonic voltage command value for canceling a 3n-order harmonic current (3 is the number of phases, n is an integer) included in a drive current for driving an electric motor is calculated, and a three-phase voltage command value is corrected”. Accordingly, a target voltage is corrected so as to cancel the 3n-order harmonic current, and thus, it is possible to the harmonic current in the drive current and to reduce the loss caused by the harmonic current.
PTL 1: JP 2004-80975 A
In the method described in PTL 1, there is a risk that an overcurrent is generated without eliminating the harmonic current when a frequency of the 3n-order harmonic current exceeds a controllable frequency of an inverter control device.
An object of the present invention is to reduce an overcurrent of an inverter and a motor.
In order to solve the above-described problem, the present invention relates to a control device for an electric motor in which windings of respective phases are independently connected. A zero-phase current calculation means for calculating a zero-phase current based on detection values of currents of the respective phases flowing in the electric motor and a position of a rotor of the electric motor is used to control a current flowing in the electric motor such that a vector sum of a drive current and the zero-phase current is equal to or lower than a predetermined current.
According to an inverter control device according to the present invention, it is possible to reduce the overcurrent of the inverter and the motor.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Meanwhile, the present invention is not construed to be limited to the embodiments, and a technical idea of the present invention may be implemented by combining other well-known constituent elements. Incidentally, the same elements will be denoted by the same reference signs in the respective drawings, and the redundant description thereof will be omitted.
The motor drive device includes a motor 200, a position sensor 210, a current sensor 220, an inverter 100, and a motor control device 1.
The motor 200 is configured using an interior permanent magnet synchronous motor or the like to which a neutral point is not connected. A U-phase winding 201 wound around a stator of the motor 200 is connected to an output terminal of a U-phase full bridge inverter 110. A V-phase winding 202 wound around the stator of the motor 200 is connected to an output terminal of a V-phase full bridge inverter 111. A W-phase winding 202 wound around the stator of the motor 200 is connected to an output terminal of a W-phase full bridge inverter 112.
The motor 200 according to the present embodiment independently controls each current flowing in the U-phase winding 201, the V-phase winding 202, and the W-phase winding 203 since the neutral point is not connected thereto. However, a drive current flowing in the U-phase winding 201, the V-phase winding 202, and the W-phase winding 203 includes a 3n-order harmonic current since the neutral point is not connected to the motor 200.
The position sensor 210 detects a position of a rotor of the motor 200 and outputs a detected rotor position θ. The current sensor 220 detects the currents flowing in the U-phase winding 201, the V-phase winding 202, and the W-phase winding 203, which are wound around the stator of the motor 200, and outputs detected three-phase currents iu, iv, and iw.
The inverter 100 includes the U-phase full bridge inverter 110, the V-phase full bridge inverter 111, and the W-phase full bridge inverter 112. The U-phase full bridge inverter 110, the V-phase full bridge inverter 111, and the W-phase full bridge inverter 112 are connected in parallel to a DC power supply (not illustrated).
The U-phase full bridge inverter 110 is composed of switching elements 110a to 110d. The switching elements 110a and 110b constitute a U-phase first leg and the switching elements 110c and 110d constitute a U-phase second leg. The switching elements 110a and 110c are arranged on an upper arm, and the switching elements 110b and 110d are connected to a lower arm. Similarly, the V-phase full bridge inverter 111 is composed of switching elements 111a to 111d, and the W-phase full bridge inverter 112 is composed of switching elements 112a to 112d.
The switching elements 110a to 110d, 111a to 111d, and 112a to 112d are turned on or off based on a switching signal generated by the inverter control device 1. As a result, the inverter 100 converts a DC voltage applied from the DC power supply (not illustrated) to an AC voltage. The converted AC voltage is applied to the three-phase windings 201 to 203 wound around the stator of the motor 200 to generate a three-phase AC current. This three-phase AC current causes the motor 200 to generate a rotating magnetic field so that the rotor 210 rotates.
The switching elements 110a to 110d, 111a to 111d, and 112a to 112d are configured by combining a metal-oxide semiconductor field effect transistor (MOSFET) or an insulated gate bipolar transistor (IGBT), and a diode. In the present embodiment, a description will be given with the configuration using the MOSFET and the diode.
The motor control device 1 performs PWM control of the inverter 100 based on a torque command T* from the outside, the three-phase currents iu, iv, and iw detected by the current sensor 220, and the rotor position θ detected by the position sensor 210.
The torque command value T*, an angular velocity ω, and a zero-phase current i0 are input to the current command calculation unit 10, and dq-axis current command values id* and iq* that do not exceed a predetermined current value imax are calculated based on Formula (1).
[Formula 1]
√{square root over ((id*)2+(iq*)2)}≤√{square root over ((imax)2−(i0)2)}: (1)
The predetermined current value imax means a maximum current value set in order to prevent failure of the inverter 100 and the motor 200.
Based on the input target torque T* and the angular velocity ω, the current command calculation unit 10 outputs appropriate dq-axis current command values id* and iq* that satisfy the condition of Formula (1). As a method of calculating the dq-axis current command values id* and iq*, it is possible to use a method such as maximum torque current control and field-weakening control. Incidentally, a table set in advance may be used to calculate the dq-axis current command values id* and iq*.
The dq-axis current command values id* and iq* and dq-axis current detection values id and iq are input to a dq-axis current control unit 20, and dq-axis voltage command values vd* and vq* are output using proportional control, integral control, or the like. The dq-axis voltage command values vd* and vq* and the rotor position θ are input to a three-phase conversion unit 30 and three-phase voltage command values vu*, vv*, and vw* are output. The three-phase voltage command values vu*, vv*, and vw* are input to a switching signal generation unit 40, and a switching signal to turn on or off the switching elements 110a to 110d, 111a to 111d, and 112a to 112d is generated. Further, the switching signal is input to the inverter 100, and the motor is driven by the above-described operation.
The three-phase currents iu, iv, and iw detected by the current sensor 220 and the rotor position θ detected by the position sensor 210 are input to a dq conversion unit 50, and the dq-axis current detection values id and iq are output.
The three-phase currents iu, iv, and iw detected by the current sensor 220 and the rotor position θ detected by the position sensor 210 are input to a zero-phase current calculation unit 60, and the zero-phase current i0 is output. A calculation formula for the zero-phase current i0 is illustrated in Formula (2).
Incidentally, the zero-phase current i0 varies depending on rotational speed of the motor 200, and thus, may be calculated in consideration of a zero-phase current value estimated from the angular velocity ω.
The rotor position θ detected by the position sensor 210 is input to a velocity conversion unit 70, and the angular velocity ω is output.
Subsequently, when a sum of the dq-axis current command values id* and iq* and the zero-phase current i0 is equal to or lower than a predetermined current value, the current command calculation unit ends the processing and outputs the dq-axis current command values id* and iq*.
On the other hand, when the sum of the dq-axis current command values id* and iq* and the zero-phase current i0 is higher than the predetermined current value, a current command maximum value is reset based on the zero-phase current i0 in Step a5, and the processing returns to the process in Step a4.
In this manner, the control device for the electric motor according to the present embodiment controls the current flowing in the electric motor such that a vector sum of the drive current and the zero-phase current is equal to or lower than the predetermined current. Accordingly, it is possible to prevent an overcurrent from flowing in the inverter and the motor. According to the present embodiment, it is possible to prevent the generation of the overcurrent caused by zero-phase current even during high-speed rotation of the electric motor. This also prevents overcurrent breakdown, thereby improving the reliability. In addition, it is possible to maximize the d-axis current and the q-axis current within a range where the overcurrent breakdown can be prevented, and thus, the output is improved.
The implementation of a control method according to the present embodiment can be confirmed by confirming whether a sum of the d-axis current and the q-axis current, which are drive currents, increases or decreases in the case of changing the rotational speed of the motor 200. For example, the zero-phase current relatively increases during the high-speed rotation of the motor 200, and thus, the sum of the d-axis current and the q-axis current decreases.
[Formula 3]
iq2*=√{square root over ((imax)2−(i0)2−(id2*)2)}: (3)
[Formula 4]
√{square root over ((id0*)2+(iq0*)2+(i0*)2)}≤imax: (4)
The zero-phase current command value i0* is input to the zero-phase current control unit 520, and a zero-phase voltage command value v0* is output using proportional control, integral control, or the like.
The dq-axis voltage command values vd* and vq* and the zero-phase voltage command value v0* are input to a three-phase conversion unit 530, and the three-phase voltage command values vu*, vv*, and vw* are output based on Formula (5).
In the configuration of
According to the control device for the electric motor according to the above-described embodiments, it is possible to obtain the effect that the overcurrent of the inverter and the motor is reduced by controlling the current flowing in the electric motor such that the vector sum of the drive current and the zero-phase current is equal to or lower than the predetermined current.
The control device for the electric motor according to the above-described embodiment is mounted to, for example, an electric vehicle that is driven by the electric motor. In the motor drive device illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2015-105075 | May 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/063941 | 5/11/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/190093 | 12/1/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6992452 | Sachs | Jan 2006 | B1 |
7615951 | Son | Nov 2009 | B2 |
20100219780 | Morimoto | Sep 2010 | A1 |
20140306627 | Bruyere et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2 790 315 | Oct 2014 | EP |
2 974 466 | Oct 2012 | FR |
2004-80975 | Mar 2004 | JP |
2007-60852 | Mar 2007 | JP |
2015-73373 | Apr 2015 | JP |
Entry |
---|
J. Hwang and H. Wei, “The Current Harmonics Elimination Control Strategy for Six-Leg Three-Phase Permanent Magnet Synchronous Motor Drives,” in IEEE Transactions on Power Electronics, vol. 29, No. 6, pp. 3032-3040, Jun. 2014. |
International Search Report (PCT/ISA/210) issued in PCT Application No. PCT/JP2016/063941 dated Aug. 16, 2016 with English-language translation (Two (2) pages). |
Japanese-language Written Opinion (PCT/ISA/237) issued in PCT Application No. PCT/JP2016/063941 dated Aug. 16, 2016 (Three (3) pages). |
Extended European Search Report issued in counterpart European Application No. 16799801.2 dated Dec. 19, 2018 (10 pages). |
Number | Date | Country | |
---|---|---|---|
20180152128 A1 | May 2018 | US |