Investigating Circadian Post-Transcriptional Regulation.

Information

  • Research Project
  • 10372273
  • ApplicationId
    10372273
  • Core Project Number
    R35GM128687
  • Full Project Number
    3R35GM128687-03S1
  • Serial Number
    128687
  • FOA Number
    PAR-17-190
  • Sub Project Id
  • Project Start Date
    8/1/2018 - 6 years ago
  • Project End Date
    7/31/2023 - a year ago
  • Program Officer Name
    SESMA, MICHAEL A
  • Budget Start Date
    8/1/2020 - 4 years ago
  • Budget End Date
    7/31/2021 - 3 years ago
  • Fiscal Year
    2021
  • Support Year
    03
  • Suffix
    S1
  • Award Notice Date
    4/15/2021 - 3 years ago

Investigating Circadian Post-Transcriptional Regulation.

Project Summary/Abstract: Circadian rhythms are highly conserved, roughly 24-hour, physiological cycles that adjust innumerable actions, affecting everything from luminescence in bacteria to sleep in humans. Through the ideal programming of behavior, it is believed that these rhythms enhance fitness by ensuring that many organismal functions are optimally synchronized with the appropriate phase of the circadian day. Disruption of proper circadian timing negatively impacts the human long-term medical outlook, making it critical to understand the mechanism underlying circadian regulation over cellular physiology. Circadian rhythms are controlled via a highly-regulated transcription-translation based negative feedback loop, or clock. The current paradigm for clock regulation over cellular physiology is that transcriptional activity from the positive arm of the transcription?translation negative feedback loop drives the expression of a host of gene promoters that modulate organismal behavior. However, mounting evidence suggests that circadian regulation is imparted on cellular physiology beyond the level of transcription and that the negative arm may play a role in this regulation. The long-term goal of our work is to determine the extent of this post-transcriptional regulation on cellular physiology and to identify the mechanistic underpinnings of circadian post-transcriptional regulation. As a mechanism for keeping time, transcription?translation negative feedback loops are highly conserved and much of what is understood about the molecular clock comes from the investigation of model systems. Therefore, we will exploit the simplicity and reproducibility of model systems to cost-effectively address our hypotheses. To determine the extent of circadian post-transcriptional regulation, we will analyze the transcriptome and proteome of murine macrophages over circadian time. As mice are a common model for the human immune system, our study will garner insights into both the extent of circadian post-transcriptional regulation as well as investigate clock regulation on the immune system. To tackle the mechanistic underpinnings of post-transcriptional regulation, we will utilize Neurospora crassa, a bread mold whose ease of biochemical and genetic manipulation is unparalleled in any other eukaryotic clock model system. We hypothesize that the negative arm may control circadian output via transient protein-protein interactions, which are synchronized by timed conformational changes that are enabled by the negative arm?s inherently flexible biochemical nature. We will create a Conformational/Temporal Interactome (CTI) map of circadian negative arm proteins to validate our hypothesis. Due to the conservation of clock architecture, the results of this work have the potential to define several novel and unrecognized paradigms in clock regulation over cellular physiology.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R35
  • Administering IC
    GM
  • Application Type
    3
  • Direct Cost Amount
    65295
  • Indirect Cost Amount
    42115
  • Total Cost
    107410
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NIA:107410\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZGM1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    RENSSELAER POLYTECHNIC INSTITUTE
  • Organization Department
    BIOLOGY
  • Organization DUNS
    002430742
  • Organization City
    TROY
  • Organization State
    NY
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    121803590
  • Organization District
    UNITED STATES