Ion conductive block copolymers

Information

  • Patent Grant
  • 7094490
  • Patent Number
    7,094,490
  • Date Filed
    Tuesday, May 13, 2003
    21 years ago
  • Date Issued
    Tuesday, August 22, 2006
    17 years ago
Abstract
This invention relates to ion conductive copolymers which are useful in forming polymer electrolyte membranes used in fuel cells.
Description
TECHNICAL FIELD

This invention relates to ion conductive polymers which are useful in forming polymer electrolyte membranes used in fuel cells.


BACKGROUND OF THE INVENTION

Fuel cells have been projected as promising power sources for portable electronic devices, electric vehicles, and other applications due mainly to their non-polluting nature. Of various fuel cell systems, the polymer electrolyte membrane based fuel cell technology such as direct methanol fuel cells (DMFCs) have attracted much interest thanks to their high power density and high energy conversion efficiency. The “heart” of a polymer electrolyte membrane based fuel cell is the so called “membrane-electrode assembly” (MEA), which comprises a proton conducting polymer electrolyte membrane (PEM) catalyst disposed on the opposite surfaces of the PEM to form a catalyst coated membrane (CCM) and a pair of electrodes (i.e., an anode and a cathode) disposed to be in electrical contact with the catalyst layer.


Proton-conducting membranes for DMFCs are known, such as Nafion® from the E.I. Dupont De Nemours and Company or analogous products from Dow Chemicals. These perfluorinated hydrocarbon sulfonate ionomer products, however, have serious limitations when used in high temperature of the fuel cell is over 80° C. Moreover Nafion®has a very high methanol crossover rate, which impedes its applications in DMFCs.


U.S. Pat. No. 5,773,480, assigned to Ballard Power System, describes a partially flourinated proton conducting membrane from α, β, β- trifluorostyrene). Another disadvantage of this membrane is that it is very brittle, thus has to be incorporated into a supporting matrix.


U.S. Pat. Nos. 6,300,381 and 6,194,474 to Kerrres, et al. describe an acid-base binary polymer blend system for proton conducting membranes, wherein the sulfornated poly(ether sulfone) was made by post-sulfonation of the poly ether sulfone).


M. Ueda in the Journal of Polymer Science, 31(1993): 852, discloses the use of sulfonated monomers to prepare the sulfonated poly(ether sulfone polymers).


U.S. Patent Application US 2002/0091225A1to McGrath, et al. used this method to prepare sulfonated polysulfone polymers. The need for a good membrane for fuel cell operation requires balancing of various properties of the membrane. Such properties included proton conductivity, methanol-resistance, chemical stability and methanol crossover especially for high temperature applications, fast start up of DMFCs, and durability of cell performance. In addition, it is important for the membrane to retain its dimensional stability over the fuel operational temperature range. In the case of a DMFC, methanol oxidation generates enough heat to raise the cell temperature. If the membrane swells significantly, it.will increase methanol crossover. The membrane thus gradually loses its ability to block methanol crossover, resulting in degradation of cell performance. The dimension changes of the membrane also put a stress on the bonding of the membrane-electrode assembly (MEA). Often this results in delamination of the membrane from the electrode after excessive swelling of the membrane. Therefore, maintaining the dimensional stability over a wide temperature range and avoiding excessive membrane swelling are important for DMIFC applications.


SUMMARY OF THE INVENTION

The invention provides ion conductive copolymer compositions which can be used to fabricate polymer electrolyte membranes (PEM's), catalyst coated polymer electrolyte membranes (CCM's) and membrane electrode assemblies (MEA's) which are useful in fuel cells.


The ion conductive block copolymer comprises a non-ionic polymer and an ionic polymer covalently linked either directly or indirectly to each other. At least one of the ionic or non-ionic polymers comprises a block polymer in the ion conductive copolymer. Preferably both the ionic and non-ionic polymers are block polymers. The non-ionic polymer comprises two non-ionic comonomers. The ionic polymer comprises two comonomers where at least one comonomer comprises an ion conducting group such as sulfonic acid. In a preferred embodiment, the ionic and non-ionic monomers are reacted separately to produce ionic and/or non-ionic blocks which may thereafter be combined. The variability of the components of the ion conducting block copolymer provide for the formation of a variety of ion conducting block copolymers. Mixing and matching of these different ionic and non-ionic polymers provides for the formation of the ion conducting block copolymers of the invention.


For example, by adjusting the block size, the overall molecular length, the rigidity and the affinity among the ion conducting copolymers, it is possible to control ion channel size distributions and affinity as well fuel cross-over, stability, solubility and mechanical properties of the ion conductive polymer and the membranes made therefrom.


In addition to the foregoing, additional random ionic and/or non-ionic polymers maybe interspersed between and among the various non-ionic and ionic blocks of the ion conducting polymer.







DETAILED DESCRIPTION

The invention provides ion conductive block copolymers comprising ionic and non-ionic polymers where one or both of the polymers is a block in the copolymer. The invention also provides polymers which are random in length and/or composition which can be covalently interdispersed between or among the ionic and non-ionic polymers of the ion conductive block copolymer. One use of such polymeric materials is in the formation of polymer electrolyte membranes (PEMs), catalyst coated membranes (CCM's) and membrane electrolyte assemblies (MEA's) which may be used in direct methanol fuel cells (DMFCs), and the like.


In a preferred embodiment, the ion conductive block copolymer comprises a non-ionic block comprising monomers made of two non-ionic comonomers and an ionic block comprising an ionic monomer made of two comonomers wherein at least one comonomer comprises an ion conducting group. In general, the ion conductive polymers contain aromatic resides. The ion conductive polymer additionally has groups which facilitate the transport of ions such as H+within and through the copolymer composition.


The ion conductive block copolymer in one embodiment can be represented by the following formula:

[(AB)n(CD)o]j   (1)


AB represents a non-ionic monomer made of two different non-ionic comonomers A and B. AB is combined with other AB's to form the non-ionic polymer (AB)n. CD represents an ionic monomer made of two different comonomers C and D at least one of which contains an ion conducting group discussed in more detail below. CD is combined with other CD's to form ionic polymer (CD)o. At least one and preferably both of the (AB)n, polymer and (CD)opolymer are blocks. These ionic and non-ionic polymer are then combined in appropriate proportions to form an ion conducting block copolymer. These units may be combined j-1 times. In the above formula, “n”is an integer between 0 and 100, more preferably between 1 and 100 and o is an integer between 1 and 100. More preferably, each of n and o are independently between 1 and 50, more preferably between 5 and 50, still more preferably between 50 and 150, still more preferably between 100 and 120. The ratio of o divided by n+o, is between .001 and 1, more preferably between 0.15 and 0.7, still more preferably between 0.20 and 0.50.


For example, if n=4, o=1 and j=2, the polymer has the following structure:

(ABABABAB)(CD)-(ABABABAB)(CD)


The region containing AB is the non-ionic region (block) whereas the region containing CD is the ionic region (block).


In general, the non-ionic polymer (AB)r, is formed by combining chemically reactive precursors to A and B under conditions which allow for the formation of(AB)n. However, in some embodiments, it may be desirable to have different A's and/or B's within the non-ionic region. The non-ionic polymer may then be represented as (AaBb)n where a and b represent the number of different A's and B's and are independently between 1 and n the number of cell temperature. If the membrane swells significantly, it will increase methanol crossover. The membrane thus gradually loses its ability to block methanol crossover, resulting in degradation of cell performance. The dimension changes of the membrane also put a stress on the bonding of the membrane-electrode assembly (MEA). Often this results in delamination of the membrane from the electrode after excessive swelling of the membrane. Therefore, maintaining the dimensional stability over a wide temperature range and avoiding excessive membrane swelling are important for DMFC applications.


SUMMARY OF THE INVENTION

The invention provides ion conductive copolymer compositions which can be used to fabricate polymer electrolyte membranes (PEM's), catalyst coated polymer electrolyte membranes (CCM's) and membrane electrode assemblies (MEA's) which are useful in fuel cells.


The ion conductive block copolymer comprises a non-ionic polymer and an ionic polymer covalently linked either directly or indirectly to each other. At least one of the ionic or non-ionic polymers comprises a block polymer in the ion conductive copolymer. Preferably both the ionic and non-ionic polymers are block polymers. The non-ionic polymer comprises two non-ionic comonomers. The ionic polymer comprises two comonomers where at least one comonomer comprises an ion conducting group such as sulfonic acid. In a preferred embodiment, the ionic and non-ionic monomers are reacted separately to produce ionic and/or non-ionic blocks which may thereafter be combined.


The variability of the components of the ion conducting block copolymer provide for the formation of a variety of ion conducting block copolymers. Mixing and matching of these different ionic and non-ionic polymers provides for the formation of the ion conducting block copolymers of the invention. however, have serious limitations when used in high temperature fuel cell application Nafion® loses conductivity when the operation temperature of the fuel cell is over 800° C. Moreover, Nafion® has a very high methanol crossover rate, which impedes its applications in DMFCs.


U.S. Pat. No. 5,773,480, assigned to Ballard Power System, describes a partially fluorinated proton conducting membrane from α, β, β- trifluorostyrene. One disadvantage of this membrane is its high cost of manufacturing due to the complex synthetic processes for monomer α, β, β- trifluorostyrene and the poor sulfonation ability of poly (α, β, β- trifluorostyrene). Another disadvantage of this membrane is that it is very brittle, thus has to be incorporated into a supporting matrix.


U.S. Pat. Nos. 6,300,381and 6,194,474 to Kerrres, et al. describe an acid- base binary polymer blend system for proton conducting membranes, wherein the sulfonated poly(ether sulfone) was made by post-sulfonation of the poly (ether sulfone).


M. Ueda in the Journal of Polymer Science, 31(1993): 853, discloses the use of sulfonated monomers to prepare the sulfonated poly(ether sulfone polymers).


U.S. Patent Application US 2002/0091225A1 to McGrath, et al. used this method to prepare sulfonated polysulfone polymers.


The need for a good membrane for fuel cell operation requires balancing of various properties of the membrane. Such properties included proton conductivity, methanol-resistance, chemical stability and methanol crossover especially for high temperature applications, fast start up of DMFCs, and durability of cell performance. In addition, it is important for the membrane to retain its dimensional stability over the fuel operational temperature range. In the case of a DMFC, methanol oxidation generates enough heat to raise the (AaBb) units. In this embodiment, the precursors to the different A's and/or B's can be combined to provide for predetermined positioning in the polymer block and/or a random distribution of the different A's and/or B's within (AaBb)n. For example, if n=3 and a=2 where the amount of A, is twice the amount of A2 in a given polymer and the position of A2 is at the third position, then the non-ionic block can be represented as a mixture of A1BA1BA2B.


The ionic polymer comprising (CD)o similarly may have the same or different C and/or D, each of which is located at a predetermined or random position in the ionic polymer. The formula representing the ionic region is represented by (CcDd)o where c and d represent the number of different C's and D's and are between 1 and o the number of (CcDd) units.


In addition to the foregoing, the ion conducting copolymers can be represented by the formula:

[(AaBb)n(AgBh)m(CeDf)o(CeDf)p]1BA1BA2B.


The ionic polymer comprising (CD)o similarly may have the same or different C and/or D, each of which is located at a predetermined or random position in the ionic polymer. The formula representing the ionic region is represented by (CcDd)o where c and d represent the number of different C's and D's and are between 1 and o the number of (CcDd) units.


In addition to the foregoing, the ion conducting copolymers can be represented by the formula:

(2) [(AaBb)n(AgBh)m(CcDd)o(CeDf)p]  (2)


In this formula (AaBb)n and (CcDd)o and A, B, C and D are the same as above and (AgBh)m and (CeDf)p are polymers which are random in length and/or composition. For the random polymers, m and p are numbers between 0 and 200, more preferably between 1 and 20 which define the length of unit (AgBh)h and (CeDf), respectively. g and h are numbers between 0 and m and e and f are numbers between 0 and p. When m is a random number between 1 and m and/or p is a random number between 1 and p the ion conducting compositions comprise non-ionic and/or ionic random polymer components with different lengths. For example in the non-ionic region, if a=2, b=1, n=3 and m=4, A1 and A2 are in predetermined positions in (AaBb)n−(AgBh)n the mixture copolymers can be represented as being made up of the following:

(A1BA1BA2B)(AB)
(A1BA1BA2B)(ABAB)
(A1BA1BA2B)(ABABAB)
(A1BA1BA2B)(ABABABAB)


Similarly, when c=2, o=3, p=3 and C1 and C2 are at predetermined positions in (CcDd)o−(CeDf)p the mixture of copolymer can be represented as follows:

(C1DC1DC2D)(CD)
(C1DC1DC2D)(CDCD)
(C1DC1DC2D)(CDCDCD)


Accordingly, block ionic and/or block non-ionic polymers can be combined with polymers with varying tail lengths to form a mixture of distinct ion conducting partial block copolymers. Alternatively, the tail length of the random polymer components can be random among different molecules or random within a particular copolymer.


When there are more than one type of A, B, C and/or D within the random polymers, such different monomers can be in a predetermined position if the length of the random polymer varies or alternatively randomly distributed over the random polymer. For example, if g=2, h=l and n=3, the random polymer interposed in formula (2) between the non-ionic and/or ionic blocks can be represented as follows:

A1BA1BA2B
A1BA2BA1B
A2BA1BA1B.


In addition, the polymer may be random both in the position of the different monomers in combination with variation in the length of the random polymer.


The distribution of ion conducting groups in formula (2) can be represented by the following formulas:

(Sx1Cc—Sy1Dd)o  (7)

alone or in combination with:

(Sx2CeSy2Df)p  (8)

where S is an ion conducting group covalently attached to Cc, Dd, Ce and/or Df. X1 is the percentage of Cc which contain S, X2 is the percentage of Ce that contains S, Y1 is the percentage of Dd which contains S and Y2 is the percentage of Df which contains S where (x=x1+x2), (y=y1+y2) and x+y is the total percentage of the C+D units which contain S. At least one of x1, x2, y1 and y2 must be greater than zero.


Once made, the ionic and/or non-ionic block and optionally random ionic and/or non-ionic polymers are covalently combined to form a block copolymer having at least ionic and/or non-ionic blocks. This polymer may then be combined with itself j−1 times. If different ionic conducting block copolymers are used, they may be combined in a random or in a predetermined pattern or both.


The preparation of the disclosed ionic and non-ionic block and random polymers provides flexibility in the formulation of the ion conductive block copolymer. Mixtures of selected component polymers can be combined in defined ratios to provide copolymers having a variety of physical and chemical properties.


In addition to the foregoing, the composition may be slightly modified depending upon how the various polymers making up the composition are made. For example, if precursor for A is in excess to the precursor for B an additional A will be present in the Similarly, if excess precursor to B is used, there will be an additional B in the same polymer. Similarly, the ion polymer can have an additional D and/or C depending on how the composition is made. Finally, at the juncture of the ionic and non-ionic components, excess A excess B may be present excess B. If, however, approximately molar equivalents are used, the composition will be primarily held in place by covalent bonds rather than additional monomer.


Accordingly, the invention can be defined by the combined formula:

{-L1-[(AaBb)n-L1-(AeBf)m]1-z-L2-[—(Sx1Cc—Sy1Dd)o-L3-]z}j  (9)

where [(AaBb)n-Ll-(AeBf)m]comprises a non-ionic hydrophobic region, [-(SxCcSyDh)-]comprises an ionic hydrophyilic region where each of the terms are defined above, L, is a bond or an additional A and/or B, L2 is a bond, or an additional A and/or D, and L3 is a bond or an additional C and/or D.


Although A and C can be any hydrophobic residue, it is preferred that A and C contain aromatic groups or substituted aromatic groups. Such substitutions are preferably with one or more electron withdrawing groups, most preferably fluorine.


Particularly preferred A and C residues are phenyl, napthyl, terphenyl, aryl nitrile, substituted aryl nitrile, organopolysiloxane Ar1—R1—Ar2, where R1 is , —C(O)—, —S(O)2—, —P(O)(C6H5)—, —C(O)—Ar3—C(O)—, or —C(O)—Ar4—S(O)2—, and Ar1, Ar2, Ar3, and Ar4 are aromatic groups and substituted aromatic groups. Such substitutions are preferably with one or more electron withdrawing groups, most preferably with F.


B and D also preferably contain aromatic groups or substituted aromatic groups. Such substitutions are preferably with one or more electron withdrawing groups, most preferably with F. Particularly preferred B and D are:


O—Ar5—R2—Ar6—O—, where R2 is a single bond, cycloaliphatics of the formula CnH2n-2,




embedded image



and Ar5 and Ar6 are aromatic groups or substituted aromatic groups.


Preferred embodiments have the formula:

(10) [([Ar1—R1—Ar2—O—Ar5—R2—Ar6—O]n)1-z)([Sx1—Ar1—R1—Sy1—OSy5—Ar5—R2—SY2—Ar6—O]o)z];

where each of the components are as defined above. When different components of Ar1, R1, Ar2, Ar5, R2, and/or Ar6 are present within the non-ionic and ionic polymer, the distribution of the different components within at least one of the ionic and non-ionic polymers and preferably both can be ordered so as to position the different components at predetermined positions to form one or more blocks in the copolymer.


General methods for the preparation of ion conducting block copolymers are as follows The methods include the steps of combining a first comonomer with a second comonomer. The first comonomer should have at least two leaving groups and the second comonomer should have at least two displacing groups. In one aspect, the second comonomer is in a molar excess relative to the first comonomer, thereby forming a first copolymer with displacing groups on the end of the first copolymer.


A third comonomer that should have at least two leaving groups and a fourth comonomer that should have at least two displacing groups are then combined. The third comonomer preferably is in molar excess relative to the fourth comonomer, thereby forming a second copolymer having leaving groups on the end of the second copolymer.


The first copolymer is combined with the second copolymer (or vice versa), thereby forming the block copolymer. At least one of the first comonomer or the third comonomer includes an ion conducting group such as a sulfonate group.


The term “leaving group” is intended to include those functional moieties that can be displaced by a nucleophilic moiety found, typically, in another monomer. Leaving groups are well recognized in the art and include, for example, halides (chloride, fluoride, iodide, bromide), tosyl, mesyl, etc. In certain embodiments, the monomer has at least two leaving groups, which are “para” to each other with respect to the aromatic monomer to which they are attached.


The term “displacing group” is intended to include those functional moieties that can act typically as nucleophiles, thereby displacing a leaving group from a suitable monomer. The result is that the monomer to which the displacing group is attached becomes attached, generally covalently, to the monomer to which the leaving group was associated with. An example of this is the displacement of fluoride groups from aromatic monomers by phenoxide or alkoxide ions associated with aromatic monomers.


An example of the synthesis of a non-ionic block and ionic block is set forth in formulas (11) and (12) where X is a leaving group and OH is a displacement group.

HO—Ar1—R1—Ar2—OH+X—Ar5—R2—Ar6—X→H—[O—Ar1R1—Ar2—O—Ar5—R2—Ar6]N—X Comonomer I+Comonomer II→Non-ion polymer III  (11)
HO—Ar1—R1—Ar2—OH+X—Sx2Ar5—R2—Sy2Ar5—X→H—[O—Ar1—R—Ar2O—Sx2Ar5—R2—Sy2Ar5]O—X Comonomer IV+Comonomer V→Ionic polymer VI  (12)


Comonomer I contains two displacement groups (—OH) and comonomer II containing two leaving group (X). The product of the reaction between comonomer I and comonomer II is non-ionic polymer III.


In a separate reaction vessel, monomer IV containing two displacement groups and monomer V containing two leaving groups are combined to produce the ionic polymer VI as shown in formula (12). In each case, the length of the non-ionic and ionic polymers is controlled by reaction conditions including the time, temperature and concentration of the reactants.


Non-ionic polymer III and ionic polymer VI are combined in a reaction vessel to form the ion conducting copolymer VII.

H—[O—Ar1R1—Ar2—O-Ar5-R2—Ar6]N—X+H—[O—Ar1—R—Ar2O—Sx2Ar5—R2—Sy2Ar5]O—X→H—[O—Ar1R1—Ar2—O-AR5—R2—Ar6]N—−—[O—Ar1—R—Ar2O—Sx2Ar5—R2—Sy2Ar5]O—X  (13)


VII

The copolymer can be combined j−1 times.


In a particular preferred embodiment, R1 is —(CO)—, R2 is cyclohexydyl and S is SO3. This is represented by Formula VIII.




embedded image



where n=2–20; o=2-20; j=1–200. The four sulfonation sites may or may not contain an SO3 group. However, the total degree of sulfonation is between 10% and 80%.


In another preferred embodiment, R1 is —(CO)—, R2 is bis and S is SO3. This is represented by Formula VIII.




embedded image



where n=2-20; m=2-20; j=1-200. The four sulfonation sites may or may not contain an SO3 group. However, the total degree of sulfonation is between 10% and 80%.


VIII

Polymer membranes may be fabricated by solution casting of the ion conductive copolymer. Alternatively, the polymer membrane may be fabricated by solution casting the ion conducting polymer the blend of the acid and basic polymer.


When cast into a membrane for use in a fuel cell, it is preferred that the 15 membrane thickness be between 0.1 to 10 mils, more preferably between 1 and 6 mils, most preferably between 1.5 and 2.5 mils, and it can be coated over polymer substrate.


As used herein, a membrane is permeable to protons if the proton flux is greater than approximately 0.005 S/cm, more preferably greater than 0.01 S/cm, most preferably greater than 0.02 S/cm.


As used herein, a membrane is substantially impermeable to methanol if the methanol transport across a membrane having a given thickness is less than the transfer of methanol across a Nafion membrane of the same thickness. In preferred embodiments the permeability of methanol is preferably 50% less than that of a Nafion membrane, more preferably 75% less and most preferably greater than 80% less as compared to the Nafion membrane.


After the ion conducting copolymer has been formed into a membrane, it may be used to produce a catalyst coated membrane (CCM). As used herein, a CCM comprises a PEM when at least one side and preferably both of the opposing sides of the PEM are partially or completely coated with catalyst. The catalyst is preferable a layer made of catalyst and ionomer. Preferred catalysts are Pt and Pt—Ru. Preferred ionomers include Nafion and other ion conductive polymers. In general, anode and cathode catalysts are applied onto the membrane by well established standard techniques. For direct methanol fuel cells, platinum/ruthenium catalyst is typically used on the anode side while platinum catalyst is applied on the cathode side. For hydrogen/air or hydrogen/oxygen fuel cells platinum or platinum/ruthenium is generally applied on the anode side, and platinum is applied on the cathode side. Catalysts may be optionally supported on carbon. The catalyst is initially dispersed in a small amount of water (about 100 mg of catalyst in 1 g of water). To this dispersion a 5% ionomer solution in water/alcohol is added (0.25–0.75 g). The resulting dispersion may be directly painted onto the polymer membrane. Alternatively, isopropanol (1–3 g) is added and the dispersion is directly sprayed onto the membrane. The catalyst may also be applied onto the membrane by decal transfer, as described in the open literature (Electrochimica Acta, 40: 297 (1995)).


The CCM is used to make MEA's. As used herein, an MEA refers to an ion conducting polymer membrane made from a CCM according to the invention in combination with anode and cathode electrodes positioned to be in electrical contact with the catalyst layer of the CCM.


The electrodes are in electrical contact with the catalyst layer, either directly or indirectly, when they are capable of completing an electrical circuit which includes the CCM and a load to which the fuel cell current is supplied. More particularly, a first catalyst is electrocatalytically associated with the anode side of the PEM so as to facilitate the oxidation of hydrogen or organic fuel. Such oxidation generally results in the formation of protons, electrons and, in the case of organic fuels, carbon dioxide and water. Since the membrane is substantially impermeable to molecular hydrogen and organic fuels such as methanol, as well as carbon dioxide, such components remain on the anodic side of the membrane. Electrons formed from the electrocatalytic reaction are transmitted from the cathode to the load and then to the anode. Balancing this direct electron current is the transfer of an equivalent number of protons across the membrane to the anodic compartment. There an electrocatalytic reduction of oxygen in the presence of the transmitted protons occurs to form water. In one embodiment, air is the source of oxygen. In another embodiment, oxygen-enriched air is used.


The membrane electrode assembly is generally used to divide a fuel cell into anodic and cathodic compartments. In such fuel cell systems, a fuel such as hydrogen gas or an organic fuel such as methanol is added to the anodic compartment while an oxidant such as oxygen or ambient air is allowed to enter the cathodic compartment. Depending upon the particular use of a fuel cell, a number of cells can be combined to achieve appropriate voltage and power output. Such applications include electrical power sources for residential, industrial, commercial power systems and for use in locomotive power such as in automobiles. Other uses to which the invention finds particular use includes the use of fuel cells in portable electronic devices such as cell phones and other telecommunication devices, video and audio consumer electronics equipment, computer laptops, computer notebooks, personal digital assistants and other computing devices, GPS devices and the like. In addition, the fuel cells may be stacked to increase voltage and current capacity for use in high power applications such as industrial and residential sewer services or used to provide locomotion to vehicles. Such fuel cell structures include those disclosed in U.S. Pat. Nos. 6,416,895, 6,413,664, 6,106,964, 5,840,438, 5,773,160, 5,750,281, 5,547,776, 5,527,363, 5,521,018, 5,514,487, 5,482,680, 5,432,021, 5,382,478, 5,300,370, 5,252,410 and 5,230,966.


Such CCM and MEM's are generally useful in fuel cells such as those disclosed in U.S. Pat. Nos. 5,945,231, 5,773,162, 5,992,008, 5,723,229, 6,057,051, 5,976,725, 5,789,093, 4,612,261, 4,407,905, 4,629,664, 4,562,123, 4,789,917, 4,446,210, 4,390,603, 6,110,613, 6,020,083, 5,480,735, 4,851,377, 4,420,544, 5,759,712, 5,807,412, 5,670,266, 5,916,699, 5,693,434, 5,688,613, 5,688,614, each of which is expressly incorporated herein by reference.


The CCM's and MEA's of the invention may also be used in hydrogen fuel cells which are known in the art.


The ion conducting polymer membranes of the invention also find use as separators in batteries. Particularly preferred batteries are lithium ion batteries.


EXAMPLES

The following examples provide further support for the types of reactions and polymers described throughout this specification.


Example 1 (JC58-42)

Oligomer 1: DP=4


This oligomer was synthesized in a similar way as described in oligomer 1, using following compositions: 4,4′-difluorobenzophone (BisK, 34.91 g, 0.16 mol), 9,9-bis(4-hydroxyphenyl)fluorene (42.05 g, 0.12 mol), and anhydrous potassium carbonate (25.87 g, 0.187 mol), 220 mL of DMSO and 110 mL of toluene.


This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 7.75 g, 0.0355 mol), 3,3′-disulfonated-4,4′-difluorobenzophone ((SBisK, 15.00 g, 0.0355 mol), Oligomer 1 (20.90 g), BisZ (21.47 g, 0.08 mol), and anhydrous potassium carbonate (14.37 g, 0.10 mol), 250 mL of DMSO and 125 mL of toluene. This polymer has an inherent viscosity of 0.49 dl/g in DMAc (0.25 g/dl). Its one-day swelling in 8 M methanol at 80° C. was 52%, cross-over in 8 M methanol was 0.016 mg.mil/cc.min.cm2 (non-boiled, conductivity was 0.013 S/cm (non-boiled) and 0.034 S/cm (boiled).


Example 2 (JC58-73)

This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 5.72 g, 0.026 mol), 3,3′-disulfonated-4,4′-difluorobenzophone ((SBisK, 17.04 g, 0.040 mol), Oligomer 1 (19.59 g), BisZ (20.12 g, 0.075 mol), and anhydrous potassium carbonate (13.47 g, 0.097 mol), 250 mL of DMSO and 125 mL of Toluene. This polymer has an inherent viscosity of 0.72 dl/g in DMAc (0.25 g/dl).


Example 3 (JC58-85)

This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 4.68 g, 0.021 mol), 3,3′-disulfonated-4,4′-difluorobenzophone (SbisK, 19.06 g, 0.045 mol), Oligomer 1 (19.59 g), 9,9-bis(4-hydroxyphenyl)fluorine (26.28 g, 0.075 mol), and anhydrous potassium carbonate (13.47 g, 0.097 mol), 250 mL of DMSO and 125 mL of Toluene.


Example 4(JC58-86)

This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 4.68 g, 0.021 mol), 3,3′-disulfonated-4,4-difluorobenzophone (SBisK, 19.06 g, 0.040 mol), Oligomer 1 (19.59 g), bisphenol (13.96 g, 0.075 mol), and anhydrous potassium carbonate (13.47 g, 0.075 mol), 250 mL of DMSO and 125 mL of toluene.


Example 5 (JC58-89)

This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 4.68 g, 0.021 mol), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 19.06 g, 0.040 mol), Oligomer 2 (19.59 g),1,5-dihydroxynaphthalene (12.01 g, 0.075 mol), and anhydrous potassium carbonate (13.47 g, 0.097 mol), 250 mL of DMSO and 125 mL of toluene.


Example 6 (JC58-69)

This example illustrates block copolymer system using BisK-O block in the non-ionic region, and SBisK-Z in ionic region, the non-ionic region consists of 11%. Size 6 of BisK-O block.


Oligomer 2: DP=6


This oligomer was synthesized in a similar way as described in oligomer 1, using following compositions: 4,4′-difluorobenzophone (BisK, 65.46 g, 0.30 mol), 4,4′-dihydroxydiphenyl ether (0, 50.55 g, 0.25 mol), and anhydrous potassium carbonate (44.92 g, 0.325 mol), 540 mL of DMSO and 270 mL of toluene.


This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-diflorobenzophone (BisK, 6.51 g, 0.030 mol), 3,3′-disulfonated-4,4-difluorobenzophone (SBisK, 17.40 g, 0.041 mol), Oligomer 2 (22.40 g), BisZ (21.47 g, 0.08 mol), and anhydrous potassium carbonate (14.37 g, 0.10 mol), 250 mL of DMSO and 125 mL of toluene.


Examples 7–13 illustrate block copolymer system using same BisK-Z in non-ionic region, but sBisK with various aryl phenol groups block having different chain mobility and chemical affinity in the ionic region. The non-ionic block size is 8 and block concentration is 11%.


Example 7 Illustrates Ionic Region Consist of sBisK-Z Unit (JC58-45)

Oligomer 3: DP=8


This oligomer was synthesized in a similar way as described in oligomer 1, using following compositions: 4,4′-difluorobenzophone (BisK, 65.46 g, 0.3 mol), BisZ (70.44 g, 0.262 mol), and anhydrous potassium carbonate (17.97 g, 0.13 mol), 540 mL of anhydrous DMSO (270 mL) of toluene. This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 4.57 g, 0.021 mol), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisZ 17.41 g, 0.041 mol), Oligomer 3 (29.72 g), BisZ (18.78 g, 0.07 mol), and anhydrous potassium carbonate (12.57 g, 0.091 mol), 270 mL of anhydrous DMSO and 135 mL of toluene. This polymer has an inherent viscosity of 0.62 dl/g in DMAc (0.25 g/dl).


Example 8 Illustrates Ionic Region Consist of sBisK-FL Unit (JC58-44:)

This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 3.91 g, 0.0179 mol), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 14.92 g, 0.06 mol), Oligomer 3 (25.27 g), 9,9-bis(4-hydroxyphenyl)fluorene (21.02 g, 0.07 mol), and anhydrous potassium carbonate (10.78 g, 0.078 mol), 250 mL of DMSO and 125 mL of toluene. This polymer has an inherent viscosity of 0.84 dl/g in DMAc (0.25 g/dl).


Example 9 Illustrates Ionic Region Consist of sBisK-AF Unit (JC58-66)

This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 3.91 g, 0.0179 mol), 3,3′-disulfonated-4,4′-difluorobenzophone ((SBisK, 14.92 g, 0.035 mol), Oligomer 3 (25.47 g), 4,4′-(Hexafluoroisopropylidene)-diphenol (20.17 g, 0.06 mol), and anhydrous potassium carbonate (10.78 g, 0.078 mol), 250 mL of DMSO and 125 mL of toluene.


This polymer has an inherent viscosity of 0.47 dl/g in DMAc (0.25 g/dl).


Example 10 Illustrates Ionic Region Consisting of sBisK-B Unit (JC58-61)

This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 4.57 g, 0.021 mol), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 17.41 g, 0.041 mol), Oligomer 3 (29.72 g), 4,4′-dihydroxybiphenyl (13.03 g, 0.07 mol), and anhydrous potassium carbonate (12.57 g, 0.091 mol), 250 mL of DMSO and 125 mL of toluene. This polymer has an inherent viscosity of 1.01 dl/g in DMAc (0.25 g/dl).


Example 11 Illustrates Ionic Region Consisting of sBisK-O Unit (JC58-60)

This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 4.57 g, 0.021 mol), 3,3′-disulfonated-4,4′-difluorobenzophone ((SBisK, 17.41 g, 0.041 mol), Oligomer 3 (29.72 g), 4,4′-dihydroxydiphenyl ether (14.15 g, 0.07 mol), and anhydrous potassium carbonate (12.57 g, 0.091 mol), 250 mL of DMSO and 125 mL of toluene. This polymer has an inherent viscosity of 0.94 dl/g in DMAc (0.25 g/dl).


Example 12 (JC58-76)

This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 1.298 g, 0.0059 mol), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 23.736 g, 0.056 mol), Oligomer 3 (29.72 g), 4,4′-dihydroxydiphenyl (13.03 g, 0.07 mol), and anhydrous potassium carbonate (12.57 g, 0.091 mol), 250 mL of DMSO and 125 mL of toluene. This polymer has an inherent viscosity of 1.35 dl/g in DMAc (0.25 g/dl).


Example 13 (JC58-74)

This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 3.91 g, 0.018 mol), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 14.92 g, 0.035 mol), Oligomer 3 (25.47 g), 1,5-dihydroxynaphthalene (9.61 g, 0.060 mol), and anhydrous potassium carbonate (10.71 g, 0.078 mol), 206 mL of DMSO and 103 mL of Toluene. This polymer has an inherent viscosity of 1.10 dl/g in DMAc (0.25 g/dl).









TABLE 1







summarizes the impact of the chain length and flexible in the ionic


region on the final membrane properties from Examples 10–16.












Cross-over in 8 M





Methanol




(mg · mil/
Conductivity



One-day
cc · min · cm2)
(S/cm) (Non-


Polymer
Swelling (%)
(Non-boiled/boiled)
boiled/boiled)













Example 7
116
0.034/0.081
0.38/0.055


Example 8
46
0.025/0.020
0.026/0.045


Example 9
141
0.0320/0.11
0.025/0.35


Example 10
47
0.036
0.047/0.075


Example 11
155
0.038/0.11
0.059/0.058


Example 12
62
0.026/0.046
0.061/0.085


Example 13
94
0.056/0.098
0.10/0.11









Example 14 illustrates block copolymer system using BisK-Z block in the non-ionic region, and multi components (more than 2 unit) in the ionic region, in comparison of random copolymer of multi components system.


Example 14 (JC 58-50)

This block polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4′-difluorobenzophone (BisK, 3.91 g, 0.0179 mol), 3,3′-disulfonated-4,4′-difluorobenzophone ((SBisK, 14.92 g, 0.035 mol), Oligomer 3 (25.27 g), BisZ (8.05 g, 0.035 mol), 9,9-bis(4-hydroxyphenyl)fluorene (10.51 g, 0.035 mol), and anhydrous potassium carbonate (10.78 g, 0.078 mol), 250 mL of DMSO and 125 mL of toluene. This polymer has an inherent viscosity of 1.02 dl/g in DMAc (0.25 g/dl). Its one-day swelling in 8 M methanol at 80° C. was 63%, cross-over in 8 M methanol was 0.036 mg.mil/cc.min.cm2 (non-boiled) and 0.038 mg.mil/cc.min.cm2 (boiled), conductivity was 0.026 S/cm (non-boiled) and 0.047 S/cm (boiled).


Example 15

Oligomer 1 (FL4): DP=4


In a 500 mL three necked round flask, equipped with a mechanical stirrer, a thermometer probe connected with a nitrogen inlet, and a Dean-Stark trap/condenser, 4,4′-difluorobenzophone (BisK, 34.91 g, 0.16 mol), 9,9-bis(4-hydroxyphenyl)fluorene (42.05 g, 0.12 mol), and anhydrous potassium carbonate (25.87 g, 0.187 mol), 220 mL of DMSO and 110 mL of Toluene. The reaction mixture was slowly stirred under a slow nitrogen stream. After heating at ˜85° C. for 1 h and at ˜120° C. for 1 h, the reaction temperature was raised to ˜135° C. for 3 h, and finally to ˜170° C. for 2 h. After cooling to ˜70° C. with continuing stirring, the solution was dropped into 1L of cooled methanol with a vigorous stirring. The precipitates were filtrated and washed with DI-water four times and dried at 80° C. overnight, and then dried at 80° C. under vacuum for 2 days.


BlkFL4FL/45 (JC58-85)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 4.68 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 19.06 g), Oligomer 1 (19.59 g), 9,9-bis(4-hydroxyphenyl)fluorene (26.28 g), and anhydrous potassium carbonate (13.48 g), 240 mL of DMSO and 120 mL of Toluene. This polymer has an inherent viscosity of 1.00 dl/g in DMAc (0.25 g/dl).


BlkFL4B/45 (JC58-86)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 4.68 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 19.06 g), Oligomer 1 (19.59 g), 4,4′-biphenol (13.97 g), and anhydrous potassium carbonate (13.48 g), 240 mL of DMSO and 120 mL of Toluene. This polymer has an inherent viscosity of 1.89 dl/g in DMAc (0.25 g/dl).


BlkFL4NAP/45 (JC58-89)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 4.68 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 19.06 g), Oligomer 1 (19.59 g), 2,7-dihydroxynaphthalene (12.01 g), and anhydrous potassium carbonate (13.48 g), 240 mL of DMSO and 120 mL of Toluene. This polymer has an inherent viscosity of 1.00 dl/g in DMAc (0.25 g/dl).


Example 16

Oligomer 2 (A8): DP=8


This oligomer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 87.28 g), 4,4′-(1,4-phenylenediisopropylidene)bisphenol (79.90 g), and anhydrous potassium carbonate (62.88 g), 560 mL of DMSO and 280 mL of Toluene.


BlkA8FL/33 (JC58-93)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 1.94 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 7.50 g), Oligomer 2 (11.66 g), 9,9-bis(4-hydroxyphenyl)fluorene (10.51 g), and anhydrous potassium carbonate (5.39 g), 120 mL of DMSO and 60 mL of Toluene. This polymer has an inherent viscosity of 0.84 dl/g in DMAc (0.25 g/dl).


BlkA8B/33 (JC58-94)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 1.94 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 7.50 g), Oligomer 2 (11.66 g), 4,4′-biphenol (5.58 g), and anhydrous potassium carbonate (5.39 g), 120 mL of DMSO and 60 mL of Toluene. This polymer has an inherent viscosity of 1.12 dl/g in DMAc (0.25 g/dl).


BlkA8Z/33 (JC58-95)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 1.94 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 7.50 g), Oligomer 2 (11.66 g), 1,1-bis(4-hydroxyphenyl)cyclohexane (8.05 g), and anhydrous potassium carbonate (5.39 g), 120 mL of DMSO and 60 mL of Toluene. This polymer has an inherent viscosity of 0.64 dl/g in DMAc (0.25 g/dl).


BlkA8FL/45 (JC58-97)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 0.64 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 11.88 g), Oligomer 2 (13.60 g), 9,9-bis(4-hydroxyphenyl)fluorene (12.26 g), and anhydrous potassium carbonate (6.29 g), 150 mL of DMSO and 75 mL of Toluene. This polymer has an inherent viscosity of 0.68 dl/g in DMAc (0.25 g/dl).


BlkA8A/33 (JC58-103)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 1.94 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 7.50 g), Oligomer 2 (11.66 g), 4,4′-(1,4-phenylenediisopropylidene)bisphenol (6.85 g), and anhydrous potassium carbonate (5.39 g), 120 mL of DMSO and 60 mL of Toluene. This polymer has an inherent viscosity of 0.84 dl/g in DMAc (0.25 g/dl).


BlkA8NAP/33 (JC58-106)


Example 17

This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 2.42 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 9.37 g), Oligomer 2 (14.57 g), 2,7-dihydroxynaphthalene (6.00 g), and anhydrous potassium carbonate (6.74 g), 120 mL of DMSO and 60 mL of Toluene. This polymer has an inherent viscosity of 0.97 dl/g in DMAc (0.25 g/dl).


Oligomer 3 (AF8): DP=8


This oligomer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 87.28 g), 4,4′-(hexafluoroisopropylidene)diphenol (117.69 g), and anhydrous potassium carbonate (62.88 g), 560 mL of DMSO and 280 mL of Toluene.


BlkAF8Z/33 (JC58-113)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 3.88 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 15.00 g), Oligomer 3 (29.12 g), 1,1-bis(4-hydroxyphenyl)cyclohexane (16.10 g), and anhydrous potassium carbonate (10.78 g), 240 mL of DMSO and 120 mL of Toluene. This polymer has an inherent viscosity of 0.72 dl/g in DMAc (0.25 g/dl).


BlkAF8FL/33 (JC58-114)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 3.55 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 13.75 g), Oligomer 3 (26.70 g), 9,9-bis(4-hydroxyphenyl)fluorene (19.27 g), and anhydrous potassium carbonate (9.88 g), 240 mL of DMSO and 120 mL of Toluene. This polymer has an inherent viscosity of 0.50 dl/g in DMAc (0.25 g/dl).


BlkAF8B/33 (JC58-115)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 4.20 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 16.25 g), Oligomer 3 (31.55 g), 4,4′-biphenol (12.10 g), and anhydrous potassium carbonate (11.68 g), 240 mL of DMSO and 120 mL of Toluene. This polymer has an inherent viscosity of 1.29 dl/g in DMAc (0.25 g/dl).


BlkAF8AF/33 (JC58-140)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 3.55 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 13.75 g), Oligomer 3 (26.70 g), 4,4′-(hexafluoroisopropylidene)diphenol (18.49 g), and anhydrous potassium carbonate (9.88 g), 240 mL of DMSO and 120 mL of Toluene. This polymer has an inherent viscosity of 0.54 dl/g in DMAc (0.25 g/dl).


BlkAF8NAP/33 (JC58-116)


This block polymer was synthesized in a similar way as described in the oligomer 1 synthesis, using following compositions: 4,4′-difluorobenzophone (BisK, 4.20 g), 3,3′-disulfonated-4,4′-difluorobenzophone (SBisK, 16.25 g), Oligomer 3 (31.55 g), 2,7-dihydroxynaphthalene (10.41 g), and anhydrous potassium carbonate (11.68 g), 240 mL of DMSO and 120 mL of Toluene. This polymer has an inherent viscosity of 1.08 dl/g in DMAc (0.25 g/dl).


Example 18

Synthesis of Oligomer with Phenoxide End-groups


The typical synthesis procedure of phenoxide end-group oligomer with repeat unit number or degree of polymerization (DP) of 10 is presented here wherein DP is calculated from the formula DP=1/(1-p) where p is the molar fraction of the second component when the first component is equal to 1: In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, bisphenol A(9.128 g), 4,4′-difluorobenzophenone (7.8552 g) and anhydrous potassium carbonate (7.2 g) were dissolved in a mixture of DMSO and toluene (about 20% solid concentration). The mixture was heated to toluene reflux with stirring, keeping the temperature at 150° C. for 4 h, then increasing the temperature to 175–180° C. for 6 h. The reaction mixture was precipitated with acetone or methanol to get the crude product, then washed with hot water four times.


Synthesis of Oligomer with Fluorine End-Groups


The typical synthesis procedure of fluorine end-group oligomer with repeat unit number 10 is presented here. In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, bisphenol A(8.2152 g), sulfonated 4,4′-difluorobenzophenone (5.9108 g), 4,4′-difluorobenzophenone (5.6732 g) and anhydrous potassium carbonate (7.2 g) were dissolved in a mixture of DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene reflux with stirring, keeping the temperature at 150° C. for 4 h, then increasing the temperature to 175–180° C. for 6 h. The reaction mixture was precipitated with acetone or methanol to get the crude product, then washed with hot water four times.


Synthesis of Regular Block Copolymers


When the preparation of the fluorine-terminated oligomer was complete, the solution was cooled to 120° C., and introduced directly into a reaction flask containing the phenoxide-terminated oligomer under nitrogen atmosphere. To obtain the equivalent molar molar ration of a phenoxide end-groups and fluorine end-groups, the phenoxide-terminated oligomer reaction flask was washed three times with 20 ml DMSO, and the solution was combined and also poured in the reaction flask. Then the temperature was again raised to 175–180° C., and maintained there for 6 h. The reaction mixture was filtered and a solid precipitated from acetone or methanol to get the crude product, then washed by hot water four times.


Conductivity: 0.046 S/cm, swelling by area in 8M methanol: 88%, 8M methanol cross-over: 8.3×10−7 cm2/sec.


Example 19

Synthesis of Partial Block Polymer with Non-Sulfonated Hydrophobic Segment


Fluorine End Group Oligomer Preparation (Segment Size n=4)


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (80.508), Bis K(87.28 g), anhydrous potassium carbonate (54 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 4 h, then increase temperature to 175° C. for 4 h. The oligomer precipitates from methanol to get the rude product, then washed by hot water four times. Dry at 80 C oven for one day and 75 C vacuum oven for 2 days.


Polymerization


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.418), Bis K(4.8878 g), S-Bis K(9.2884 g),oligomer(11.2112 g), anhydrous potassium carbonate (9.0 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture precipitates from methanol to get the crude product.


Conductivity: 0.015 S/cm, Swelling by area in 8M methanol solution: 51%, 8M Methanol Cross-over: 3.5×10−7 cm2/sec.


Example 20

BPE-3 (BLKZ4Z-28)


Synthesis of Partial Block Polymer with Non-Sulfonated Hydrophobic Segment


Fluorine End Group Oligomer (BisZ/BisK) Preparation (Segment Size n=4)


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (80.508), Bis K(87.28 g), anhydrous potassium carbonate (54 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 4 h, then increase temperature to 175° C. for 4 h. The reaction mixture precipitates from methanol to get the rude product, and then washed by hot water four times. Dry at 80 C oven for one day and 75 C vacuum oven for 2 days.


Polymerization


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.418), Bis K(5.2368 g), S-Bis K(8.4444 g), oligomer(12.0112 g, n=4, fluorine end of BisZ/BisK composition), anhydrous potassium carbonate (9.0 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture precipitates from methanol to get the rude product.


Conductivity: 0.014 S/cm (0.038 S/cm, boiled), swelling by area in 8M methanol: 60%, 8M methanol cross-over: 0.019 mg/min.ml.mls.


Example 21

BPE-5 (BLKZ4Z-33)


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.418), Bis K(4.8878 g), S-Bis K(9.2884 g), oligomer(11.2112 g, n=4, fluorine end of BisZ/BisK composition), anhydrous potassium carbonate (9.0 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture precipitates from methanol to get the rude product.


Conductivity: 0.0146 S/cm (0.0378 S/cm, boiled), swelling by area in 8M methanol: 51%, 8M methanol cross-over: 0.022 mg/min.ml.mls.


Example 22

BPE-1 (BLKZ6Z-30)


Synthesis of Partial Block Polymer with Non-Sulfonated Hydrophobic Segment


Fluorine End Group Oligomer Preparation (Segment Size n=6)


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (89.4533 g), 4,4′-difluorobenzophone (Bis K, 87.28 g), anhydrous potassium carbonate (54 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 4 h, then increase temperature to 175° C. for 4 h. The reaction mixture precipitates from methanol to get the rude product, and then washed by hot water four times. Dry at 80 C oven for one day and 75 C vacuum oven for 2 days.


Polymerization


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.418), Bis K(4.8878 g), 3,3′-disulfonated-4,4′-difluorobenzophone (S-Bis K, 8.444 g), oligomer(9.953 g, n=6, fluorine end of BisZ/BisK composition), anhydrous potassium carbonate (9.0 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture precipitates from methanol to get the rude product.


Example 23

BLKZ4B-30


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, 4,4′-Biphenol (9.3105), Bis K(4.8878 g), S-Bis K(9.2884 g), oligomer(11.2112 g, n=4, fluorine end of BisZ/BisK composition), anhydrous potassium carbonate (9.0 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture precipitates from methanol to get the rude product.


Conductivity: 0.012 S/cm(0.0211 S/cm, boiled), swelling by area in 8M methanol: 21%,


Example 24

BLKZ4B-34


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, 4,4′-Biphenol (8.3794 g), Bis K(1.2444 g), S-Bis K(12.9794 g), oligomer(18.00 g, n=4, fluorine end of BisZ/BisK composition), anhydrous potassium carbonate (9.0 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture precipitates from methanol to get the rude product.


Conductivity: 0.0427 S/cm(0.078 S/cm, boiled), swelling by area in 8M methanol: 61%, 8M methanol cross-over: 0.052 mg/min.ml.mls.


Example 25

BLKZ4B-36


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, 4,4′-Biphenol (8.3794 g), Bis K(1.1032 g), S-Bis K(13.6625 g), oligomer(15.1777 g, n=4, fluorine end of BisZ/BisK composition), anhydrous potassium carbonate (9.0 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture precipitates from methanol to get the rude product.


Conductivity: 0.067 S/cm(0.096 S/cm, boiled), swelling by area in 8M methanol: 72%, 8M methanol cross-over: 0.06 mg/min.ml.mls.


Example 26

BLKZ4B-40


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, 4,4′-Biphenol (8.3794), Bis K(0.3078 g), S-Bis K(15.0287 g), oligomer(16.0714 g, n=4, fluorine end of BisZ/BisK composition), anhydrous potassium carbonate (9.0 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture precipitates from methanol to get the rude product.


Conductivity: 0.072 S/cm(0.0922 S/cm, boiled), swelling by area in 8M methanol: 98%, 8M methanol cross-over: 0.067 mg/min.ml.mls.


Example 27

BLKZ4F-30


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, 4,4′-(Hexafluoroisopropylidene)-diphenol (6F, 16.8065 g), Bis K(4.8878 g), S-Bis K(9.2884 g), oligomer(11.2112 g, n=4, fluorine end of BisZ/BisK composition), anhydrous potassium carbonate (9.0 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture precipitates from methanol to get the rude product.


Conductivity: 0.007 S/cm(0.0122 S/cm, boiled), swelling by area in 8M methanol: 24%, 8M methanol cross-over: 0.016 mg/min.ml.mls.


Example 28

BLKF4Z-30


Synthesis of Partial Block Polymer with Non-sulfonated Hydrophobic Segment


Fluorine End Group Oligomer(6F/BisK) Preparation (Segment Size n=4)


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, 4,4′-(Hexafluoroisopropylidene)-diphenol (6F, 100.839 g), Bis K(87.28 g), anhydrous potassium carbonate (54 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 4 h, then increase temperature to 175° C. for 4 h. The reaction mixture precipitates from methanol to get the rude product, and then washed by hot water four times. Dry at 80 C oven for one day and 75 C vacuum oven for 2days


Polymerization


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.418), Bis K(4.8878 g), S-Bis K(9.2884 g), oligomer(12.7333 g, n=4, fluorine end of 6F/BisK composition), anhydrous potassium carbonate (9.0 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture precipitates from methanol to get the rude product.


Conductivity: 0.0114 S/cm(0.0321 S/cm, boiled), swelling by area in 8M methanol: 38%, 8M methanol cross-over: 0.013 mg/min.ml.mls.


Example 29

BLKF4P-30


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, 4,4′-(1,4-phenyldiisopropyldiene)bisphenol (17.30 g), Bis K(4.8878 g), S-Bis K(9.2884 g), oligomer(12.733 g, n=4, fluorine end of 6F/BisK composition), anhydrous potassium carbonate (9.0 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture precipitates from methanol to get the rude product.


Conductivity: 0.0102 S/cm(0.0215 S/cm, boiled), swelling by area in 8M methanol: 37%


Example 30

BLKF8Z-30


Synthesis of Partial Block Polymer with Non-sulfonated Hydrophobic Segment


Fluorine End Group Oligomer(6F/BisK) Preparation (Segment Size n=8)


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, 4,4′-(Hexafluoroisopropylidene)-diphenol (6F, 117.6455 g), Bis K(87.28 g), anhydrous potassium carbonate (54 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 4 h, then increase temperature to 175° C. for 4 h. The reaction mixture precipitates from methanol to get the rude product, and then washed by hot water four times. Dry at 80 C oven for one day and 75 C vacuum oven for 2 days


Polymerization


In a 500 ml three necked round flask, equipped with a mechanical stirrer, thermometer, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.418), Bis K(3.2729 g), S-Bis K(12.4151 g), oligomer(24.2454 g, n=8, fluorine end of 6F/BisK composition), anhydrous potassium carbonate (9.0 g) were dissolved in a mixture DMSO and Toluene (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture precipitates from methanol to get the rude product.


Conductivity: 0.011 S/cm(0.0211 S/cm, boiled), swelling by area in 8M methanol: 37%, 8M methanol cross-over: 0.023 mg/min.ml.mls.


Example 31

Following Examples Demonstrate the Effect of Various Block Size and Sulfonation Degree


Oligomer Preparation (Block Size n=4) Reference 37-119


In a 2L three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (80.508), Bis K(87.28 g), anhydrous potassium carbonate (71.86 g) were dissolved in a mixture DMSO and toluene, 720 ml and 360 ml respectively (about 20% solid concentration). The mixture was heated to toluene reflux with stirring, keeping the temperature at 140° C. for 4 h, then increasing the temperature to 175° C. for 4 h. The reaction mixture was precipitated into 2 L of methanol to get the crude product; then washed with hot DI water four times. The product was oven dried at 80 C for one day and vacuum dried at 75 C for 2 days.


Polymerization BLKZ4/33 Reference 37-123


In a 500 ml three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.418), Bis K(4.8878 g), S-Bis K sodium salt (9.2902 g), oligomer (n=4—Reference 37-119) (11.2112 g), anhydrous potassium carbonate (17.9 g) were dissolved in a mixture dimethylsulfoxide (DMSO) (180 ml) and toluene (90 ml) (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture was precipitated into 2 L of methanol. The polymer was then washed with DI water 4 times. The product was oven dried at 80 C for one day and vacuum dried at 75 C for 2 days. The dried sample (0.1250 g) was in 25 ml of dimethylacetamide (DMAc) to determine inherent viscosity. The inherent viscosity of the sodium salt polymer was found to be 0.67 dL/g. A sample was prepared for GPC analysis by dissolving 50 mg of polymer in 20 ml of DMAc containing 0.1M LiBr. The sample was found to have a peak molecular weight of about 46,350 based upon polystyrene standards.


Polymerization BLKZ4/25 Reference 37-124


In a 500 ml three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.418), Bis K(6.0441 g), S-Bis K sodium salt (7.0521 g), oligomer (n=4—Reference 37-119) (17.2480 g), anhydrous potassium carbonate (17.9 g) were dissolved in a mixture dimethylsulfoxide (DMSO) (180 ml) and toluene (90 ml) (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture was precipitated into 2 L of methanol. The polymer was then washed with DI water 4 times. The product was oven dried at 80 C for one day and vacuum dried at 75 C for 2 days. The dried sample (0.1250 g) was in 25 ml of dimethylacetamide (DMAc) to determine inherent viscosity. The inherent viscosity of the sodium salt polymer was found to be 0.49 dL/g.


Polymerization BLKZ4/40 Reference 37-125


In a 500 ml three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.418 g), Bis K(3.8621 g), S-Bis K sodium salt (11.2750 g), oligomer (n=4—Reference 37-119) (17.2481 g), anhydrous potassium carbonate (17.9 g) were dissolved in a mixture dimethylsulfoxide (DMSO) (180 ml) and toluene (90 ml) (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture was precipitated into 2 L of methanol. The polymer was then washed with DI water 4 times. The product was oven dried at 80 C for one day and vacuum dried at 75 C for 2 days. The dried sample (0.1250 g) was in 25 ml of dimethylacetamide (DMAc) to determine inherent viscosity. The inherent viscosity of the sodium salt polymer was found to be 0.643 dL/g.


Oligomer Preparation (Block Size n=8) Reference 37-152


In a 2L three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (70.4445 g), Bis K(65.4600 g), anhydrous potassium carbonate (47.1912 g) were dissolved in a mixture DMSO and toluene, 540 ml and 270 ml respectively (about 20% solid concentration). The mixture was heated to toluene reflux with stirring, keeping the temperature at 140° C. for 4 h, then increasing the temperature to 175° C. for 4 h. The reaction mixture was precipitated into 2 L of methanol to get the crude product; then washed with hot DI water four times. The product was oven dried at 80 C for one day and vacuum dried at 75 C for 2 days.


Polymerization BLKZ8/33 Reference 37-134


In a 500 ml three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.4180 g), Bis K(3.2729 g), S-Bis K sodium salt (12.4151 g), oligomer (n=8) (21.2299 g), anhydrous potassium carbonate (17.9 g) were dissolved in a mixture dimethylsulfoxide (DMSO) (180 ml) and toluene (90 ml) (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture was precipitated into 2 L of methanol. The polymer was then washed with DI water 4 times. The product was oven dried at 80 C for one day and vacuum dried at 75 C for 2 days. The dried sample (0.1250 g) was in 25 ml of dimethylacetamide (DMAc) to determine inherent viscosity. The inherent viscosity of the sodium salt polymer was found to be 0.90 dL/g.


Polymerization BLKZ8/25 Reference 37-132


In a 500 ml three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.4180 g), Bis K(4.8223 g), S-Bis K sodium salt (9.4169 g), oligomer (n=8) (21.2296 g), anhydrous potassium carbonate (17.9 g) were dissolved in a mixture dimethylsulfoxide (DMSO) (180 ml) and toluene (90 ml) (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture was precipitated into 2 L of methanol. The polymer was then washed with DI water 4 times. The product was oven dried at 80 C for one day and vacuum dried at 75 C for 2 days. The dried sample (0.1250 g) was in 25 ml of dimethylacetamide (DMAc) to determine inherent viscosity. The inherent viscosity of the sodium salt polymer was found to be 0.935 dL/g. A sample was prepared for GPC analysis by dissolving 50 mg of polymer in 20 ml of DMAc containing 0.1M LiBr. The sample was found to have a peak molecular weight of about 106,040 based upon polystyrene standards.


Polymerization BLKZ8/40 Reference 37-128


In a 500 ml three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.4180 g), Bis K(1.8984 g), S-Bis K sodium salt (15.0757 g), oligomer (n=8) (21.2296 g), anhydrous potassium carbonate (17.9 g) were dissolved in a mixture dimethylsulfoxide (DMSO) (180 ml) and toluene (90 ml) (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture was precipitated into 2 L of methanol. The polymer was then washed with DI water 4 times. The product was oven dried at 80 C for one day and vacuum dried at 75 C for 2 days. The dried sample (0.1250 g) was in 25 ml of dimethylacetamide (DMAc) to determine inherent viscosity. The inherent viscosity of the sodium salt polymer was found to be 0.992 dL/g.


Oligomer Preparation (Block Size n=2) Reference 37-121


In a 2L three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (53.6721 g), Bis K(87.2800 g), anhydrous potassium carbonate (71.8692 g) were dissolved in a mixture DMSO and toluene, 750 ml and 360 ml respectively (about 20% solid concentration). The mixture was heated to toluene reflux with stirring, keeping the temperature at 140° C. for 4 h, then increasing the temperature to 175° C. for 4 h. The reaction mixture was precipitated into 2 L of methanol to get the crude product; then washed with hot DI water four times. The product was oven dried at 80 C for one day and vacuum dried at 75 C for 2 days.


Polymerization BLKZ82/33 Reference 37-140


In a 500 ml three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (20.1270 g), Bis K(8.5424 g), S-Bis K sodium salt (11.5917 g), oligomer (n=2) (6.2215), anhydrous potassium carbonate (17.9 g) were dissolved in a mixture dimethylsulfoxide (DMSO) (190 ml) and toluene (100 ml) (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture was precipitated into 2 L of methanol. The polymer was then washed with DI water 4 times. The product was oven dried at 80 C for one day and vacuum dried at 75 C for 2 days. The dried sample (0.1250 g) was in 25 ml of dimethylacetamide (DMAc) to determine inherent viscosity. The inherent viscosity of the sodium salt polymer was found to be 0.466 dL/g.


Polymerization BLKZ2/25 Reference 37-139


In a 500 ml three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (20.1270 g), Bis K(9.9827 g), S-Bis K sodium salt (8.8046 g), oligomer (n=2) (6.2214 g), anhydrous potassium carbonate (27.0629 g) were dissolved in a mixture dimethylsulfoxide (DMSO) (180 ml) and toluene (90 ml) (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture was precipitated into 2 L of methanol. The polymer was then washed with DI water 4 times. The product was oven dried at 80 C for one day and vacuum dried at 75 C for 2 days.


Polymerization BLKZ2/40 Reference 37-137


In a 500 ml three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (20.1270 g), Bis K(7.2661), S-Bis K sodium salt (14.0620 g), oligomer (n=2) (6.2217 g), anhydrous potassium carbonate (13.4759 g) were dissolved in a mixture dimethylsulfoxide (DMSO) (180 ml) and toluene (90 ml) (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture was precipitated into 2 L of methanol. The polymer was then washed with DI water 4 times.


Oligomer Preparation (Block Size n=12) Reference 37-129


In a 1L three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (73.7990 g), Bis K(65.4600 g), anhydrous potassium carbonate (53.9019 g) were dissolved in a mixture DMSO and toluene, 540 ml and 270 ml respectively (about 20% solid concentration). The mixture was heated to toluene reflux with stirring, keeping the temperature at 140° C. for 4 h, then increasing the temperature to 175° C. for 4 h. The reaction mixture was precipitated into 2 L of methanol to get the crude product; then washed with hot DI water four times. The product was oven dried at 80 C for one day and vacuum dried at 75 C for 2 days.


Polymerization BLKZ12/40 Reference 37-143


In a 500 ml three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (20.1270 g), S-Bis K sodium salt (28.1240 g), oligomer (n=12) (31.2316 g), anhydrous potassium carbonate (13.5589 g) were dissolved in a mixture dimethylsulfoxide (DMSO) (300 ml) and toluene (100 ml) (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture was precipitated into 2 L of methanol. The polymer was then washed with DI water 4 times. The dried sample (0.1250 g) was in 25 ml of dimethylacetamide (DMAc) to determine inherent viscosity. The inherent viscosity of the sodium salt polymer was found to be 0.490 dL/g.


Polymerization BLKZ8/40-5.6 Reference 37-156


In a 500 ml three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (16.1017 g), Bis K (6.3366 g), S-Bis K sodium salt (11.6552 g), oligomer (n=8) (12.7379 g), anhydrous potassium carbonate (10.7841 g) were dissolved in a mixture dimethylsulfoxide (DMSO) (200 ml) and toluene (100 ml) (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture was precipitated into 2 L of methanol. The polymer was then washed with DI water 4 times. The polymer was found to have an inherent viscosity of 0.66 dL/g in the proton form.


Polymerization BLKZ8/33-16.8 Reference 37-160


In a 500 ml three necked round bottom flask, equipped with a mechanical stirrer, thermocouple, heating mantle, controller, nitrogen inlet and Dean-Stark trap/condenser, Bis Z (13.4180 g), S-Bis K sodium salt (17.5670 g), oligomer (n=8) (31.8444 g), anhydrous potassium carbonate (8.9837 g) were dissolved in a mixture dimethylsulfoxide (DMSO) (250 ml) and toluene (125 ml) (about 20% solid concentration). The mixture was heated to toluene flux with stirring, keeping the temperature at 140° C. for 6 h, then increase temperature to 173–175° C. for 4–4.5 h. The reaction mixture was precipitated into 2 L of methanol. The polymer was then washed with DI water 4 times. The polymer was found to have an inherent viscosity of 0.83 dL/g in the proton form.


All references cited throughout the specification, including those in the background, are specifically incorporated herein by reference in their entirety.


Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims
  • 1. A polymer electrolyte membrane comprising an ion conducting block copolymer comprising non-ionic and ionic regions having the formula {-L1-[-(AaBb)n]1-z-L2—[(SxCc—SyDd)o]zL3}j wherein[(AaBb)n] comprises a non-ionic block, and[(SxCc—SyDd)o] comprises an ionic block,A and C are phenyl, napthyl, terphenyl, aryl nitrile, substituted aryl nitrile. organopolysiloxane or Ar1—R1—Ar2, wherein R1 is, —C(O)—,—S(O)2—, —P(O)(C6H5)—, —C(O)—Ar3—C(O)—, or —C(O)—Ar4—S(O)2—, and Ar1, Ar2, Ar3, and Ar4 are aromatic groups or substituted aromatic groups and wherein each A and C can be the same or different;B and D are —O—Ar5—R2—Ar6—O—, where R2 is a single bond, a cycloaliphatic of the formula CnH2n-2,
  • 2. The polymer electrolyte membrane of claim 1 wherein S is randomly distributed within said ionic polymer.
  • 3. The polymer electrolyte membrane of claim 1 wherein S is in predetermined positions within said ionic polymer.
  • 4. The polymer electrolyte membrane of claim 1 wherein said ionic and non-ionic polymers comprise blocks in said ion conductive polymer.
  • 5. The polymer electrolyte membrane of claim 1 wherein o is between 2 and 20, and A and C are —Ar1—C(O)—Ar2—, B and D are same or different of cyclohexydyl or fluorenyl, S is SO3H, x+y is between 20 and 40%, z is between 0.2 and 0.5 and j is an integer between 60 and 150.
  • 6. A polymer electrolyte membrane comprising an ion conductive block copolymer comprising non-ionic and ionic regions having the formula {-L1-[(AaBb)n-L1-(AeBf)m]1-z-L3-[-(Sx2Cg-Sy2Dh)p-L3-(Sx2Cg-Sy2Dh)p-L3-]z}j wherein[(AeBf)m] comprises a non-ionic block, and[(Sx1Cc—Sy1Dd)o-(Sx2Cg—Sy2Dh)-] comprises an ionic block, and whereinat least one of (AaBb)n or (Sx1Cc—Sy1Dd)o comprise a block within said ion conducting polymer and (AeBf)m and (Sx2Cg—Sy2Dh) are polymers that are random in length, composition or both;A and C are phenyl, napthyl, terphenyl, aryl nitrile , substituted aryl nitrile, organopolysiloxane, —Ar1—R1—Ar2—, wherein R1 is, —C(O)—,—S(O)2—, —P(O)(C6H5)—, —C(O)—Ar3—C(O)—, or—C(O)—Ar4—S(O)2—, and Ar1, Ar2, Ar3, and Ar4 are aromatic groups or substituted aromatic groups, wherein each A and C can be the same or different and whereinB and D are —O—Ar5—R2—Ar6—O—, where R2 is a single bond, a cycloaliphatic of the formula CnH2n-2,
  • 7. The polymer electrolyte membrane of claim 6 wherein (AaBb)n and (Sx1Cc—Sy1Dd) comprise blocks within said ion conductive block copolymer.
  • 8. The polymer electrolyte membrane of claim 6 wherein the ion conducting groups S are randomly distributed in the ionic polymer.
  • 9. The polymer electrolyte membrane of claim 6 wherein the ion conducting groups S are located in a predetermined position within said ionic polymer.
  • 10. The polymer electrolyte membrane of claim 6 wherein m and p are random numbers.
  • 11. The polymer electrolyte membrane of claim 6 wherein o is between 2 and 20, n is between 2 and 20, A and C are Ar1—C(O)—Ar2, B and D are
  • 12. A catalyst coated membrane comprising the polymer electrolyte membrane of claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 wherein all or part of at least one of the opposing surfaces of said membrane comprises a catalyst layer.
  • 13. A membrane electrode assembly (MEA) comprising the catalyst coated membrane of claim 12 and electrodes in electrical contact with said catalyst layer.
  • 14. A fuel cell comprising the membrane electrode assembly of claim 13.
  • 15. An electronic device, system or motor comprising the fuel cell of claim 14.
Parent Case Info

This application claims the benefit of U.S. application Ser. No. 60/449,299, filed Feb. 20, 2003 and U.S. application Ser. No. 60/381,136, filed May 14, 2002, under 35 U.S.C §119(e).

US Referenced Citations (257)
Number Name Date Kind
3113049 Worsham Dec 1963 A
3134697 Niedrach May 1964 A
3282875 Connolly et al. Nov 1966 A
3297484 Niedrach Jan 1967 A
3301893 Putnam et al. Jan 1967 A
3684747 Coalson et al. Aug 1972 A
3692569 Grot Sep 1972 A
4036714 Spitzer Jul 1977 A
4038213 McClure et al. Jul 1977 A
4176215 Molnar et al. Nov 1979 A
4242421 Kudo et al. Dec 1980 A
4262063 Kudo et al. Apr 1981 A
4303551 Vaughan Dec 1981 A
4380598 Robeson et al. Apr 1983 A
4390603 Kawana et al. Jun 1983 A
4407905 Takeuchi et al. Oct 1983 A
4417969 Ezzell et al. Nov 1983 A
4419486 Rose Dec 1983 A
4453991 Grot Jun 1984 A
4478917 Fujita et al. Oct 1984 A
4537840 Tsukui et al. Aug 1985 A
4542079 Takeuchi et al. Sep 1985 A
4612261 Tsukui et al. Sep 1986 A
4673624 Hockaday Jun 1987 A
4751274 Ittemann et al. Jun 1988 A
4755272 Plowman Jul 1988 A
4774153 Sterzel Sep 1988 A
4797190 Peck Jan 1989 A
4808493 Breault Feb 1989 A
4828941 Sterzel May 1989 A
4855193 McElroy Aug 1989 A
4865925 Ludwig et al. Sep 1989 A
4876115 Raistrick Oct 1989 A
4964890 Reuter et al. Oct 1990 A
5061581 Narang et al. Oct 1991 A
5102751 Narang et al. Apr 1992 A
5132193 Reddy et al. Jul 1992 A
5134207 McGrath et al. Jul 1992 A
5186877 Watanabe Feb 1993 A
5211984 Wilson May 1993 A
5234777 Wilson Aug 1993 A
5252410 Wilkinson et al. Oct 1993 A
5262250 Watanabe Nov 1993 A
5281680 Grot Jan 1994 A
5284718 Chow et al. Feb 1994 A
5312876 Dang et al. May 1994 A
5312895 Dang et al. May 1994 A
5330860 Grot et al. Jul 1994 A
5346780 Suzuki Sep 1994 A
5362836 Helmer-Metzmann et al. Nov 1994 A
5367051 Narang et al. Nov 1994 A
5403675 Ogata et al. Apr 1995 A
5422411 Wei et al. Jun 1995 A
5438082 Helmer-Metzmann et al. Aug 1995 A
5463005 Desmarteau Oct 1995 A
5468574 Ehrenberg et al. Nov 1995 A
5470448 Molter et al. Nov 1995 A
5472799 Watanabe Dec 1995 A
5480735 Landsman et al. Jan 1996 A
5482568 Hockaday Jan 1996 A
5488087 Cabasso et al. Jan 1996 A
5498639 Wei et al. Mar 1996 A
5505851 Wagenar et al. Apr 1996 A
5523177 Kosek et al. Jun 1996 A
5525436 Savinell et al. Jun 1996 A
5540981 Gallagher et al. Jul 1996 A
5547911 Grot Aug 1996 A
5548055 Narang et al. Aug 1996 A
5561202 Helmer-Metzmann et al. Oct 1996 A
5573866 Van Dine et al. Nov 1996 A
5573867 Zafred et al. Nov 1996 A
5599638 Surampudi et al. Feb 1997 A
5602185 Stone et al. Feb 1997 A
5624965 Huang et al. Apr 1997 A
5631099 Hockaday May 1997 A
5633098 Narang et al. May 1997 A
5635039 Cisar et al. Jun 1997 A
5637652 Kato et al. Jun 1997 A
5656389 Tetzlaff et al. Aug 1997 A
5672438 Banerjee et al. Sep 1997 A
5672439 Wilkinson et al. Sep 1997 A
5679482 Ehrenberg et al. Oct 1997 A
5702755 Mussell Dec 1997 A
5702838 Yasumoto et al. Dec 1997 A
5723086 Ledjeff et al. Mar 1998 A
5731104 Ventura et al. Mar 1998 A
5741408 Helmer-Metzmann et al. Apr 1998 A
5759712 Hockaday Jun 1998 A
5773162 Surampudi et al. Jun 1998 A
5773480 Stone et al. Jun 1998 A
5783325 Cabasso et al. Jul 1998 A
5795496 Yen et al. Aug 1998 A
5795668 Banerjee Aug 1998 A
5804325 Yepez Sep 1998 A
5834523 Steck et al. Nov 1998 A
5834566 Helmer-Metzmann et al. Nov 1998 A
5863673 Campbell et al. Jan 1999 A
5869416 Mussell Feb 1999 A
5874182 Wilkinson et al. Feb 1999 A
5874616 Howells et al. Feb 1999 A
5882810 Mussell et al. Mar 1999 A
5885338 Nigam et al. Mar 1999 A
5906716 Mertesdorf et al. May 1999 A
5945231 Narayanan et al. Aug 1999 A
5952119 Wilson Sep 1999 A
5958613 Hamada et al. Sep 1999 A
5958616 Salinas et al. Sep 1999 A
5973025 Nigam et al. Oct 1999 A
5985477 Iwasaki et al. Nov 1999 A
5985942 Steck et al. Nov 1999 A
5989742 Cabasso et al. Nov 1999 A
5992008 Kindler Nov 1999 A
6024848 Dufner et al. Feb 2000 A
6025085 Savinell et al. Feb 2000 A
6040077 Debe et al. Mar 2000 A
6045934 Enami Apr 2000 A
6057054 Barton et al. May 2000 A
6060190 Campbell et al. May 2000 A
6068941 Fuller et al. May 2000 A
6071635 Carlstrom et al. Jun 2000 A
6080500 Fuju et al. Jun 2000 A
6083638 Taniguchi et al. Jul 2000 A
6090193 Nigam et al. Jul 2000 A
6093500 Margiott et al. Jul 2000 A
6103411 Matsubayashi et al. Aug 2000 A
6106965 Hirano et al. Aug 2000 A
6110333 Spethmann et al. Aug 2000 A
6110613 Fuller Aug 2000 A
6110616 Sheikh-Ali et al. Aug 2000 A
6117222 Nigam et al. Sep 2000 A
6117579 Gyoten et al. Sep 2000 A
6136463 Kindler et al. Oct 2000 A
6146781 Surampudi et al. Nov 2000 A
6150047 Yen et al. Nov 2000 A
6171444 Nigam Jan 2001 B1
6171721 Narayanan et al. Jan 2001 B1
6175512 Hagihara et al. Jan 2001 B1
6180274 Yoshimoto et al. Jan 2001 B1
6214488 Helmer-Metzmann et al. Apr 2001 B1
6214891 Schneller et al. Apr 2001 B1
6221523 Chun et al. Apr 2001 B1
6228518 Kindler May 2001 B1
6241787 Nigam Jun 2001 B1
6248460 Surampudi et al. Jun 2001 B1
6248469 Formato et al. Jun 2001 B1
6248480 Narang et al. Jun 2001 B1
6252000 O'Brien Jun 2001 B1
6252785 Hagihara et al. Jun 2001 B1
6254748 Surampudi et al. Jul 2001 B1
6265093 Surampudi et al. Jul 2001 B1
6266576 Okada et al. Jul 2001 B1
6277447 Chun et al. Aug 2001 B1
6291093 Kindler et al. Sep 2001 B1
6294612 O'Brien Sep 2001 B1
6294614 Kataoka et al. Sep 2001 B1
6299744 Narayanan et al. Oct 2001 B1
6300381 Kerres Oct 2001 B1
6303244 Surampudi et al. Oct 2001 B1
6309772 Zuber et al. Oct 2001 B1
6326097 Hockaday Dec 2001 B1
6329094 Yasuo et al. Dec 2001 B1
6355149 Soczka-Guth et al. Mar 2002 B1
6359019 Stone et al. Mar 2002 B1
6365293 Isono et al. Apr 2002 B1
6368492 Narayanan et al. Apr 2002 B1
6383391 Ehrenberg et al. May 2002 B1
6383676 Akiyama et al. May 2002 B1
6391486 Narayanan et al. May 2002 B1
6399235 Yen et al. Jun 2002 B1
6413298 Wnek et al. Jul 2002 B1
6420059 Surampudi et al. Jul 2002 B1
6423784 Hamrock et al. Jul 2002 B1
6426160 Hagino et al. Jul 2002 B1
6432284 Narayanan et al. Aug 2002 B1
6437011 Steck et al. Aug 2002 B1
6444341 Yen et al. Sep 2002 B1
6451921 Weisse et al. Sep 2002 B1
6468696 Siling et al. Oct 2002 B1
6492054 Karakane et al. Dec 2002 B1
6503378 Fisher Jan 2003 B1
6503650 Yasuo et al. Jan 2003 B1
6509441 Kerres Jan 2003 B1
6523699 Akita et al. Feb 2003 B1
6559237 Mao et al. May 2003 B1
6586561 Litt et al. Jul 2003 B1
6589684 Surampudi et al. Jul 2003 B1
6602630 Gopal Aug 2003 B1
6610789 Watakabe et al. Aug 2003 B1
6632847 Soczka-Guth et al. Oct 2003 B1
6649295 Hamrock et al. Nov 2003 B1
6689501 Stone et al. Feb 2004 B1
6699611 Kim et al. Mar 2004 B1
6761989 Terahara et al. Jul 2004 B1
6790931 Cui et al. Sep 2004 B1
20010031388 Hamrock et al. Oct 2001 A1
20010037000 Goto et al. Nov 2001 A1
20010041279 Terahara et al. Nov 2001 A1
20010050230 Surampudi et al. Dec 2001 A1
20010056128 Steck et al. Dec 2001 A1
20020001744 Tsusaka et al. Jan 2002 A1
20020002240 Michot et al. Jan 2002 A1
20020004159 Totsuka Jan 2002 A1
20020015868 Surampudi et al. Feb 2002 A1
20020015872 Surampudi et al. Feb 2002 A1
20020015875 Kim Feb 2002 A1
20020045085 Formato et al. Apr 2002 A1
20020058178 Narayanan et al. May 2002 A1
20020061431 Koyama et al. May 2002 A1
20020061432 Nakano et al. May 2002 A1
20020071977 Lakshmanan et al. Jun 2002 A1
20020091225 McGrath et al. Jul 2002 A1
20020093008 Kerres et al. Jul 2002 A1
20020103327 Claub et al. Aug 2002 A1
20020127450 Xie Sep 2002 A1
20020127454 Narang et al. Sep 2002 A1
20020137806 Stone et al. Sep 2002 A1
20020142207 Watakabe et al. Oct 2002 A1
20020161061 Steck et al. Oct 2002 A1
20020161174 Sasaki et al. Oct 2002 A1
20020164513 Asano et al. Nov 2002 A1
20020172850 Asano et al. Nov 2002 A1
20020177656 Goto et al. Nov 2002 A1
20020187377 Shinoda et al. Dec 2002 A1
20020187379 Yasuo et al. Dec 2002 A1
20020188097 Goto et al. Dec 2002 A1
20030012988 Gascoyne et al. Jan 2003 A1
20030013817 Lu Jan 2003 A1
20030035991 Colombo et al. Feb 2003 A1
20030044669 Hidaka et al. Mar 2003 A1
20030054219 Won et al. Mar 2003 A1
20030059657 Stone et al. Mar 2003 A1
20030064268 Fukuda et al. Apr 2003 A1
20030077503 Yoshitake et al. Apr 2003 A1
20030078308 Holdcroft et al. Apr 2003 A1
20030099874 Kim et al. May 2003 A1
20030104259 Oguri et al. Jun 2003 A1
20030113605 Hidaka et al. Jun 2003 A1
20030113606 Ritts et al. Jun 2003 A1
20030129467 Morishima et al. Jul 2003 A1
20030146148 Wu et al. Aug 2003 A1
20030148162 Narayanan et al. Aug 2003 A1
20030153700 Wu et al. Aug 2003 A1
20030166824 Sasaki et al. Sep 2003 A1
20030170521 Zhang Sep 2003 A1
20030173547 Yamakawa et al. Sep 2003 A1
20030194593 Fan et al. Oct 2003 A1
20030198854 Watakabe et al. Oct 2003 A1
20030211264 Farnsworth et al. Nov 2003 A1
20040005490 Fan et al. Jan 2004 A1
20040009384 Mathias et al. Jan 2004 A1
20040009385 Barnwell et al. Jan 2004 A1
20040018410 Dai Jan 2004 A1
20040018411 Dai Jan 2004 A1
20040038107 Fan et al. Feb 2004 A1
20040096717 Asano May 2004 A1
20040096731 Hama et al. May 2004 A1
20040186262 Maier et al. Sep 2004 A1
Foreign Referenced Citations (48)
Number Date Country
0 034 248 Aug 1981 EP
0 068 508 Jan 1983 EP
0 337 626 Oct 1989 EP
0 574 791 Jun 1993 EP
1170310 Jan 2002 EP
1 274 147 Jan 2003 EP
1274147 Jan 2003 EP
1323744 Jul 2003 EP
2002201268 Jul 2002 JP
2002201269 Jul 2002 JP
2002201270 Jul 2002 JP
2002206024 Jul 2002 JP
2002206025 Jul 2002 JP
2002206026 Jul 2002 JP
2002270199 Sep 2002 JP
2003020415 Jan 2003 JP
2003022708 Jan 2003 JP
2003022709 Jan 2003 JP
2003022824 Jan 2003 JP
2003055457 Feb 2003 JP
2003123792 Apr 2003 JP
2003147074 May 2003 JP
2003147075 May 2003 JP
2003147076 May 2003 JP
2003217365 Jul 2003 JP
2003288814 Oct 2003 JP
WO 9822989 May 1998 WO
WO 9929763 Jun 1999 WO
WO 9954389 Oct 1999 WO
WO 9954407 Oct 1999 WO
WO 0005774 Feb 2000 WO
WO 0009610 Feb 2000 WO
WO 0022684 Apr 2000 WO
WO 0022684 Apr 2000 WO
WO 0024796 May 2000 WO
WO 0027513 May 2000 WO
WO 0119896 Mar 2001 WO
WO 0170858 Sep 2001 WO
WO 0170858 Sep 2001 WO
WO 0225764 Mar 2002 WO
WO 02082572 Oct 2002 WO
WO 02086999 Oct 2002 WO
WO 02103834 Dec 2002 WO
WO 03005474 Jan 2003 WO
WO 03082956 Oct 2003 WO
WO 03105253 Dec 2003 WO
WO 03105253 Dec 2003 WO
WO 04011535 Feb 2004 WO
Related Publications (1)
Number Date Country
20040126666 A1 Jul 2004 US
Provisional Applications (2)
Number Date Country
60449299 Feb 2003 US
60381136 May 2002 US