The invention relates to investment casting. More particularly, the invention relates to the forming of core-containing patterns for investment forming investment casting molds.
Investment casting is a commonly used technique for forming metallic components having complex geometries, especially hollow components, and is used in the fabrication of superalloy gas turbine engine components.
Gas turbine engines are widely used in aircraft propulsion, electric power generation, ship propulsion, and pumps. In gas turbine engine applications, efficiency is a prime objective. Improved gas turbine engine efficiency can be obtained by operating at higher temperatures, however current operating temperatures in the turbine section exceed the melting points of the superalloy materials used in turbine components. Consequently, it is a general practice to provide air cooling. Cooling is typically provided by flowing relatively cool air from the compressor section of the engine through passages in the turbine components to be cooled. Such cooling comes with an associated cost in engine efficiency. Consequently, there is a strong desire to provide enhanced specific cooling, maximizing the amount of cooling benefit obtained from a given amount of cooling air. This may be obtained by the use of fine, precisely located, cooling passageway sections.
A well developed field exists regarding the investment casting of internally-cooled turbine engine parts such as blades and vanes. In an exemplary process, a mold is prepared having one or more mold cavities, each having a shape generally corresponding to the part to be cast. An exemplary process for preparing the mold involves the use of one or more wax patterns of the part. The patterns are formed by molding wax over ceramic cores generally corresponding to positives of the cooling passages within the parts. In a shelling process, a ceramic shell is formed around one or more such patterns in well known fashion. The wax may be removed such as by melting in an autoclave. The shell may be fired to harden the shell. This leaves a mold comprising the shell having one or more part-defining compartments which, in turn, contain the ceramic core(s) defining the cooling passages. Molten alloy may then be introduced to the mold to cast the part(s). Upon cooling and solidifying of the alloy, the shell and core may be mechanically and/or chemically removed from the molded part(s). The part(s) can then be machined and/or treated in one or more stages.
The ceramic cores themselves may be formed by molding a mixture of ceramic powder and binder material by injecting the mixture into hardened metal dies. After removal from the dies, the green cores are thermally post-processed to remove the binder and fired to sinter the ceramic powder together. The trend toward finer cooling features has taxed core manufacturing techniques. The fine features may be difficult to manufacture and/or, once manufactured, may prove fragile. Commonly-assigned co-pending U.S. Pat. No. 6,637,500 of Shah et al. discloses exemplary use of a ceramic and refractory metal core combination. Other configurations are possible. Generally, the ceramic core(s) provide the large internal features such as trunk passageways while the refractory metal core(s) provide finer features such as outlet passageways. Assembling the ceramic and refractory metal cores and maintaining their spatial relationship during wax overmolding presents numerous difficulties. A failure to maintain such relationship can produce potentially unsatisfactory part internal features. It may be difficult to assembly fine refractory metal cores to ceramic cores. Once assembled, it may be difficult to maintain alignment. The refractory metal cores may become damaged during handling or during assembly of the overmolding die. Assuring proper die assembly and release of the injected pattern may require die complexity (e.g., a large number of separate die parts and separate pull directions to accommodate the various RMCs). Accordingly, there remains room for further improvement in core assembly techniques.
One aspect of the invention involves a method for forming an investment casting pattern. A first material is molded at least partially over a first core. A second material is molded at least partially over the first material.
In various implementations, the second material may be molded at least partially over a second core. After the first molding in a first die, the first core and first material may be assembled to the second core. The assembly may be introduced to a second die in which the second molding occurs. The first core may comprise, in major weight part, one or more refractory metals. The second core may comprise, in major weight part, one or more ceramic materials. The first molding may include positioning the first core in a first die at least in part by contacting a surface of the first die with one or more portions of the first core, said one or more portions becoming essentially flush with a surface of the first material. The first molding may include positioning the first core in a first die at least in part by positioning one or more portions of the first core in a subcompartment of a first die so that the one or more portions project from a surface of the first material after the first molding. The first molding may includes positioning the first core in a first die at least in part by placing a pre formed piece of sacrificial material between a surface of the first die a surface of the first core.
There may be a third molding of a third material at least partially over an alternate second core and the second molding may be at least partially over the third material. The first material and first core and the third material and alternate second core may be assembled to a third core before the second molding. The first and alternate second cores may comprise, in major part, one or more refractory metals. The third core may comprise, in major part, one or more ceramic materials. The second molding may comprises positioning the third core in a die at least in part by contacting the die with a projection unitarily formed with a remainder of the third core. The first and second materials may comprise, in major part, one or more waxes. The first and second materials may essentially be of similar composition. The first molding may be performed in a first die. The first molding may provide the first material with means for guiding insertion of the first material and first core into a second die.
Another aspect of the invention involves a method for forming an investment casting mold. An investment casting pattern is formed as above. One or more coating layers are applied to the pattern. The first material and the second material are substantially removed to leave the first core within a shell formed by the coating layers. In various implementations, the method may be used to fabricate a gas turbine engine airfoil element mold.
Another aspect of the invention involves a method for investment casting. An investment casting mold is formed as above. Molten metal is introduced to the investment casting mold. The molten metal is permitted to solidify. The investment casting mold is destructively removed. The method may be used to fabricate a gas turbine engine component.
Another aspect of the invention involves a component for forming an investment casting pattern. A first wax material at least partially encases a first core. The first wax material includes means for guiding insertion of the first wax material and the first core into a pattern-forming die. The first wax material may include means for maintaining a target relative position between the first core and a second core.
Another aspect of the invention involves a die for forming an investment casting pattern. The die includes at least one means for registering at least one core to which molding material has been pre-applied. One or more surfaces define a molding material-receiving space. A passageway is provided for introducing molding material to the molding material-receiving space.
In various implementations, the at least one means may further serve as means for guiding insertion of the at least one core to the die. The at least one means may include first means for registering a first such core and second means for registering a second such core. The first and second means may be formed on a single section of the die. The first and second means may be formed on respective first and second sections of the die.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
The exemplary stamping process removes material to define a series of voids 44 separating a series of fine features 46. The fine features 46 will form internal passageways in the ultimate cast part. In the exemplary embodiment, the fine features 46 are formed as an array of narrow strips extending along the entirety of the body section 42 and adjacent portions of the end sections 38 and 40. Such strips may form a series of narrow parallel passageways through the wall of a cast airfoil. Intact distal portions 50 and 52 of the end sections 38 and 40 connect the strips to maintain their relative alignment. Additionally, the strips may be connected at one or more intervening locations by connecting portions (not shown) for further structural integrity or to enhance fluid (e.g., cooling air) flow through the ultimate passageways. In an exemplary casting process, the RMC is positioned with portion 50 embedded in a slot or other mating feature of a ceramic core and portion 52 protruding entirely out of the wax of the investment casting pattern. The portion 52 may thus be embedded in a shell formed over the pattern. When the wax is removed and metal cast in the shell, and the ceramic core(s) and refractory metal core(s) are removed, the strips 46 will form passageways through a wall of the casting from an internal passageway previously defined by the ceramic core to an exterior surface previously defined by the shell.
As an alternative to use of the pad 70, or in addition thereto, the RMC may include one or more support projections 88 and 89 (
The exemplary ceramic core 110 is shown configured to form an airfoil element (e.g., a blade or vane of a gas turbine engine turbine section) and has leading, intermediate, and trailing sections 114A, 114B, and 114C for forming corresponding main passageways and connected by a series of webs 116 for core structural integrity. In the exemplary embodiment, the first pre-molded core 90A is mounted to a pressure side surface of the intermediate core section 114B; the second pre-molded core 90B is mounted to a suction side surface thereof; and the third pre-molded core 90C is mounted to a suction side surface of the trailing core section 114C. The distal portions 50 of the pre-molded RMCs 90A, 90B, and 90C are accommodated within slots 118, 119, and 120 in the associated surface of the associated ceramic core sections. These distal portions 50 may be secured in place via ceramic adhesive in the slots. Additionally, or alternatively, the surfaces 94 of the first and second pre-molded RMCs may be wax welded or otherwise adhered to the adjacent ceramic core surface. Various additional RMCs (not shown) may be secured to the ceramic core in a similar fashion or otherwise. The core assembly may then be placed in one of the die halves (e.g., a first half 122), with the protruding portions of the wall 98 of the second and third pre-molded cores 90B and 90C and their second distal portions 52 accommodated within compartments 124 and 125. Interaction of the surfaces 102 of such pre-molded cores with the surfaces 126 and 127 of the compartments may help guide insertion of the core assembly into the die half 122 and locate and register the core assembly once inserted. Insertion may be along an axis 506. Alternatively or additionally, the core assembly may be registered by direct contact between the ceramic core and the die half (e.g., at ends (not shown) of the ceramic core which ends ultimately protrude from the pattern and do not form internal features of the cast part). Similarly, the ceramic core may have additional positioning or retention features such as projections 128 unitarily or otherwise integrally formed with the feed portions of the ceramic core. Possible such projections are shown in U.S. Pat. No. 5,296,308 of Caccavale et al.
The die upper half 130 may then be mated with the lower half 122, with the first pre-molded core 90A being accommodated within a compartment 132 in similar fashion to the accommodation of the second and third pre-molded cores 90B and 90C. Mating of the die halves (and their ultimate separation) may also be along the axis 506 or may be along an axis at an angle thereto. In the assembled view of
After injection of the additional (main) wax into the space 140 surrounding the core assembly (through injection passageways 141 in the die halves) and solidification of such wax, the die halves are parted and the molded core assembly removed. Removal may be via an extraction along the axis 506 or potentially along an alternate axis at an angle thereto.
The foregoing teachings may be implemented in the manufacturing of pre-existing patterns (core combinations and wax shapes) or in to produce yet novel patterns. Whereas an existing single-stage molding process, may be relatively complex (e.g., having a large number of separate die parts and separate pull directions to accommodate the various RMCs), the main stage of a revised process may be simplified (e.g., having fewer die parts and fewer single pulls, with as few as two and one, respectively). This may simplify engineering and/or manufacturing.
One or more embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, details of the particular components being manufactured will influence or dictate details of any particular implementation. Thus, other core combinations may be used, including small and/or finely-featured ceramic or other cores in place of the RMCs. Dies having more than two parts may be used at either the pre-molding or the second molding stage. However, one potential advantage of the invention is in limiting the required die complexity for forming a given pattern. Accordingly, other embodiments are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4160313 | Radford | Jul 1979 | A |
4283835 | Obrochta et al. | Aug 1981 | A |
4487246 | Frasier | Dec 1984 | A |
5291654 | Judd et al. | Mar 1994 | A |
5296308 | Caccavale et al. | Mar 1994 | A |
5405242 | Auxier et al. | Apr 1995 | A |
5640767 | Jackson et al. | Jun 1997 | A |
5853044 | Wheaton et al. | Dec 1998 | A |
6505678 | Mertins | Jan 2003 | B2 |
6530416 | Tiemann | Mar 2003 | B1 |
6637500 | Shah et al. | Oct 2003 | B2 |
6668906 | Burd | Dec 2003 | B2 |
6705831 | Draper | Mar 2004 | B2 |
20040020629 | Shah et al. | Feb 2004 | A1 |
20050087319 | Beals et al. | Apr 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050274478 A1 | Dec 2005 | US |