1. Field of the Invention
The present invention generally relates to the field of air cleaning systems. More specifically, the present invention relates to an ion filtration device (“IFD”) for cleaning air by use of electrostatic ion attraction.
2. Description of the Related Art
Air having a high concentration of suspended particles (hereinafter, “dirty air”) can pose a health hazard to living beings from breathing the dirty air. The dirty air can also cause a higher rate of deposition of settled suspended particles (e.g., dust) thus causing more frequent cleaning of surfaces that are desired to be kept clean (e.g., surfaces inside a home).
In farming, high aerosol concentrations are found in situations such as poultry sheds and intensive pig rearing sheds etc., and thus the health of both workers and animals is at risk.
In industry a variety of processes such as welding, grinding, smelting and use of internal combustion engines in confined spaces all produce high concentrations of suspended particles in enclosed spaces.
In social and domestic situations, suspended particles are produced by tobacco smoking. Sneezing can produce aerosols of bacteria and viruses. Allergy producing pollen is found in high concentrations at various times of the year. Dust mite allergen particles are produced when making up beds and enter the air as suspended particles.
Conventional air cleaners may remove particles from the air by trapping them either in filters as in a filtration air cleaner (FAC), or by collecting them on plates as in an electrostatic precipitation air cleaner (ESPAC). The filters or plates may then be disposed of, washed or replaced.
Disadvantages of FAC devices include a drop in efficiency of the filter over time as particles clog the filter; the need for a fan powerful enough to overcome the partially-clogged filter; noise and power consumption associated with the fan; and the need to replace the filters regularly.
Disadvantages of ESPAC devices include: a need for costly shielding of high voltage plates; loss of efficiency and generation of ozone caused by electrical breakdown and leakage between the high voltage plates; and a need to space the high voltage plates relatively far apart to reduce electrical breakdown in the air between the high voltage plates, thus increasing size and reducing efficiency.
Electrostatic precipitation air cleaners operate by attracting charged particles and ions to collection plates charged with an opposite electrical charge from that of the charged particles and ions. A variation of the ESPAC device is to replace the high voltage plates with an air passage, the air passage having at least a portion thereof having an electrical potential, electrets properties, electrostatic properties, or the like. An example of such a device known in the art is U.S. Pat. No. 6,749,669 to Griffiths, et al., the contents of which are incorporated by reference herein.
However, the particles and ions that are to be collected may not ordinarily be in a charged state, so charge must be introduced onto the particles and ions in order to attract them to the collection plates. Conventional electrostatic air cleaners of this kind introduce charge onto the particles and ions as they leave the cleaner by use of an ionizer to electrically ionize the gas or air stream. The ionizer may include a primary corona discharge emitter and a secondary corona discharge emitter at a lower potential relative to the primary emitter. The primary corona discharge emitter is connected to a high negative potential while the secondary corona discharge emitter is connected to electrical ground. The primary corona discharge emitter may be a needle having a sharp tip and the secondary corona discharge emitter may be a needle having a relatively blunt tip.
Since the ionizer imparts charge upon particles and ions as they leave the cleaner, the ions so charged must travel back to an air inlet of the conventional electrostatic air cleaner in order to be collected. This presents a disadvantage of the known art, because some particles so ionized may not return to the air inlet, and particles which do return to the air inlet may lose some or all of their charge before returning. Unless the electrostatic air cleaner is operating in a confined space, few adequately charged ions may return to the air inlet. Consequently, there is a need for a more efficient electrostatic air cleaner
In one aspect of the invention an ion filtration device (IFD) is disclosed. The IFD includes a housing, a fan that creates an airflow within the housing, a prefilter disposed within the housing, an ionizer disposed within the housing downstream from the prefilter, and an electrostatically charged main filter disposed within the housing downstream from the ionizer. The fan is preferably disposed within the housing. In some embodiments a serpentine pathway is disposed between the ionizer and the main filter, and the airflow passes through the serpentine pathway prior to passing through the main filter. In other embodiments baffles are disposed between the ionizer and the main filter, and the airflow passes through the baffles prior to passing through the main filter.
In another aspect of the invention a method for filtering air is disclosed. Air is passed through a prefilter disposed in a housing to remove at least a portion of particulates suspended in the air. The air is then passed by an ionizer disposed in the housing to ionize at least a portion of the particulates suspended in the air. Finally, prior to the air exiting the housing, the ionized particulates are passed through an electrostatically charged main filter disposed within the housing. In some embodiments air is passed through baffles subsequent to passing by the ionizer and prior to passing through the electrostatically charged main filter. In other embodiments the air is passed through a serpentine pathway subsequent to passing by the ionizer and prior to passing through the electrostatically charged main filter.
The various aspects and embodiments disclosed herein will be better understood when read in conjunction with the appended drawings, wherein like reference numerals refer to like components. For the purposes of illustrating aspects of the present application, there are shown in the drawings certain preferred embodiments. It should be understood, however, that the application is not limited to the precise arrangement, structures, features, embodiments, aspects, and devices shown, and the arrangements, structures, features, embodiments, aspects and devices shown may be used singularly or in combination with other arrangements, structures, features, embodiments, aspects and devices. The drawings are not necessarily drawn to scale and are not in any way intended to limit the scope of this invention, but are merely presented to clarify illustrated embodiments of the invention. In these drawings:
Embodiments of the present invention generally relate to the field of air cleaning systems. More specifically, embodiments relate to an ion filtration device (“IFD”) for cleaning air by use of electrostatic ion attraction.
Referring to
Next, fan 104 pushes airflow 110 past ionizer 105 which releases charged ions (not shown in
It can be seen that conventional IFD 100 is not efficient, at least for the following reasons. First, main filter 103 is not fully effective until charged particles pass through it. Second, because there is no control over the direction of air and ions that are expelled through outlet 106, only a fraction may reach their way back to the inlet 101, and the flow from outlet 106 to inlet 101 may be entirely blocked by drafts and air currents exterior to IFD 100. Third, charged particles may adhere to other surfaces in the space surrounding IFD 100, thereby causing an unwanted buildup of particles in unwanted locations. Fourth, because there may be a significant time delay between ionization and the entry of particles charged by those ions into inlet 101, the strength of the electrostatic charge may decay, causing reduced efficiency of main filter 103.
In operation of IFD 200, within a housing 211 a fan 204 creates an airflow 210 within IFD 200 such that air is drawn into IFD 200 through an inlet 201 and passes first through a prefilter 202. Prefilter 202 removes large dust particles and fibers. Airflow 210 next passes adjacent to ionizer 205, which creates ions (not shown in
Next, fan 204 pushes airflow 210 through main filter 203, which attracts the incoming particles that carry the opposite charge from that of the ions. Finally, airflow 210 exits from IFD 200 through outlet 206.
The embodiment of
The operation of improved IFD 200 is more efficient than that of conventional IFD 100 at least for the following reasons. First, main filter 203 is fully effective more quickly because charged particles begin passing through it almost immediately after turning on improved IFD 200. Second, the vast majority of suspended particles charged by ionizer 205 will likely pass through main filter 203, regardless of air flows outside of improved IFD 200. Third, charged particles are less likely to adhere to surfaces outside of improved IFD 200. Fourth, there is less decay of charge on the charged particles before they are filtered by main filter 203.
The effectiveness of this design can be improved by further lengthening the time that the air and emitted charge are together inside the unit between the inlet and the outlet, thereby maximizing the charge mixing and therefore maximizing the filter efficiency. This may be accomplished by further lengthening the path in order to lengthen the time available for charge transfer, and in particular the airflow path between ionizer 205 and filter 203. For instance, as shown in
While there have been shown, described, and pointed out fundamental novel features of the invention as applied to a preferred embodiment thereof, it will be understood that various omissions, substitutions, and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit and scope of the invention. For example, it is expressly intended that all combinations of those elements and/or steps which perform substantially the same function, in substantially the same way, to achieve the same results are within the scope of the invention. Substitutions of elements from one described embodiment to another are also fully intended and contemplated. It is also to be understood that the drawings are not necessarily drawn to scale, but that they are merely conceptual in nature. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Those skilled in the art will recognize that the present invention has many applications, may be implemented in various manners and, as such is not to be limited by the foregoing embodiments and examples. Any number of the features of the different embodiments described herein may be combined into one single embodiment, the locations of particular elements can be altered and alternate embodiments having fewer than or more than all of the features herein described are possible. Functionality may also be, in whole or in part, distributed among multiple components, in manners now known or to become known.
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention. While there have been shown and described fundamental features of the invention as applied to being exemplary embodiments thereof, it will be understood that omissions and substitutions and changes in the form and details of the disclosed invention may be made by those skilled in the art without departing from the spirit of the invention. Moreover, the scope of the present invention covers conventionally known, future developed variations and modifications to the components described herein as would be understood by those skilled in the art.
This application claims the benefit of U.S. Provisional Application No. 61/453,060, filed Mar. 15, 2011, the contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/029064 | 3/14/2012 | WO | 00 | 6/22/2015 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/125715 | 9/20/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2634818 | Wintermute | Apr 1954 | A |
4144359 | Zahedi et al. | Mar 1979 | A |
5647890 | Yamamoto | Jul 1997 | A |
6398852 | Loreth | Jun 2002 | B1 |
20040226448 | Griffiths | Nov 2004 | A1 |
20050160907 | Zhang et al. | Jul 2005 | A1 |
20070034082 | Adair et al. | Feb 2007 | A1 |
20080138242 | Park et al. | Jun 2008 | A1 |
20080156186 | McKinney | Jul 2008 | A1 |
20080250926 | Raskin | Oct 2008 | A1 |
20100251895 | VanDerGinst | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
102007020504 | Nov 2007 | DE |
1864840 | Dec 2007 | EP |
2208538 | Jul 2010 | EP |
1493419 | Nov 1977 | GB |
8804580 | Jun 1988 | WO |
Entry |
---|
Extended Search Report and Search Opinion from European Patent Application No. 12758351.6 mailed on Apr. 16, 2015. |
PCT International Search Report and Written Opinion from PCT/US12/29064 mailed on Jun. 19, 2012. |
Number | Date | Country | |
---|---|---|---|
20150290657 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61453060 | Mar 2011 | US |