Various embodiments described herein generally relate to an Internet of Things (IoT) device to enable fast connection between low energy IoT devices.
The Internet is a global system of interconnected computers and computer networks that use a standard Internet protocol suite (e.g., the Transmission Control Protocol (TCP) and Internet Protocol (IP)) to communicate with each other. The Internet of Things (IoT) is based on the idea that everyday objects, not just computers and computer networks, can be readable, recognizable, locatable, addressable, and controllable via an IoT communications network (e.g., an ad-hoc system or the Internet).
A number of market trends are driving development of IoT devices. For example, increasing energy costs are driving governments' strategic investments in smart grids and support for future consumption, such as for electric vehicles and public charging stations. Increasing health care costs and aging populations are driving development for remote/connected health care and fitness services. A technological revolution in the home is driving development for new “smart” services, including consolidation by service providers marketing ‘N’ play (e.g., data, voice, video, security, energy management, etc.) and expanding home networks. Buildings are getting smarter and more convenient as a means to reduce operational costs for enterprise facilities.
There are a number of key applications for the IoT. For example, in the area of smart grids and energy management, utility companies can optimize delivery of energy to homes and businesses while customers can better manage energy usage. In the area of home and building automation, smart homes and buildings can have centralized control over virtually any device or system in the home or office, from appliances to plug-in electric vehicle (PEV) security systems. In the field of asset tracking, enterprises, hospitals, factories, and other large organizations can accurately track the locations of high-value equipment, patients, vehicles, and so on. In the area of health and wellness, doctors can remotely monitor patients' health while people can track the progress of fitness routines.
As such, in the near future, increasing development in IoT technologies will lead to numerous IoT devices surrounding a user at home, in vehicles, at work, and many other locations.
The following presents a simplified summary relating to one or more aspects and/or embodiments associated with the mechanisms disclosed herein. As such, the following summary should not be considered an extensive overview relating to all contemplated aspects and/or embodiments, nor should the following summary be regarded to identify key or critical elements relating to all contemplated aspects and/or embodiments or to delineate the scope associated with any particular aspect and/or embodiment. Accordingly, the following summary has the sole purpose to present certain concepts relating to one or more aspects and/or embodiments relating to the mechanisms disclosed herein in a simplified form to precede the detailed description presented below.
The disclosure is related to connecting a proxy device to a mobile device. A method for connecting a proxy device to a mobile device includes continuously scanning, by the proxy device, for the mobile device, wherein the mobile device broadcasts advertising messages to connect to the proxy device, connecting the proxy device to the mobile device in response to the mobile device coming into communication range of the proxy device, and sending information to the mobile device, the information configured to enable the mobile device to connect to a low energy device.
An apparatus for connecting a proxy device to a mobile device includes a transceiver coupled to the proxy device. The transceiver is configured to: continuously scan for the mobile device, wherein the mobile device broadcasts advertising messages to connect to the proxy device, establish a connection between the proxy device and the mobile device in response to the mobile device coming into communication range of the proxy device, and send information to the mobile device, the information configured to enable the mobile device to connect to a low energy device.
An apparatus for connecting a proxy device to a mobile device includes logic configured to continuously scan, by the proxy device, for the mobile device, wherein the mobile device broadcasts advertising messages to connect to the proxy device, logic configured to connect the proxy device to the mobile device in response to the mobile device coming into communication range of the proxy device, and logic configured to send information to the mobile device, the information configured to enable the mobile device to connect to a low energy device.
An apparatus for connecting a proxy device to a mobile device includes means for continuously scanning, by the proxy device, for the mobile device, wherein the mobile device broadcasts advertising messages to connect to the proxy device, means for establishing a connection between the proxy device and the mobile device in response to the mobile device coming into communication range of the proxy device, and means for sending information to the mobile device, the information configured to enable the mobile device to connect to a low energy device.
A non-transitory computer-readable medium for connecting a proxy device to a mobile device includes at least one instruction to continuously scan, by the proxy device, for the mobile device, wherein the mobile device broadcasts advertising messages to connect to the proxy device, at least one instruction to connect the proxy device to the mobile device in response to the mobile device coming into communication range of the proxy device, and at least one instruction to send information to the mobile device, the information configured to enable the mobile device to connect to a low energy device.
Other objects and advantages associated with the mechanisms disclosed herein will be apparent to those skilled in the art based on the accompanying drawings and detailed description.
A more complete appreciation of aspects of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings which are presented solely for illustration and not limitation of the disclosure, and in which:
The disclosure is related to connecting a proxy device to a mobile device. In an aspect, the proxy device continuously scans for the mobile device, wherein the mobile device broadcasts advertising messages to connect to the proxy device, connects to the mobile device in response to the mobile device coming into communication range of the proxy device, and sends information to the mobile device, the information configured to enable the mobile device to connect to a low energy device.
These and other aspects are disclosed in the following description and related drawings to show specific examples relating to enabling fast connection between low energy IoT devices. Alternate embodiments will be apparent to those skilled in the pertinent art upon reading this disclosure, and may be constructed and practiced without departing from the scope or spirit of the disclosure. Additionally, well-known elements will not be described in detail or may be omitted so as to not obscure the relevant details of the aspects and embodiments disclosed herein.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Likewise, the term “embodiments” does not require that all embodiments include the discussed feature, advantage or mode of operation.
The terminology used herein describes particular embodiments only and should not be construed to limit any embodiments disclosed herein. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Further, many aspects are described in terms of sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., an application specific integrated circuit (ASIC)), by program instructions being executed by one or more processors, or by a combination of both. Additionally, these sequence of actions described herein can be considered to be embodied entirely within any form of computer readable storage medium having stored therein a corresponding set of computer instructions that upon execution would cause an associated processor to perform the functionality described herein. Thus, the various aspects of the disclosure may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the aspects described herein, the corresponding form of any such aspects may be described herein as, for example, “logic configured to” perform the described action.
As used herein, the term “Internet of Things device” (or “IoT device”) may refer to any object (e.g., a smartphone, an appliance, a sensor, etc.) that has an addressable interface (e.g., an Internet protocol (IP) address, a Bluetooth identifier (ID), a near-field communication (NFC) ID, etc.) and can transmit information to one or more other devices over a wired or wireless connection. An IoT device may have a passive communication interface, such as a quick response (QR) code, a radio-frequency identification (RFID) tag, an NFC tag, or the like, or an active communication interface, such as a modem, a transceiver, a transmitter-receiver, or the like. An IoT device can have a particular set of attributes (e.g., a device state or status, such as whether the IoT device is on or off, open or closed, idle or active, available for task execution or busy, and so on, a cooling or heating function, an environmental monitoring or recording function, a light-emitting function, a sound-emitting function, etc.) that can be embedded in and/or controlled/monitored by a central processing unit (CPU), microprocessor, ASIC, or the like, and configured for connection to an IoT network such as a local ad-hoc network or the Internet. For example, IoT devices may include, but are not limited to, refrigerators, toasters, ovens, microwaves, freezers, dishwashers, dishes, hand tools, clothes washers, clothes dryers, furnaces, air conditioners, thermostats, televisions, light fixtures, vacuum cleaners, sprinklers, electricity meters, gas meters, etc., so long as the devices are equipped with an addressable communications interface for communicating with the IoT network. IoT devices may also include cell phones, desktop computers, laptop computers, tablet computers, personal digital assistants (PDAs), etc. Accordingly, the IoT network may be comprised of a combination of “legacy” Internet-accessible devices (e.g., laptop or desktop computers, cell phones, etc.) in addition to devices that do not typically have Internet-connectivity (e.g., dishwashers, etc.).
Referring to
The Internet 175 includes a number of routing agents and processing agents (not shown in
In
The access point 125 may be connected to the Internet 175 via, for example, an optical communication system, such as FiOS, a cable modem, a digital subscriber line (DSL) modem, or the like. The access point 125 may communicate with IoT devices 110-120 and the Internet 175 using the standard Internet protocols (e.g., TCP/IP).
Referring to
In a peer-to-peer network, service discovery schemes can multicast the presence of nodes, their capabilities, and group membership. The peer-to-peer devices can establish associations and subsequent interactions based on this information.
In accordance with an aspect of the disclosure,
Referring to
In one embodiment, the supervisor device 130 may generally observe, monitor, control, or otherwise manage the various other components in the wireless communications system 100B. For example, the supervisor device 130 can communicate with an access network (e.g., access point 125) over air interface 108 and/or a direct wired connection 109 to monitor or manage attributes, activities, or other states associated with the various IoT devices 110-120 in the wireless communications system 100B. The supervisor device 130 may have a wired or wireless connection to the Internet 175 and optionally to the IoT server 170 (shown as a dotted line). The supervisor device 130 may obtain information from the Internet 175 and/or the IoT server 170 that can be used to further monitor or manage attributes, activities, or other states associated with the various IoT devices 110-120. The supervisor device 130 may be a standalone device or one of IoT devices 110-120, such as computer 120. The supervisor device 130 may be a physical device or a software application running on a physical device. The supervisor device 130 may include a user interface that can output information relating to the monitored attributes, activities, or other states associated with the IoT devices 110-120 and receive input information to control or otherwise manage the attributes, activities, or other states associated therewith. Accordingly, the supervisor device 130 may generally include various components and support various wired and wireless communication interfaces to observe, monitor, control, or otherwise manage the various components in the wireless communications system 100B.
The wireless communications system 100B shown in
For example, passive IoT devices 105 may include a coffee cup and a container of orange juice that each have an RFID tag or barcode. A cabinet IoT device and the refrigerator IoT device 116 may each have an appropriate scanner or reader that can read the RFID tag or barcode to detect when the coffee cup and/or the container of orange juice passive IoT devices 105 have been added or removed. In response to the cabinet IoT device detecting the removal of the coffee cup passive IoT device 105 and the refrigerator IoT device 116 detecting the removal of the container of orange juice passive IoT device, the supervisor device 130 may receive one or more signals that relate to the activities detected at the cabinet IoT device and the refrigerator IoT device 116. The supervisor device 130 may then infer that a user is drinking orange juice from the coffee cup and/or likes to drink orange juice from a coffee cup.
Although the foregoing describes the passive IoT devices 105 as having some form of RFID tag or barcode communication interface, the passive IoT devices 105 may include one or more devices or other physical objects that do not have such communication capabilities. For example, certain IoT devices may have appropriate scanner or reader mechanisms that can detect shapes, sizes, colors, and/or other observable features associated with the passive IoT devices 105 to identify the passive IoT devices 105. In this manner, any suitable physical object may communicate its identity and attributes and become part of the wireless communication system 100B and be observed, monitored, controlled, or otherwise managed with the supervisor device 130. Further, passive IoT devices 105 may be coupled to or otherwise made part of the wireless communications system 100A in
As shown in
While internal components of IoT devices, such as IoT device 200A, can be embodied with different hardware configurations, a basic high-level configuration for internal hardware components is shown as platform 202 in
Accordingly, an aspect of the disclosure can include an IoT device (e.g., IoT device 200A) including the ability to perform the functions described herein. As will be appreciated by those skilled in the art, the various logic elements can be embodied in discrete elements, software modules executed on a processor (e.g., processor 208) or any combination of software and hardware to achieve the functionality disclosed herein. For example, transceiver 206, processor 208, memory 212, and I/O interface 214 may all be used cooperatively to load, store and execute the various functions disclosed herein and thus the logic to perform these functions may be distributed over various elements. Alternatively, the functionality could be incorporated into one discrete component. Therefore, the features of the IoT device 200A in
In an example embodiment, the IoT device 200A may correspond to a proxy device configured to facilitate a mobile device connecting to one or more low energy devices, as described herein. In that case, the transceiver 206 may be configured to continuously scan for the mobile device, where the mobile device broadcasts advertising messages to connect to the IoT device 200A, establish a connection between the IoT device 200A and the mobile device in response to the mobile device coming into communication range of the IoT device 200A, and send information to the mobile device, the information configured to enable the mobile device to connect to a low energy device of the one or more low energy devices.
The transceiver 206 may be further configured to continuously scan to detect announce messages from the one or more low energy devices and acquire information about the one or more low energy devices. Acquiring the information about the one or more low energy devices may include detecting the announce messages from the one or more low energy devices and interrogating the one or more low energy devices to acquire information about the one or more low energy devices.
In another example embodiment, the IoT device 200A may correspond to the mobile device connecting to the one or more low energy devices with the help of the proxy device, as described herein. In that case, the transceiver 206 may be configured to broadcast advertising messages to connect to the proxy device, establish a connection between the IoT device 200A and the proxy device in response to the IoT device 200A coming into communication range of the proxy device, and receive information from the proxy device, the information configured to enable the IoT device 200A to connect to a low energy device of the one or more low energy devices. These and other aspects will be discussed in greater detail below.
In yet an example embodiment, the IoT device 200A may correspond to a low energy IoT device. In that case, the transceiver 206 may be configured to transmit announce messages at a low duty cycle, establish a connection with the proxy device, and transmit information about the IoT device 200A to the proxy device. The transceiver 206 may be further configured to establish a connection with a mobile device based on the mobile device receiving information from the proxy device.
The passive IoT device 200B shown in
Although the foregoing describes the passive IoT device 200B as having some form of RF, barcode, or other I/O interface 214, the passive IoT device 200B may comprise a device or other physical object that does not have such an I/O interface 214. For example, certain IoT devices may have appropriate scanner or reader mechanisms that can detect shapes, sizes, colors, and/or other observable features associated with the passive IoT device 200B to identify the passive IoT device 200B. In this manner, any suitable physical object may communicate its identity and attributes and be observed, monitored, controlled, or otherwise managed within a controlled IoT network.
In an example embodiment, the IoT device 200B may correspond to a low energy IoT device. In that case, the transceiver 206 may be configured to transmit announce messages at a low duty cycle, establish a connection with the proxy device, and transmit information about the IoT device 200B to the proxy device. The transceiver 206 may be further configured to establish a connection with a mobile device based on the mobile device receiving information from the proxy device.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Generally, unless stated otherwise explicitly, the phrase “logic configured to” as used throughout this disclosure is intended to invoke an aspect that is at least partially implemented with hardware, and is not intended to map to software-only implementations that are independent of hardware. Also, it will be appreciated that the configured logic or “logic configured to” in the various blocks are not limited to specific logic gates or elements, but generally refer to the ability to perform the functionality described herein (either via hardware or a combination of hardware and software). Thus, the configured logics or “logic configured to” as illustrated in the various blocks are not necessarily implemented as logic gates or logic elements despite sharing the word “logic.” Other interactions or cooperation between the logic in the various blocks will become clear to one of ordinary skill in the art from a review of the aspects described below in more detail.
The various embodiments may be implemented on any of a variety of commercially available server devices, such as server 400 illustrated in
Certain IoT devices are designed to operate in a low energy mode in order to operate for long periods of time on a single battery charge, or on a small non-rechargeable battery, such as a coin cell battery. Such IoT devices are designed to achieve this low power consumption by employing RF, Gaussian frequency-shift keying (GFSK), Low Peak Power, packet length restrictions, etc. They may also use a low duty cycle, or low standby time, meaning the IoT devices will go into sleep mode for longer durations (e.g., 500 ms) when there is no RF current and wake up periodically to detect if other devices are trying to connect to them. Such devices include Bluetooth Low Energy (a.k.a. BLE or Bluetooth Smart) devices.
To conserve battery power, low energy IoT devices alternate between broadcasting advertising, or announce, packets and listening, or scanning, for advertising packets from other IoT devices. To establish a connection between two low energy IoT devices, one device must scan for advertising packets during a time that the other device is transmitting advertising packets. The rate at which such scanning is performed is determined by a scanning duty cycle. Similarly, the rate at which advertising packets are transmitted is determined by an advertising duty cycle. Thus, the time required to establish a connection between two low energy IoT devices is influenced by the devices' scanning duty cycle and advertising duty cycle. The higher the duty cycle, e.g., the more frequent the advertisements and the longer the scanning time, the faster the devices can connect to each other.
One of the features of low energy IoT devices is that they are able to connect to other devices very quickly (e.g., within a few milliseconds) via, for example, a BLE interface. However, this can only be achieved when one of the devices is operating at a high duty cycle (e.g., a smartphone performing an active scan). If a low energy IoT device attempts to connect to another device and both devices are operating in a low energy mode, or at a low duty cycle, the connection can take a very long time (e.g., up to several minutes, based on the intersection of both devices being awake at the same time).
Such a slow connection may be undesirable in a number of situations. For example, a user may set up his or her smartphone to connect to the low energy IoT devices at the user's home without active user interaction. The user would likely prefer that the smartphone connect to the low energy IoT devices as soon as the user gets home, thereby allowing the user to immediately receive any relevant alerts from these devices. However, because the smartphone will likely be operating at a low duty cycle (e.g., due to being in a sleep mode), it may take several minutes or more for the smartphone to connect to all of the low energy IoT devices.
As another example, a user may have set up his or her smartphone to receive advertisements from nearby vendors (which can broadcast advertisements using low energy IoT devices near their storefront). However, if the user is driving in a car, the smartphone will have to be able to connect to such low energy IoT devices very quickly, as the user may be within range of these devices for less than a second.
Accordingly, the present disclosure provides for an IoT device that continuously scans or advertises in order to allow other devices, such as the user's smartphone, to connect to low energy IoT devices quickly. Such a device is referred to herein as a ConnectBeacon IoT device. The ConnectBeacon IoT device can be added to the user's home IoT network (or other relevant IoT network). For example, the functionality of the ConnectBeacon IoT device can be added to the supervisor device 130 in
In an aspect, the ConnectBeacon IoT device continuously advertises for mobile devices, such as the user's smartphone, and tries to connect to them as soon as they come into range. On connecting to a mobile device, the ConnectBeacon IoT device notifies the mobile device that it has arrived in the particular network (e.g., the user's home network). This triggers the mobile device to switch from a low duty cycle scan mode to a fast duty cycle scan mode, thereby achieving a fast connection with the low energy IoT devices in that network.
When the mobile device 602 comes into range of the ConnectBeacon IoT device 608, it detects the advertisement from the ConnectBeacon IoT device 608 during its first scan window, i.e., scan window 612. On connecting to the ConnectBeacon IoT device 608, the mobile device 602 is notified that it has arrived in the particular network. In response, the mobile device 602 switches from a low duty cycle scan mode (illustrated as scan window 612) to a fast duty cycle scan mode (illustrated as fast scan 620).
The low energy IoT devices 604/606 continue to advertise at a low duty cycle. However, due to the longer duty cycle scan mode (i.e., fast scan 620) of the mobile device 602, the mobile device 602 is able to receive the first advertisements (depicted as announce windows 614/616) that the low energy IoT devices transmit after the mobile device 602 switches to the fast scan mode (fast scan 620).
In another aspect, the ConnectBeacon IoT device continuously scans for mobile devices, such as the user's smartphone, and tries to connect to them as soon as they come into range. As discussed above, on connecting to a mobile device, the ConnectBeacon IoT device notifies the mobile device that it has arrived in the particular network. Again, this triggers the mobile device to switch from a low duty cycle scan mode to a fast duty cycle scan mode, thereby achieving a fast connection with the low energy IoT devices in that network.
When the mobile device 702 comes into range of the ConnectBeacon IoT device 708, the the ConnectBeacon IoT device 708 detects the advertisement from the mobile device 702 during the mobile device 702's first announce window, i.e., announce window 712. On connecting to the mobile device 702, the ConnectBeacon IoT device 708 notifies the mobile device 702 that it has arrived in the particular network. In response, the mobile device 702 switches to a fast duty cycle scan mode (illustrated as fast scan 720).
The low energy IoT devices 704/706 continue to advertise at a low duty cycle. However, due to the longer duty cycle scan mode (i.e., fast scan 720) of the mobile device 702, the mobile device 702 is able to receive the first advertisements (depicted as announce windows 714/716) that the low energy IoT devices transmit after the mobile device 702 switches to the fast scan mode (fast scan 720).
In another aspect, instead of simply instructing or triggering the mobile device to enter a high duty cycle scanning mode, the ConnectBeacon IoT device can provide additional information to the mobile device to further speed up the mobile device's ability to connect to low energy IoT devices.
At 810, as at 710 of
Although not illustrated in
The information may include duty cycle information (e.g., the announce/advertise duty cycle) of the low energy IoT devices, dynamic characteristics of the low energy IoT devices, and/or static characteristics of the low energy devices. The duty cycle information may include a start time and a duration of the duty cycle. Dynamic characteristics of a low energy IoT device may include, for example, the temperature advertised by a thermostat IoT device, an alert level (e.g., volume, frequency), etc. Static characteristics of a low energy IoT device may include, for example, the periodicity of advertising, the time of the last advertisement, the make/model of the IoT device, etc.
Not all information transmitted to the mobile device by the ConnectBeacon IoT device may have been retrieved from the low energy IoT devices, however. Rather, the information may also include an instruction to switch to a high duty cycle scanning mode or to increase the current announce/advertise duty cycle. The information may also include one or more parameters indicating environmental conditions of the low energy IoT device, such as whether another user of the household connected with the low energy IoT device recently, whether the house is in a quiet mode due to a baby sleeping, etc.
As is apparent, the ConnectBeacon IoT device need not send all of the above-described information, or any information, to the mobile device. Rather, the mobile device may be programmed to automatically switch to a high duty cycle scanning mode upon connecting to the ConnectBeacon IoT device.
Additionally, the ConnectBeacon IoT device can decide which low energy IoT devices to instruct the mobile device to connect to when the mobile device connects to ConnectBeacon IoT device. For example, if a low energy IoT device, such as a water heater, is performing correctly, there is no need for the mobile device to connect to it as soon as the mobile device comes within range of the home network. Rather, the ConnectBeacon IoT device may send information to the mobile device regarding only those low energy IoT devices that have outstanding alerts. These and other rules can be pre-programmed or entered by the user.
The functionality of the modules of
In addition, the components and functions represented by
Those skilled in the art will appreciate that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Further, those skilled in the art will appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the aspects disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted to depart from the scope of the present disclosure.
The various illustrative logical blocks, modules, and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration).
The methods, sequences and/or algorithms described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in an IoT device. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes CD, laser disc, optical disc, DVD, floppy disk and Blu-ray disc where disks usually reproduce data magnetically and/or optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
While the foregoing disclosure shows illustrative aspects of the disclosure, it should be noted that various changes and modifications could be made herein without departing from the scope of the disclosure as defined by the appended claims. The functions, steps and/or actions of the method claims in accordance with the aspects of the disclosure described herein need not be performed in any particular order. Furthermore, although elements of the disclosure may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.
Number | Name | Date | Kind |
---|---|---|---|
7865140 | Levien | Jan 2011 | B2 |
20110258313 | Mallik et al. | Oct 2011 | A1 |
20130040574 | Hillyard | Feb 2013 | A1 |
20130069768 | Madhyastha et al. | Mar 2013 | A1 |
20130237777 | Patel | Sep 2013 | A1 |
20140018002 | Jose et al. | Jan 2014 | A1 |
20140094123 | Polo | Apr 2014 | A1 |
20150242764 | Subbaraj | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
2012045346 | Apr 2012 | WO |
2014193557 | Dec 2014 | WO |
Entry |
---|
International Search Report and Written Opinion—PCT/US2015/058862—ISA/EPO—dated Feb. 3, 2016. |
QTOOTH: The oort “Internet of Everything” Hub putsBluetooth Front and Center, Tooth Wireless Living, Jun. 15, 2014, [Retrieved dated on Aug. 27, 2014], Retrieved from the Internet < URL: http://www.qtooth.com/oort-internet-everything-hub-puts-bluetooth-front-center/ >, pp. 7. |
Number | Date | Country | |
---|---|---|---|
20160174266 A1 | Jun 2016 | US |