Investigation of endomucin as a novel regulator of angiogenesis

Information

  • Research Project
  • 10219259
  • ApplicationId
    10219259
  • Core Project Number
    R01EY026539
  • Full Project Number
    5R01EY026539-05
  • Serial Number
    026539
  • FOA Number
    PA-19-056
  • Sub Project Id
  • Project Start Date
    2/1/2017 - 7 years ago
  • Project End Date
    7/31/2025 - 6 months from now
  • Program Officer Name
    SHEN, GRACE L
  • Budget Start Date
    8/1/2021 - 3 years ago
  • Budget End Date
    7/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    05
  • Suffix
  • Award Notice Date
    7/26/2021 - 3 years ago

Investigation of endomucin as a novel regulator of angiogenesis

Project Summary We have identified endomucin (EMCN), a component of the endothelial cell (EC) glycocalyx, to be a novel regulator of VEGFR2 signaling. siRNA-mediated knockdown of EMCN in human retinal capillary EC blocks VEGF-induced angiogenic functions (proliferation, migration, and tube formation) in vitro and neovascularization in vivo. Our data indicate that EMCN is necessary for VEGF-stimulated VEGFR2 internalization. We hypothesize that EMCN regulates VEGF-induced VEGFR2 endocytosis, and thus VEGF signaling in EC. We propose: (i) To use a genetic approach to examine the role of EMCN in developmental angiogenesis and pathologic neovascularization as well as in adult vascular stability. We have generated mice with floxed EMCN that will be bred with Rosa-Cre to assess the effect of total EMCN knockout, and with tamoxifen-inducible VE-cadherin to examine EC-specific knockout. (ii) To elucidate the molecular mechanism through which EMCN regulates VEGFR2 internalization and signaling, cell biological and biochemical methods will be employed to determine how EMCN functions in VEGF-VEGFR2 endocytosis, to elucidate the structural characteristics of EMCN necessary for its role in VEGFR2 endocytosis, and to identify EMCN-VEGFR2 binding proteins that may be involved in VEGFR2 internalization. (iii) To develop a monoclonal antibody that interferes with the association between EMCN and VEGFR2, the glycosylated extracellular domain of EMCN will be used as an antigen. Our preliminary data using truncation mutants of EMCN indicate that the extracellular domain of EMCN is necessary for its effect on VEGFR2 signaling. Antisera will be screened on the basis of its effects on VEGF-induced EC migration and VEGFR2 internalization. Antisera, that we have shown to interfere with the effect of EMCN on VEGF-induced migration and VEGFR2 internalization, will be tested for its the ability to block pathologic VEGF-induced permeability and angiogenesis in vivo ? alone, compared to aflibercept (VEGF trap), or as a combination therapy with aflibercept. VEGF neutralization is the primary mode of treatment for a number of ocular pathologies that involve neovascularization and vessel permeability. While remarkably successful, there is a significant proportion of patients who appear unresponsive to anti-VEGF therapy. In addition, a number of non-vascular cells in the retina express VEGFR2, and are thus vulnerable to chronic neutralization of local VEGF, with implications for neurotrophic and survival functions. Results of these studies will provide new information about the role of EMCN in vascular development, vascular integrity, and pathologic vessel growth; will reveal novel insights into the regulation of VEGF-stimulated VEGFR2 signaling; and, will test EMCN as a unique endothelial cell-specific target for blocking abnormal VEGF-induced angiogenesis and vascular permeability. !

IC Name
NATIONAL EYE INSTITUTE
  • Activity
    R01
  • Administering IC
    EY
  • Application Type
    5
  • Direct Cost Amount
    275572
  • Indirect Cost Amount
    267304
  • Total Cost
    542876
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    867
  • Ed Inst. Type
  • Funding ICs
    NEI:542876\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    DPVS
  • Study Section Name
    Diseases and Pathophysiology of the Visual System Study Section
  • Organization Name
    SCHEPENS EYE RESEARCH INSTITUTE
  • Organization Department
  • Organization DUNS
    073826000
  • Organization City
    BOSTON
  • Organization State
    MA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    021142508
  • Organization District
    UNITED STATES