Hydrocarbon wells, horizontal wells in particular, may have sections of wellscreens having a perforated inner tube with an overlying screen portion. The purpose of the screen is to block the flow of particulate matter into the interior of the production tubing. Despite the wellscreen, some contaminants and other particulate matter may continue to enter the production tubing. The particulate matter usually occurs naturally or is part of the drilling and production process. As the production fluids are recovered the particulate matter is also recovered at the surface. The particulate matter causes a number of problems in that the material may be abrasive or hazardous to the environment, thereby reducing the life of any associated production equipment and creating a disposal problem. By controlling and reducing the amount of particulate matter that is pumped to the surface, overall production costs are reduced.
Even though the particulate matter may be too large to enter the production tubing, the particulate matter may cause problems at the downhole wellscreens. As the well fluids are produced the larger particulate matter is trapped in the filter element of the wellscreens. Over the life of the well, as more and more particulate matter is trapped in the filter elements, the filter elements become clogged and restrict flow of the well fluids to the surface.
A method of reducing the inflow of particulate matter before it reaches the wellscreens is to pack gravel or sand in the annular area between the wellscreen and the wellbore. Packing gravel or sand in the annulus provides the producing formation with a stabilizing force to prevent any material around the annulus from collapsing creating additional particulate matter, it also provides a pre-filter to stop the flow of particulate matter before it reaches the wellscreen.
In a typical toe to heel gravel packing operation a screen and packer are run into the wellbore together. Once the screens and packer are properly located the packer is set so that it forms a seal between wellbore and the screen isolating the region above the packer from the region below the packer. The screen is also attached to the packer so that it hangs down in the wellbore forming an annular region around the exterior portion of the screen. At the bottom of the screen is a section of tubular that is blank but for the presence of gravel pack ports. The upper end of the screen is usually referred to as the heel and the lower end of the screen is usually referred to as the toe of the well.
Typically a washpipe subassembly is put together on the surface and then run into the wellbore where it stings through the packer and then run into the screen. The run in continues until the washpipe outlets are approximately aligned with the gravel pack ports in the blank section of tubular past the screens and near the toe of the well.
Once the washpipe is landed, a slurry, usually containing gravel, may be pumped down the well through the washpipe. When the gravel slurry reaches the outlets in the washpipe it exits the washpipe. The blank section of tubular may have an internal seal to help direct the gravel slurry through the gravel pack ports in the blank tubular and finally the gravel slurry flows into the packer and into the annular space created on the outside of the screen.
As the slurry travels from the toe of the well toward the heel along the outside of the screen, an alpha wave begins that deposits gravel from the toe towards the heel, all the while the transport fluid that carries the gravel drains to the inside of the screen. As the fluid drains into the interior of the screen it becomes increasingly difficult to pump the slurry down the wellbore. Once a certain portion of the screen is covered the gravel will start building back from the heel towards the toe, the beta wave, to completely pack off the screen.
After the annular area around the screen has been packed with gravel then the operator begin to reverse out. In some instances the operator may desire to backwash the interior of the screen to remove and excess gravel that may have been deposited in the interior of the screen assembly. In this case the ports in the washpipe that were depositing the sand slurry into the annulus are now raised above the internal seal and the operator pumps gravel free fluid down the annular area around the exterior of the washpipe to reverse the fluid inside of the washpipe back to surface thereby removing any the excess sand or gravel but leaving the gravel that was placed around the exterior of the screen in place.
A disadvantage of the system described above is that the gravel pack ports in the blank tubular must be sealed to prevent fluid and particulate matter, or even the gravel that was packed around the annulus, from flowing into the interior of the screen assembly through the gravel pack ports thereby and bypassing the screen altogether. Typically this is done by running in a packer or plug in the interior of the blank tubular to completely seal the portion of the tubular below the packer form the portion of the tubular above the packer preventing any fluid flow through the gravel pack ports into the interior of the screen assembly. A separate trip to run in and set such packer wastes rig time and costs money.
In the new system the packer attached to the interior of the blank tubular is constructed of a swellable material where the material either does not swell or swells only a minimal amount until either a predetermined time or condition exists in the wellbore. By running the swellable packer into the wellbore in the first condition where it has a smaller diameter the swellable packer may be used to seal against the washpipe during the gravel packing operation but then after the washpipe is removed the swellable seal is allowed to swell until it ultimately completely seals the interior of the blank tubular isolating the interior portion of the tubular below the swellable packer from the interior portion of the tubular above the packer. By sealing the interior of the blank tubular fluid and particulate matter is prevented from entering the interior of the screen assembly and flowing to the surface.
In other embodiments a swellable material attached to the interior of a could be used anytime where a seal needs to allow a tubular, mandrel, or any object to pass by the swellable seal for some period of time before the swellable seal is required to form a more robust seal against the tubular, mandrel, other object, or even to seal the interior of the tubular where the seal is placed.
Such a seal is particularly useful in those instances where a tightly fitting seal could be damaged by another object touching the seal thereby eroding the seal prior to the seal's function being required. A similar condition may be caused if the seal is placed on the exterior of a tubular or other object and then that tubular or object is moved a distance such as when a tubular is run into a wellbore. The contact between the seal and the wall of the well may damage the seal prior to the seal's function being required.
After exiting the gravel pack ports 22 the gravel slurry takes the path of least resistance and flows towards the heel of the wellbore 20 as indicated by directional arrow 44. As the gravel slurry moves upward towards the heel of the well along the exterior of the screen assembly 10 the fluid portion of the gravel slurry flows through the screen assembly 10 into the interior of the screen assembly 10 as indicated by directional arrow 46. When the fluid flows into the interior of the screen assembly 10 the gravel is deposited or “packed” around the exterior of the screen assembly 10. The fluid continues upward through the annular area between at first the screen assembly 10 then closer to the surface the casing 48 and the washpipe 30.
After the gravel packing operation is complete the washpipe 30 is removed from the wellbore 20. As depicted in
There are multiple embodiments of a swellable seal or packer. The swellable material 100 depicted in
It is envisioned that the performance of an inwardly swelling packer or seal could be enhanced through the use of anti-extrusion devices placed at one or both ends of the swelling elastomer. Such an anti-extrusion device could be formed or positioned by the swelling material as the swelling material expanded from a first condition to a second condition.
By incorporating a formable extrusion barrier or anti-extrusion device into the plug, the material comprising the anti-extrusion device could serve to close the central path that the swellable seal or packer is intended to seal. With the central path closed, the swellable material could be contained and thereby becomes less likely to expand to a point at which it loses integrity.
As depicted in
As depicted in
When the swellable material 124 is in the first condition, as depicted in
While the embodiments are described with reference to various implementations and exploitations, it will be understood that these embodiments are illustrative and that the scope of the inventive subject matter is not limited to them. Many variations, modifications, additions and improvements are possible.
Plural instances may be provided for components, operations or structures described herein as a single instance. In general, structures and functionality presented as separate components in the exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements may fall within the scope of the inventive subject matter.
Number | Name | Date | Kind |
---|---|---|---|
4936386 | Colangelo | Jun 1990 | A |
20060272806 | Wilkie et al. | Dec 2006 | A1 |
20110056706 | Brooks | Mar 2011 | A1 |
20110120733 | Vaidya et al. | May 2011 | A1 |
20120006569 | Smith et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
2448069 | Oct 2008 | GB |
2008062186 | May 2008 | WO |
2009074785 | Jun 2009 | WO |
Entry |
---|
“Swellable packers to automatically choke or shut of flow in a wellbore,” IP.Com Journal, IP.Com Inc., West Henrietta, NY, US, Dec. 7, 2010, XP013142917, ISSN: 1533-0001. |
Extended Search Report received in corresponding EP Application No. 13190255.3, dated Jan. 30, 2014. |
Number | Date | Country | |
---|---|---|---|
20140116678 A1 | May 2014 | US |