Ion Selective Quantum Dots for Intracellular Mapping of Sodium Sparks in Cardiac

Information

  • Research Project
  • 7619126
  • ApplicationId
    7619126
  • Core Project Number
    R01GM084366
  • Full Project Number
    5R01GM084366-02
  • Serial Number
    84366
  • FOA Number
    PAR-07-270
  • Sub Project Id
  • Project Start Date
    5/1/2008 - 16 years ago
  • Project End Date
    4/30/2013 - 11 years ago
  • Program Officer Name
    DEATHERAGE, JAMES F.
  • Budget Start Date
    5/1/2009 - 15 years ago
  • Budget End Date
    4/30/2010 - 14 years ago
  • Fiscal Year
    2009
  • Support Year
    2
  • Suffix
  • Award Notice Date
    8/26/2009 - 15 years ago

Ion Selective Quantum Dots for Intracellular Mapping of Sodium Sparks in Cardiac

DESCRIPTION (provided by applicant): Ion-selective quantum dots (ISQDs) are ion-selective polymer-based optical nanosensors that incorporate quantum dots (QDs) into the core of the sensor. A sodium-selective ISQD measures sodium over the range of 1mM to 1 M with 100 fold selectivity over potassium and a resolution of 80 5M. Ion-selective quantum dots consist of a quantum dot, a pH sensitive dye, and an ion-selective polymer. Selective ion extraction into the polymer matrix causes a pH change inside the matrix therefore changing the absorbance properties of the pH sensitive dye. The change of absorbance attenuates the intensity of the quantum dot by directly absorbing its fluorescence emission. Our hypothesis is that using ISQDs to map the spatial distribution of intracellular sodium will reveal a heterogeneous distribution of ion activity during the action potential of a cardiac cell. We base our hypothesis on the following: First, ISQDs are the only sodium probes available that are selective over physiological levels of potassium, photostable, and biocompatible. Second, it has been shown that fluxes of ions at the opening of an ion channel create localized regions of high ion concentrations, or calcium sparks . Because of the nature of the channel sodium sparks should be present at the opening of sodium channels, however there are very few documented cases in the literature. We believe that using better tools for sodium imaging, such as ISQDs, will provide a wealth of information on this little known process. The specific aims of this application period are: 1. To tailor ISQDs to be compatible with the analytical requirements of measuring sodium in an intracellular environment. A robust sensor must demonstrate optimal results in the following categories: physiologically relevant dynamic range, leaching/lifetime of sensors, and size. 2. To validate the response of ISQDs to sodium in the intracellular environment. ISQDs must show a response to changes in sodium in the intracellular environment that are comparable to those achieved in solution studies in Specific Aim 1. Validation will be performed using simultaneous patch clamp and optical recording in a well-defined cell system. Additionally, a comparison to patch-clamp alone (no ISQDs) and CoroNa dyes will be performed. A dose response to the effects of known channel blockers will also be carried out. 3. To map the spatial distribution of sodium in cardiac myocytes. Sodium fluxes through ion channels in the outer membrane lead to inhomogeneous distributions of sodium concentration in the cell, at least during the duration of the open channel. Sodium sparks will be identified in cardiac myocytes, and will be evaluated for effects to sodium channel blockers. PUBLIC HEALTH RELEVANCE: The ultimate goal of this application is to develop and use a new intracellular imaging tool, Ion- Selective Quantum Dots to map sodium microdomains in cardiac cells. These probes will provide crucial information on ion channel distribution that is not available with current tools. Ultimately, this tool will provide new knowledge of cardiac action potentials and possibly lead to the prevention of fatal arrhythmias in diseases such as Long QT syndrome.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R01
  • Administering IC
    GM
  • Application Type
    5
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    269555
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
  • Funding ICs
    NIGMS:269555\
  • Funding Mechanism
    Research Projects
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    CHARLES STARK DRAPER LABORATORY
  • Organization Department
  • Organization DUNS
    066587478
  • Organization City
    CAMBRIDGE
  • Organization State
    MA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    02139
  • Organization District
    UNITED STATES