The present invention relates generally to medical devices and particularly to a tricuspid annuloplasty ring having inward bows around its periphery.
For the purposes of anatomic orientation, when the body is viewed in the upright position it has 3 orthogonal axes: superior-inferior (up-down), posterior-anterior (back-front), and right-left.
In vertebrate animals, the heart is a hollow muscular organ having four pumping chambers as seen in
The atriums are the blood-receiving chambers, which pump blood into the ventricles. The ventricles are the blood-discharging chambers. A wall composed of fibrous and muscular parts, called the interatrial septum separates the right and left atriums (see
The synchronous pumping actions of the left and right sides of the heart constitute the cardiac cycle. The cycle begins with a period of ventricular relaxation, called ventricular diastole. The cycle ends with a period of ventricular contraction, called ventricular systole. The four valves (see
The mitral and tricuspid valves are defined by fibrous rings of collagen, each called an annulus, which forms a part of the fibrous skeleton of the heart. The annulus provides peripheral attachments for the two cusps or leaflets of the mitral valve (called the anterior and posterior cusps) and the three cusps or leaflets of the tricuspid valve. The free edges of the leaflets connect to chordae tendineae from more than one papillary muscle, as seen in
When the left ventricle contracts after filling with blood from the left atrium, the walls of the ventricle move inward and release some of the tension from the papillary muscle and chords. The blood pushed up against the undersurface of the mitral leaflets causes them to rise toward the annulus plane of the mitral valve. As they progress toward the annulus, the leading edges of the anterior and posterior leaflet come together forming a seal and closing the valve. In the healthy heart, leaflet coaptation occurs near the plane of the mitral annulus. The blood continues to be pressurized in the left ventricle until it is ejected into the aorta. Contraction of the papillary muscles is simultaneous with the contraction of the ventricle and serves to keep healthy valve leaflets tightly shut at peak contraction pressures exerted by the ventricle.
In a like manner, the tricuspid valve controls the backflow of blood from the right ventricle into the right atrium during contraction of the right ventricle. Contraction of the right ventricle occurs simultaneously with contraction of the papillary muscles, keeping the healthy tricuspid valve leaflets shut at peak ventricular contraction pressures. Tricuspid regurgitation involves backward flow of blood across the tricuspid valve into the right atrium. The most common cause of tricuspid regurgitation is not damage to the valve itself but enlargement of the right ventricle, which may be a complication of any disorder that causes failure of the right ventricle. Other diseases can directly affect the tricuspid valve. The most common of these is rheumatic fever, which is a complication of untreated strep throat infections. The valve fails to close properly, and blood can flow back to the right atrium from the right ventricle, and from there back into the veins. This reduces the flow of blood forward into the lungs.
Various surgical techniques may be used to repair a diseased or damaged valve. In a valve replacement operation, the damaged leaflets are excised and the annulus sculpted to receive a replacement valve. Another less drastic method for treating defective valves is through repair or reconstruction, which is typically used on minimally calcified valves. By interrupting the cycle of progressive functional mitral regurgitation, studies have shown increased survival and even increased forward ejection fraction in many surgical patients. The problem with surgical therapy is the significant insult it imposes on these chronically ill patients with high morbidity and mortality rates associated with surgical repair.
Surgical edge-to-edge juncture repairs, which can be performed endovascularly, are also made, in which a mid-valve leaflet to mid-valve leaflet suture or clip is applied to keep these points of the leaflet held together throughout the cardiac cycle. Other efforts have developed an endovascular suture and a clip to grasp and bond the two mitral leaflets in the beating heart. Grade 3+ or 4+ organic mitral regurgitation may be repaired with such edge-to-edge technologies. This is because, in organic mitral regurgitation, the problem is not the annulus but in the central valve components. However, functional mitral regurgitation can persist at a high level, even after edge-to-edge repair, particularly in cases of high Grade 3+ and 4+ functional mitral regurgitation. After surgery, the repaired valve may progress to high rates of functional mitral regurgitation over time.
In yet another emerging technology, the coronary sinus is mechanically deformed through endovascular means applied and contained to function solely within the coronary sinus.
One repair technique that has been shown to be effective ill treating incompetence is annuloplasty, or reconstruction of the ring (or annulus) of an incompetent cardiac valve. The repair may be done entirely surgically, by cutting out a segment of leaflet and re-attaching the cut sides with sutures. However, more typically the annulus is reshaped by attaching a prosthetic annuloplasty repair segment or ring thereto. For instance, the goal of a posterior mitral annulus repair is to bring the posterior mitral leaflet forward toward to the anterior leaflet to better allow coaptation. The annuloplasty ring is designed to support the functional changes that occur during the cardiac cycle: maintaining coaptation and valve integrity to prevent reverse flow while permitting good hemodynamics during forward flow.
The annuloplasty ring typically comprises an inner substrate or core of a metal such as a rod or multiple bands of stainless steel or titanium, or a flexible material such as silicone rubber or Dacron cordage, covered with a biocompatible fabric or cloth to allow the ring to be sutured to the fibrous annulus tissue. More rigid cores are typically surrounded by an outer cover of both silicone and fabric as a suture-permeable anchoring margin. Annuloplasty rings may be stiff or flexible, split or continuous, and may have a variety of shapes in plan view, including circular, D-shaped, C-shaped, or kidney-shaped. Examples are seen in U.S. Pat. Nos. 5,041,130, 5,104,407, 5,201,880, 5,258,021, 5,607,471 and, 6,187,040. In the context of the present invention, the term annuloplasty ring encompasses rings both open (e.g., C-shaped) and closed (e.g., D-shaped), as well as shorter segments, bands, or other such terms for a prosthesis that at least partly encircles and attaches to an annulus to reshape or correct a dysfunction in the annulus.
Most rigid and semi-rigid annular rings for the mitral valve have a kidney-like or D shape, with a relatively straight anterior segment co-extensive with the anterior valve leaflet, and a curved posterior segment co-extensive with the posterior valve leaflet. The shape of the annular rings reproduces the configuration of the valve annulus during the ventricular systole, and therefore in the stage of the valve closing. The ratio between minor axis and major axis is typically 3:4 in most models currently on the market since it reproduces normal anatomical ratios. Most of the earlier mitral rings were planar, while some (e.g., U.S. Pat. Nos. 5,104,407, 5,201,880, and 5,607,471) are bowed upward on their anterior segment (and slightly on their posterior segment) to accommodate the three-dimensional saddle shape of the anterior aspect of the mitral annulus. Newer rings have larger posterior bows (e.g., U.S. Pat. Nos. 6,805,710 and 6,858,039), or other three-dimensional configurations.
Tricuspid rings are sold in various configurations. For example, the Carpentier-Edwards Classic® Tricuspid Annuloplasty Ring sold by Edwards Lifesciences Corporation of Irvine, Calif., is a C-shaped ring with an inner titanium core covered by a layer of silicone and fabric. Rings for sizes 26 mm through 36 mm in 2 mm increments have outside diameters (OD) between 31.2-41.2 mm, and inside diameters (ID) between 24.3-34.3 mm. These diameters are taken along the “diametric” line spanning the greatest length across the ring because that is the conventional sizing parameter.
Correction of the aortic annulus requires a much different ring than for a mitral annulus. For example, U.S. Pat. Nos. 5,258,021 and 6,231,602 disclose sinusoidal or so-called “scalloped” annuloplasty rings that follow the up-and-down shape of the three cusp aortic annulus. Such rings would not be suitable for correcting a mitral valve deficiency.
In the usual annuloplasty ring implant procedure, an array of separate implant sutures are first looped through all or portions of the exposed annulus at intervals spaced equidistant from one another, such as for example 4 mm intervals. The surgeon then threads the implant sutures through the annuloplasty ring at more closely spaced intervals, such as for example 2 mm. This occurs with the prosthesis outside the body, typically secured to a peripheral edge of a holder or template. Despite the advantage of increases visibility, instances of snagging of the inner core with the implant sutures have occurred.
The ring on the holder is then advanced (parachuted) distally along the array of pre-anchored implant sutures into contact with the valve annulus, thus effecting a reduction in valve annulus circumference. At this point a handle used to manipulate the holder or template is typically detached for greater visibility of the surgical field. The surgeon ties off the implant sutures on the proximal side of the ring, and releases the ring from the holder or template, typically by severing connecting sutures at a series of cutting guides. Although sutures are typically used, other flexible filaments to connect the ring to the holder may be suitable. Because of the presence of multiple implant and connecting sutures in the surgical fields, the step of disconnecting the ring from the holder with a scalpel is somewhat delicate, and can be confusing for the novice. It should be noted that a similar holder connection and implant procedure, with attendant drawbacks, are also common for implanting prosthetic valves.
The present application has particular relevance to the repair of the tricuspid valve, which regulates blood flow between the right atrium and right ventricle, although certain aspects may apply to repair of other of the heart valves.
Four structures embedded in the wall of the heart conduct impulses through the cardiac muscle to cause first the atria then the ventricles to contract. These structures are the sinoatrial node (SA node), the atrioventricular node (AV n-ode), the bundle of His, and the Purkinje fibers. On the rear wall of the right atrium is a barely visible knot of tissue known as the sinoatrial, or SA node. This tiny area is the control of the heart's pacemaker mechanism. Impulse conduction normally starts in the SA node. It generates a brief electrical impulse of low intensity approximately 72 times every minute in a resting adult. From this point the impulse spreads out over the sheets of tissue that make up the two atria, exciting the muscle fibers as it does so. This causes contraction of the two atria and thereby thrusts the blood into the empty ventricles. The impulse quickly reaches another small specialized knot of tissue known as the atrioventricular, or AV node, located between the atria and the ventricles. This node delays the impulse for about 0.07 seconds, which is exactly enough time to allow the atria to complete their contractions. When the impulses reach the AV node, they are relayed by way of the several bundles of His and Purkinje fibers to the ventricles, causing them to contract. As those of skill in the art are aware, the integrity and proper functioning of the conductive system of the heart is critical for good health.
From the same viewpoint, the tricuspid valve 20 is shown surgically exposed in
Reflecting their true anatomic location, the three leaflets in
The ostium 30 of the right coronary sinus opens into the right atrium, and the tendon of Todaro 32 extends adjacent thereto. The AV node 34 and the beginning of the bundle of His 36 are located in the supero-septal region of the tricuspid valve circumference. The AV node 34 is situated directly on the right atrial side of the central fibrous body in the muscular portion of the AV septum, just superior and anterior to the ostium 30 of the coronary sinus 30. Measuring approximately 1.0 mm×3.0 mm×6.0 mm, the node is flat and oval. The AV node 34 is located at the apex of the triangle of Koch 38, which is formed by the tricuspid annulus 22, the ostium 30 of the coronary sinus, and the tendon of Todaro 32. The AV node 34 continues on to the bundle of His 36, typically via a course inferior to the commissure 28 between the septal 24a and anterior 24b leaflets of the tricuspid valve; however, the precise course of the bundle of His 36 in the vicinity of the tricuspid valve may vary. Moreover, the location of the bundle of His 36 may not be readily apparent from a resected view of the right atrium because it lies beneath the annulus tissue.
The triangle of Koch 38 and tendon of Todaro 32 provide anatomic landmarks during tricuspid valve repair procedures. A major factor to consider during surgery is the proximity of the conduction system (AV node 34 and bundle of His 36) to the septal leaflet 24a. Of course, surgeons must avoid placing sutures too close to or within the AV node 34. C-shaped rings are good choices for tricuspid valve repairs because they allow surgeons to position the break in the ring adjacent the AV node 34, thus avoiding the need for suturing at that location.
An example of a rigid C-shaped ring is the Carpentier-Edwards Classic® Tricuspid Annuloplasty Ring discussed above. The Classic® ring has a gap between free ends. The gap provides a discontinuity to avoid attachment over the AV node. The gap for the various sizes ranges between about 5-8 mm, or between about 19%-22% of the labeled size.
Despite numerous designs presently available or proposed in the past, there is a need for a prosthetic tricuspid ring that better repairs certain conditions of the tricuspid annulus, and in particular reduces excessive chordal tethering, which tends to pull the leaflets apart leading to regurgitation.
The present invention provides a tricuspid annuloplasty ring including a ring body generally arranged in a plane and about an axis along an inflow-outflow direction. In plan view, the ring body further has at least one inflection point between adjacent concave and convex segments, with the concave segments corresponding to at least one of the native leaflets. In particular, the ring body has one inflection point between each pair of adjacent concave and convex segments, and there are desirably at least two concave segments so that there are at least four inflection points.
In one embodiment, the ring body is discontinuous so as to define a first free end and a second free end separated across a gap. For instance, the ring may be configured to contact and support the interior of the tricuspid annulus, and define, in sequence, a first free end, a first septal segment, an anterior segment, a posterior segment, and a second septal segment. Each of the segments is generally concave or straight and separated from adjacent segments by convex corners. The tricuspid ring may have a relatively straight first septal segment, an inward bow in the anterior segment defining, an inward bow in the posterior segment, and an inward bow in the second septal segment. Desirably, the inward bows extend inward by different distances. For example, the inward bow in the anterior segment may be greater than the inward bow in the posterior segment which is greater than the inward bow in the second septal segment.
In another form, the annuloplasty ring body is generally convex in plan view but has multiple concave segments around its periphery each defining an inward bow. Further, the ring body is preferably discontinuous so as to define a first free end and a second free end separated across a gap. The ring body may further includes one or more upward bows. In a preferred embodiment, the inward bows extend inward by different distances. In an absolute sense, the inward bows extend inward between 5%-25% of a corresponding nominal ring size.
Preferably, a tricuspid annuloplasty ring, has a ring body peripherally arranged about an axis and being discontinuous so as to define two free ends at a break in continuity around the ring body. A plan view of the ring body along the axis defines, in sequence, a first free end, a first septal segment, an anterior segment adapted to attach to the tricuspid annulus adjacent the anterior leaflet, a posterior segment adapted to attach to the tricuspid annulus adjacent the posterior leaflet, a second septal segment adapted to attach to the tricuspid annulus adjacent the septal leaflet, and a second free end, wherein one or more of the first septal segment, anterior segment, posterior segment, and second septal segment is at least partly concave defining an inward bow. Desirably there are two inward bows that extend inward by different distances. In one configuration, the inward bow in the anterior segment is greater than the inward bow in the posterior segment which is greater than the inward bow in the second septal segment. For instance, the inward bow in the anterior segment is between 15%-25% of a corresponding nominal ring size, P is between 10%-20% of a corresponding nominal ring size, and S is between 5%-15% of a corresponding nominal ring size. In a preferred embodiment, the concave segments define inward bows that are between 5%-25% of a corresponding nominal ring size.
A further understanding of the nature and advantages of the invention will become apparent by reference to the remaining portions of the specification and drawings.
Features and advantages of the present invention will become appreciated as the same become better understood with reference to the specification, claims, and appended drawings wherein:
The present invention provides an improved tricuspid annuloplasty ring shaped to repair certain conditions of the tricuspid annulus, through certain features might also be applicable and beneficial to rings for other of the heart's annuluses. It should be understood that annuloplasty rings in general are configured to contact and support the interior of one of the annuluses of the heart, as contrasted with sinus shaping devices or external cardiac belts or harnesses, for example.
The term “axis” in reference to the illustrated ring, and other non-circular or non-planar rings, refers to a line generally perpendicular to the ring that passes through the area centroid of the ring when viewed in plan view. “Axial” or the direction of the “axis” can also be viewed as being parallel to the direction of blood flow within the valve orifice and thus within the ring when implanted therein. Stated another way, the implanted tricuspid ring orients about a central flow axis aligned along an average direction of blood flow through the tricuspid annulus. Although the rings of the present invention may be 3-dimensional, they are typically planar and lie perpendicular to the flow axis.
An exemplary tricuspid annuloplasty ring 40 is seen in
The inner core or ring body extends substantially around the entire periphery of the ring 40 and is a relatively or semi-rigid material such as stainless steel, titanium, Elgiloy (an alloy primarily including Ni, Co, and Cr), Nitinol, and even certain polymers. The term “relatively rigid” or “semi-rigid” refers to the ability of the core to support the annulus without substantial deformation, and implies a minimum elastic strength that enables the ring to maintain its original shape after implant even though it may flex somewhat. Indeed, the ring desirably possesses some small flexibility around its periphery. To further elaborate, the core would not be made of silicone, which easily deforms to the shape of the annulus and therefore will not necessarily maintain its original shape upon implant.
In one exemplary construction, the ring 40 includes a core made of a plurality of concentric peripheral bands. Such a concentric band construction is disclosed in U.S. Pat. No. 5,104,407 to Lam, et al. Another possible construction of the ring core is solid titanium (or suitable alternative) extending from the first free end 42a to the second free end 42b. Areas of increased flexibility or discrete hinge points may be formed by reducing the cross-sectional shape of the core at those locations. For example, to obtain greater up and down flexibility, the axial height of the core is reduced at a point or along a region. A particularly desirable result of any partially flexible core is ring flexibility “out of the plane” to allow the ring to accommodate different patient geometries, while maintaining ring stiffness in the “plane.” In this sense, the “plane” is the nominal plane in which the majority of the annulus/ring resides. One of skill in the art will understand that any of the embodiments described herein, and combinations thereof, may be created by shaping a solid material core.
A suture-permeable interface typically provided around the core facilitates implant at the native annulus. The interface may be elastomeric, such as silicone, and provides bulk to the ring for ease of handling and implant, and permits passage of sutures though not significantly adding to the anchoring function of the outer fabric covering. The fabric covering may be any biocompatible material such as Dacron® (polyethylene terephalate). The elastomeric interface and fabric covering project slightly outwards along the outside of the ring 40 to provide a platform through which to pass sutures. An alternative interface is simply wrapped, bunched or rolled fabric, with no silicone.
As seen in inflow plan view along the axis in
Rings for sizes 26 mm through 36 mm in 2 mm increments have outside diameters (OD) between 31.2-41.2 mm, and inside diameters (ID) between 24.3-34.3 mm. These diameters are taken along the “diametric” line spanning the greatest length across the ring because that is the conventional sizing parameter. The gap G for the various sizes ranges between about 5-8 mm, or between about 19%-22% of the labeled size.
Still with reference to
As seen in
As seen in
The conventional tricuspid ring 60 shown below the ring 40 of the present invention comprises an anterior segment 62, a posterior segment 64, and a septal segment 66, as seen moving clockwise from a first free end (not shown) to a second free end 68. Each segment 62, 64, 66 is convex (outwardly curved) or at least not concave, and there are no points of inflection. The anterior segment 62 is the longest, spanning approximately one-half of the circumference of the ring 40. The posterior segment 64 is the next longest, spanning about one-third of the circumference of the ring 40. And the septal segment 66 is the shortest and is typically linear except for a small curve at the junction with the posterior segment 64 and depending on where the dividing line is drawn.
The gap between the two free ends 42a, 42b of the ring 40 approximately equals the gap between the two free ends of the conventional ring 60. The second free end 42b of the ring 40 terminates radially inward from the second free end 68 of the conventional ring 60. Each of the inward bows 48a, 48b, 48c extends inward by distances labeled A, P, and S, respectively, from the corresponding segment of the conventional ring 60. That is, the inward bow 48a extends inward a distance A from the anterior segment 62, the inward bow 48b extends inward a distance P from the posterior segment 64, and the inward bow 48c extends inward a distance S from the septal segment 66. The dimensions A, P, and S are measured at the point of largest separation between the inward bows 48a, 48b, 48c and the corresponding segments, typically the midpoint of each inward bow. However, it is conceivable that the inward bows 48a, 48b, 48c are asymmetrically curved so that the radially innermost point of any one of the inward bows is offset from its midpoint thereof. In a preferred embodiment, the dimensions A, P, and S are sized relative to the nominal ring size (e.g., between 26 and 40 mm), and desirably A>P>S. In a particularly preferred embodiment, the inward bows are between 5%-25% of the nominal ring size. For instance, A is between 15%-25% of the nominal ring size, P is between 10%-20% of the nominal ring size, and S is between 5%-15% of the nominal ring size. So, looking at a ring having a nominal size of 36 mm, and taking the maximum of the aforementioned ranges, A =9 mm, P=7.2 mm, and S=5.4 mm.
The implant technique may be via a traditional parachute suture array, where the sutures are pre-implanted around the annulus and then ex vivo through the outside edge of the ring 40, whereupon the surgeon slides the ring down the array of sutures into place, thus conforming the annulus to the ring. The mid-portion of each of the segments 44b, 44c, 44d bows inward, which accordingly pulls the native tricuspid annulus inward, as indicated by the bold inward directional arrows. This affords more slack to each of the leaflets, which in turn helps reduce excessive chordal tethering. That is, some tricuspid pathologies such as leaflet thickening increase tension in the chordai, which in turn leads to tethering and regurgitation. Moving the leaflet midpoints inward by implanting the exemplary tricuspid ring 40 disclosed herein mitigates this problem.
The beneficial aspect of the inward bows 48a, 48b, 48c is desirably realized with one for each leaflet. However, the inward bows may be provided for just one or two of the leaflets, depending on the need.
The extent of the inward bows 48a, 48b, 48c is also variable, with a radially inward dimension of between about 2-10 mm being preferred. Likewise, the preferred shape is gently contoured curves, though other shapes are conceivable.
While the foregoing is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Moreover, it will be obvious that certain other modifications may be practiced within the scope of the appended claims.
The present invention claims priority under 35 U.S.C. §119(e) to Provisional Application No. 60/915,397, filed on May 1, 2007.
Number | Name | Date | Kind |
---|---|---|---|
3656185 | Carpentier | Apr 1972 | A |
4055861 | Carpentier et al. | Nov 1977 | A |
4164046 | Cooley | Aug 1979 | A |
4217665 | Bex et al. | Aug 1980 | A |
4602911 | Ahmadi et al. | Jul 1986 | A |
5041130 | Cosgrove et al. | Aug 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5104407 | Lam et al. | Apr 1992 | A |
5201880 | Wright et al. | Apr 1993 | A |
5258021 | Duran | Nov 1993 | A |
5306296 | Wright et al. | Apr 1994 | A |
5450860 | O'Connor | Sep 1995 | A |
5496336 | Cosgrove et al. | Mar 1996 | A |
5593435 | Carpentier et al. | Jan 1997 | A |
5607471 | Seguin et al. | Mar 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5716397 | Myers | Feb 1998 | A |
5776189 | Khalid | Jul 1998 | A |
5824066 | Gross | Oct 1998 | A |
5888240 | Carpentier et al. | Mar 1999 | A |
5957977 | Melvin | Sep 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
6074417 | Peredo | Jun 2000 | A |
6102945 | Campbell | Aug 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6183512 | Howanec, Jr. et al. | Feb 2001 | B1 |
6187040 | Wright | Feb 2001 | B1 |
6217610 | Carpentier et al. | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6250308 | Cox | Jun 2001 | B1 |
6258122 | Tweden et al. | Jul 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6391054 | Carpentier et al. | May 2002 | B2 |
6406493 | Tu et al. | Jun 2002 | B1 |
6416548 | Chinn et al. | Jul 2002 | B2 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6719786 | Ryan et al. | Apr 2004 | B2 |
6726717 | Alfieri et al. | Apr 2004 | B2 |
6730121 | Ortiz et al. | May 2004 | B2 |
6749630 | McCarthy et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6800090 | Alferness et al. | Oct 2004 | B2 |
6802860 | Cosgrove et al. | Oct 2004 | B2 |
6805710 | Bolling et al. | Oct 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6858039 | McCarthy | Feb 2005 | B2 |
6908482 | McCarthy et al. | Jun 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6921407 | Nguyen et al. | Jul 2005 | B2 |
6942694 | Liddicoat et al. | Sep 2005 | B2 |
6955689 | Ryan et al. | Oct 2005 | B2 |
6966924 | Holmberg | Nov 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
6997950 | Chawla | Feb 2006 | B2 |
7087079 | Navia et al. | Aug 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7118595 | Ryan et al. | Oct 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7166126 | Spence et al. | Jan 2007 | B2 |
7166127 | Spence et al. | Jan 2007 | B2 |
7189258 | Johnson et al. | Mar 2007 | B2 |
7294148 | McCarthy | Nov 2007 | B2 |
7329280 | Bolling et al. | Feb 2008 | B2 |
7361190 | Shaoulian et al. | Apr 2008 | B2 |
7367991 | McCarthy et al. | May 2008 | B2 |
7371259 | Ryan et al. | May 2008 | B2 |
7452376 | Lim et al. | Nov 2008 | B2 |
7608103 | McCarthy | Oct 2009 | B2 |
7642684 | Himmelmann et al. | Jan 2010 | B2 |
7879087 | Roberts | Feb 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7942928 | Webler et al. | May 2011 | B2 |
7959673 | Carpentier et al. | Jun 2011 | B2 |
7993395 | Vanermen et al. | Aug 2011 | B2 |
8016882 | Macoviak et al. | Sep 2011 | B2 |
8142494 | Rahdert et al. | Mar 2012 | B2 |
20010010018 | Cosgrove et al. | Jul 2001 | A1 |
20010021874 | Carpentier et al. | Sep 2001 | A1 |
20010049557 | Chinn et al. | Dec 2001 | A1 |
20020133180 | Ryan et al. | Sep 2002 | A1 |
20030033009 | Gabbay | Feb 2003 | A1 |
20030040793 | Marquez | Feb 2003 | A1 |
20030045929 | McCarthy et al. | Mar 2003 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030093148 | Bolling et al. | May 2003 | A1 |
20030176917 | Ryan et al. | Sep 2003 | A1 |
20030199975 | Gabbay | Oct 2003 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040249452 | Adams et al. | Dec 2004 | A1 |
20040249453 | Cartledge et al. | Dec 2004 | A1 |
20040260393 | Rahdert et al. | Dec 2004 | A1 |
20050004665 | Aklog | Jan 2005 | A1 |
20050004669 | Sievers | Jan 2005 | A1 |
20050038509 | Ashe | Feb 2005 | A1 |
20050043791 | McCarthy et al. | Feb 2005 | A1 |
20050131533 | Alfieri et al. | Jun 2005 | A1 |
20050182487 | McCarthy et al. | Aug 2005 | A1 |
20050192666 | McCarthy | Sep 2005 | A1 |
20050256567 | Lim et al. | Nov 2005 | A1 |
20050256568 | Lim et al. | Nov 2005 | A1 |
20050267572 | Schoon et al. | Dec 2005 | A1 |
20050278022 | Lim | Dec 2005 | A1 |
20050288781 | Moaddeb et al. | Dec 2005 | A1 |
20060015178 | Moaddeb et al. | Jan 2006 | A1 |
20060015179 | Bulman-Fleming et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025858 | Alameddine | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060069430 | Rahdert et al. | Mar 2006 | A9 |
20060100697 | Casanova | May 2006 | A1 |
20060129236 | McCarthy | Jun 2006 | A1 |
20060184241 | Marquez | Aug 2006 | A1 |
20060217803 | Ingle et al. | Sep 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20070038296 | Navia et al. | Feb 2007 | A1 |
20070050022 | Vidlund et al. | Mar 2007 | A1 |
20070100441 | Kron et al. | May 2007 | A1 |
20070156234 | Adzich et al. | Jul 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070162112 | Burriesci et al. | Jul 2007 | A1 |
20070173931 | Tremulis et al. | Jul 2007 | A1 |
20070191940 | Arru et al. | Aug 2007 | A1 |
20070299513 | Ryan et al. | Dec 2007 | A1 |
20080058924 | Ingle et al. | Mar 2008 | A1 |
20080086203 | Roberts | Apr 2008 | A1 |
20080091059 | Machold et al. | Apr 2008 | A1 |
20090036979 | Redmond et al. | Feb 2009 | A1 |
20090132036 | Navia | May 2009 | A1 |
20090157176 | Carpentier et al. | Jun 2009 | A1 |
20090177276 | Carpentier et al. | Jul 2009 | A1 |
20090177278 | Spence | Jul 2009 | A1 |
20090192602 | Kuehn | Jul 2009 | A1 |
20090192603 | Ryan | Jul 2009 | A1 |
20090192604 | Gloss | Jul 2009 | A1 |
20090192606 | Gloss et al. | Jul 2009 | A1 |
20090264996 | Vanermen et al. | Oct 2009 | A1 |
20090276038 | Tremulis et al. | Nov 2009 | A1 |
20090287303 | Carpentier | Nov 2009 | A1 |
20100076549 | Keidar et al. | Mar 2010 | A1 |
20100076551 | Drake | Mar 2010 | A1 |
20100145440 | Keranen | Jun 2010 | A1 |
20100152844 | Couetil | Jun 2010 | A1 |
20100168845 | Wright | Jul 2010 | A1 |
20100174365 | Parravicini et al. | Jul 2010 | A1 |
20110160849 | Carpentier et al. | Jun 2011 | A1 |
20120071970 | Carpentier et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
0338994 | Oct 1989 | EP |
1034753 | Sep 2000 | EP |
1629795 | Mar 2006 | EP |
03034950 | May 2003 | WO |
WO 2005034813 | Apr 2005 | WO |
WO 2005112830 | Dec 2005 | WO |
Entry |
---|
PCT International Search Report for Application No. PCT/US2008/082018, dated Jul. 22, 2008. |
Adams, David, et al., “Large Annuloplasty Rings Facilitate Mitral Valve Repair in Barlow's Disease,” Society of Thoracic Surgeons 42nd Annual Meeting, Jan. 30-Feb. 1, 2006. |
Alonso-Lei, M.D., et al., Adjustable Annuloplasty for Tricuspid Insufficiency, The annals of Thoracic Surgery, vol. 46, No. 3, pp. 368-369, Sep. 1988. |
Bolling, Mitral Valve Reconstruction in the Patient With Heart Failure, Heart Failure Reviews, 6, pp. 177-185, 2001. |
Bolling, et al., Surgical Alternatives for Heart Failure, The Journal of Heart and Lung Transplantation, vol. 20, No. 7, pp. 729-733, 2001. |
Carpentier, et al. “The ‘Physio-Ring’: An Advanced Concept in Mitral Valve Annuloplasty,” Society of Thoracic Surgeons 31st Annual meeting, Jan. 30-Feb. 2, 1995. |
Carpentier-Edwards Classic Annuloplasty Ring With Duraflo Treatment Models 4425 and 4525 for Mitral and Tricuspid Valvuloplsty, Baxter Healthcare Corporation, 1998. |
Carpentier-Edwards Pyshio Annuloplasty Ring, Edwards Lifesciences Corporation, 2003. |
Carpentier, et al., Reconstructive Valve Surgery, Chapter 19—Reconstructive Techniques, ISBN No. 978-0-7216-9168-8, Sanders Elsevier Publishing, Maryland Heights, Missouri, 2010. |
Flachskampf, Frank A., et al. “Analysis of Shape and Motion of the Mitral Annulus in Subjects With and Without Cardiomyopathy by Echocardiographic 3-Dimensional Reconstruction,” American Society of Echocardiography 0894-7317/2000. |
Gatti, et al., Preliminary Experience in Mitral Valve Repair Using the Cosgrove-Edwards Annuloplasty Ring, Interactive Cardiovascular and Thoracic Surgery, vol. 2(3), pp. 256-261, 2003. |
Melo, et al., Atrioventricular Valve Repair Using Externally Adjustable Flexible Rings: The Journal of Thoracic Cardiovascular Surgery, vol. 110, No. 5, 1995. |
MGH Study Shows Mitral Valve Prolapse Not a Stroke Risk Factor, Massachusetts General Hospital, pp. 1-3, Jun. 1999. |
Miller, D. Craig, M.D., “Ischemic Mitral Regurgitation Redux—To Repair or Replace?”, The Journal of Thoracic & Cardiovascular Surgery, Dec. 2001, vol. 122, No. 6, pp. 1059-1062. |
Salgo, et al., Effect of Annular Shape on Leaflet Curvature in Reducing Mitral Leaflet, American Heart Association, Circulation 200; pp. 106-711. |
Seguin, et al., Advance in Mitral Valve Repair Using a Device Flexible in Three Dimensions, The St. Jude Medical Seguin Annuloplasty Ring, ASAIO Journal, vol. 42, No. 6, pp. 368-371, 1996. |
Smolens, et al., Mitral Valve Repair in Heart Failure, The European Journal of Heart Failure 2, pp. 365-371, 2000. |
Watanabe, Nozomi, et al. “Mitral Annulus Flattens in Ischemic Mitral Regurgitation: Geometric Differences Between Inferior and Anterior Myocardial Infarction: A Real-Time 3-Dimensional Echocardiographic Study,” American Heart Association © 2005; ISSN: 1524-4539. |
Number | Date | Country | |
---|---|---|---|
20080275551 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60915397 | May 2007 | US |