Home automation IoTM (“Internet of Things Monitoring”) products typically use a low power mesh network within the home for connectivity between end devices and a dedicated gateway device that manages communication between the mesh and IP hosts (Local LAN and/or cloud servers, e.g.). Examples of this network are Zigbee, Z-Wave, 6-Low-PAN, etc. These networks do not allow end devices to connect to a cloud infrastructure without a dedicated gateway that arbitrates or manages communication between the cloud and the end devices. A typical end device has a low power mesh radio. A dedicated gateway device manages the communication between the end devices and any Internet Protocol (“IP”) based device.
Typically, the dedicated gateway manages scheduling of automations and integration to other control systems.
Mesh M does not have the versatility to adapt to an end device from which it is difficult to receive a signal.
Examples of typical dedicated gateways include those from Arlo (https://www.arlo.com/en-us/accessories/ABB1000-100NAS.html), Ring (https://ring.com/products/smart-lighting-bridge), and Phillips (https://www.philips-hue.com/en-us/p/hue-bridge/046677458478?origin=p71805997391&gclid=Cj0KCQiAutyfBhCMARIsAMgcRJTqRk72tjbAMMVUL6RYAYj--0SKhVygSVhOe8O_a361QFIPJVGMqyYaAl4yEALw_wcB&gclsrc=aw.ds#overview).
The objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
The leftmost digit (e.g., “L”) of a three-digit reference numeral (e.g., “LRR”), and the two leftmost digits (e.g., “LL”) of a four-digit reference numeral (e.g., “LLRR”), generally identify the first figure in which a part is called-out.
Apparatus and methods for controlling a fixture are provided. The apparatus and methods may enable mesh communication without a dedicated gateway. A mesh may include a low power mesh. The mesh may be a network. The network may include nodes. A node may include an end device. The end device may be a fixture.
The fixture may include a light source. The fixture may include a fan. The fixture may include a sensor. The fixture may include any suitable device.
The light fixture may be configured to be turned on and off. The light fixture may be configured to be dimmed. The fan may be configured to be set to different fan speeds. The sensor may be configured to measure temperature, humidity, motion, or any other suitable measurable value.
The fixture may include a circuit. The circuit may include a microcontroller. The circuit may include machine-readable memory. The circuit may include a radio. The circuit may include any other suitable component. The microcontroller may be included in a chip. The chip may be a chip such as that available under the tradename Espressif ESP32 Series of Modules (e.g., those available under the tradenames ROVER and ROOM) from Espressif Systems, located in Shanghai, China. The chip may have both Wi-Fi and Bluetooth modules. The chip may be any suitable chip. The radio may be configured to transmit and receive using one, two or more different protocols. The radio may include a transceiver. The radio may be configured to transmit Wi-Fi and Bluetooth signals. The radio may be configured to receive Wi-Fi and Bluetooth signals.
The circuit may have a processor. The circuit may include memory. Different circuits in a mesh may have different processors. Different circuits in a mesh may have different memory. Different processors may have different processing speed. Different processors may have different processing capabilities. Different memories may have different capacities.
The circuit may be powered by a battery. The battery may be a battery such as that available from Victagen (www.victagen.com) as Model No. IMP 18650.
The circuit may include a memory. Table 1 lists illustrative information that may be stored in the memory.
The microcontroller may be configured to execute a fixture control function. Table 2 lists illustrative fixture control functions.
The microcontroller may be configured to execute an IoT (“Internet of Things”) network management task. Table 3 lists illustrative IoT network management tasks.
A task may be assigned by a user. A task may be assigned by a home network. A task may be assigned by a remote platform. A task may be assigned by a rule resident in a fixture. User assignment of a task may facilitate testing of node, fixture or mesh performance.
A fixture may have mesh radio functionality. A fixture may have Wi-Fi radio functionality. A fixture may have both mesh radio functionality and Wi-Fi functionality. Mesh radio functionality may be a low power radio functionality. A fixture may include a transmitter. A fixture may include a receiver. A fixture may include a transceiver. A fixture may include a single physical transceiver. The physical transceiver may communicate based on a mesh protocol. The physical transceiver may communicate based on a Wi-Fi protocol. The physical transceiver may communicate based on a mesh protocol and a Wi-Fi protocol. The mesh protocol may be a low power mesh protocol.
Fixture to fixture communication may be via a mesh such as a mesh conforming to Bluetooth Low Energy (“BLE”) protocol.
The fixture may be part of an IoT network. The IoT network may include a plurality of one or more fixtures. The IoT network may be an IoT network that does not include a dedicated multi-protocol gateway. Examples of dedicated gateways include gateways such as those available under the tradenames Arlo Bridge from Arlo, Smart Lighting Bridge from Ring, Hue Personal Wireless Lighting Bridge from Phillips, or any other dedicated gateway.
The network may be decentralized. When a fixture joins a home network (e.g., a Low Power Mesh or any other suitable home network) it may connect to a home Internet (IP) network. It may be that the fixture may not connect to any external or third-party system until one or more of the fixture control functions within the mesh are determined.
A user may commission a fixture to the mesh. A home network may commission a fixture to the mesh. A remote platform may commission a fixture to the mesh.
Fixtures may be commissioned to the mesh via an application. The application may be instanced on a computing platform. The platform may include a mobile communication device such as a tablet, phone, or the like. The platform may include a personal computer, a remote host, or the like.
After commissioning of a fixture, the fixture may notify the remainder of the mesh of its membership in the mesh as well as its assigned tasks. The home network may renegotiate which tasks are assigned to which fixtures. The renegotiation may be based on one or more of the aforementioned considerations.
The network may periodically determine if a fixture has become incapable of performing a task assigned to the fixture. The network may reassign the task role to a different fixture. The reassignment may involve renegotiation.
One or more of the fixtures may be designated as a multi-protocol gateway for the IoT network.
The designated multi-protocol gateway may be configured to communicate using a first protocol and a second protocol. The first protocol may be an IoT network protocol. The first protocol may be a mesh protocol. The IoT network protocol may be a Bluetooth protocol. The first protocol may be an IEEE 802.15 standard protocol or any other suitable protocol. The first protocol may be configured for use for communications among the fixtures within the network. The second protocol may be a Wi-Fi protocol. The Wi-Fi protocol may be configured for use between the designated multi-protocol gateway and a router. The second protocol may be a TCP/IP protocol. The second protocol may be an IEEE 802.11 standard protocol or any other suitable protocol. The router may be connected to a wide area network (WAN). The wide area network may be the Internet.
The designated multi-protocol gateway may be configured to receive firmware updates from a location on the Internet. The designated multi-protocol gateway may be configured to receive the updates using the Wi-Fi protocol. The designated multi-protocol gateway may send the updates to the other fixtures included in the IoT network. The designated multi-protocol gateway may send the updates via the Bluetooth protocol.
Fixtures may arbitrate amongst themselves based on their ability to fulfill an administrative role. The arbitration may be based on Wi-Fi signal strength, CPU load, CPU power, memory available, device type or any other suitable consideration.
The IoT network may not have an exclusive multi-protocol gateway. The IoT network may not have a permanent multi-protocol gateway. Any of the one or more fixtures included in the IoT network may be designated as the designated multi-protocol gateway. The designated multi-protocol gateway may communicate using the first protocol and the second protocol.
Any of the one or more fixtures included in the IoT network may not be designated as a multi-protocol gateway. The fixtures that are not designated as a multi-protocol gateway may communicate using the first protocol and not the second protocol. The fixtures not designated as a multi-protocol gateway may not process data as part of the second protocol. The fixtures not designated as a multi-protocol gateway may communicate using a Bluetooth signal, not using a Wi-Fi signal. The fixtures not designated as multi-protocol gateways may turn off Wi-Fi signal capability.
A first fixture may send a message to a selected fixture. The first fixture may be designated as the multi-protocol gateway. The selected fixture may not be a designated multi-protocol gateway. The selected fixture may have a first signal-strength. The first signal-strength may be a low-signal strength. The designated multi-protocol gateway may create a direct communication path of non-designated multi-protocol gateway fixtures. The communication path may contain any number of fixtures. The fixtures may have a second signal-strength. The second signal-strength may be higher than the first signal strength. The designated multi-protocol gateway may transmit a message to the selected fixture via the communication path.
A first fixture may identify a low-strength-signal fixture within the IoT network. The first fixture may want to transmit a message to the low-strength-signal fixture. The first fixture may identify a second fixture. The second fixture may be disposed closer to the low-strength-signal fixture than the first fixture. The first fixture may designate the second fixture as the designated multi-protocol gateway. The first fixture may transfer responsibility for communication with the low-strength-signal fixture to the second fixture.
A first fixture may have an internal operational power level. The internal operational power level may be determined based on the operating capacity of the microcontroller included in the first fixture. When the operational power level decreases below a threshold, the first fixture may pass gateway responsibility to a second fixture. The second fixture may have an operational power level that is higher than the threshold. The threshold may be determined by a minimum amount of power necessary to compute tasks necessary for a multi-protocol gateway. The operational power level may need to be high enough to perform Bluetooth communication and Wi-Fi communication. The operational power level may need to be high enough to perform fixture-control functions and IoT network management tasks.
A first fixture may designate a second fixture to be the designated multi-protocol gateway. The IoT network may have a first and second designated multi-protocol gateway. There may be more than one designated multi-protocol gateway within an IoT network.
The microcontroller included in the fixture may have a processing capacity. The microcontroller may be configured to estimate a processing requirement. The processing requirement may be an amount of processing capacity necessary to complete a control-function or an IoT management task. The fixture may be a first fixture. The first fixture may be a designated multi-protocol gateway. The fixture may be configured to delegate an IoT management task to a delegee fixture if the processing requirement exceeds the processing capacity. The fixture may delegate some of its IoT management tasks to the delegee fixture. The fixture may delegate all its IoT management tasks to the delegee fixture.
The delegee fixture may be a first delegee fixture. The IoT management task may be a first IoT management task. The fixture may further be configured to delegate a second IoT management task. The fixture may delegate the second IoT management task to a second delegee fixture.
A first fixture may be further configured to assign a cluster. The cluster may be comprised of the first and second delegee fixtures. The cluster may be defined by any number of delegee fixtures. The first fixture may appoint the first delegee fixture as the head of the cluster. The first fixture may delegate a first and second IoT management task to the head of the cluster. The first fixture may delegate any number of IoT management tasks to the head of the cluster. The head of the cluster may delegate the delegated tasks to all the delegee fixtures included in the cluster.
The designated multi-protocol gateway may be configured to send an IoT network task to a low-signal fixture. The designated multi-protocol gateway may transmit the task by routing the task through a most trafficked fixture. The most trafficked fixture may be the most trafficked fixture of the IoT network. The most trafficked fixture may be the fixture that has the most communication. The most trafficked fixture may transmit the task to the low-signal fixture.
The most trafficked fixture may be identified by using artificial intelligence.
The designated multi-protocol gateway may be configured to divide the IoT network into zones. The zones may be divided based on signal-strength of the fixtures. The zones may be divided by physical location of the fixtures. The zones may be divided based on operating capacity levels of the fixtures. The zones may be divided based on throughput levels of the fixtures. The zones may be divided using any other suitable dividing variable.
The designated multi-protocol gateway may assign one fixture in each zone as the primary fixture. The primary fixture may be the fixture that communicates directly with the designated multi-protocol gateway. The remaining fixtures in the zone may be secondary fixtures. The primary fixtures may be configured to multicast an IoT network management task to the secondary fixtures in the zone. Zoning the IoT network may minimize redundant chatter among the fixtures.
The multi-protocol gateway may be configured to receive over-the-air (OTA) updates. The OTA updates may be firmware updates. The OTA updates may be hardware updates. The OTA updates may be received with a Wi-Fi protocol. The multi-protocol gateway may be configured to send the OTA updates to other fixtures in the network. The OTA updates may be sent using a Bluetooth protocol.
The fixtures may be fixed to environmental structures.
The fixtures may be portable.
Apparatus may omit features shown and/or described in connection with illustrative apparatus. Embodiments may include features that are neither shown nor described in connection with the illustrative apparatus. Features of illustrative apparatus may be combined. For example, an illustrative embodiment may include features shown in connection with another illustrative embodiment.
All ranges and parameters disclosed herein shall be understood to encompass any and all subranges subsumed therein, every number between the endpoints, and the endpoints.
Circuit 500 may include power management circuit 502. Power management circuit may include and may receive power from a battery, line power or any other suitable power. Circuit 500 may include radio 504. Radio 504 may include one or more of a transmitter, a receiver and a transceiver. Radio 504 may communicate with radios of other fixtures in the network. Intranetwork communication may involve Bluetooth or BTLE protocols. Radio 504 may communicate with a router. Communication with the router may involve Wi-Fi protocols, TCP/IP protocols or other suitable protocols.
Circuit 500 may include microcontroller 506. Microcontroller 506 may control fixture functions. Microcontroller 506 may process network management tasks.
Circuit 500 may include memory 508.
Circuit 500 may include fixture control circuitry 510. Fixture control circuitry 510 may be configured to receive a fixture performance signal from microcontroller 506. Circuitry 510 may be configured to translate the fixture performance signal into a low-voltage signal that will cause a fixture to perform a task. The low-voltage signal may be a pulse-width modulated (“PWM”) signal.
Circuit 500 may deliver the low-voltage signal to one or more of fixture endpoints 512. Each of fixture endpoints 512 may be coupled to a device in the fixture such as a fan or a light.
Fixture 602 may be designated to act as a multi-protocol gateway. Fixtures 604 may communicate fixture control instructions and network management information with fixture 602. Fixtures 604 may be placed in a state in which Wi-Fi communication functions are asleep. This may conserve resources in fixtures 604. The conservation of resources may enable the fixtures to use resources for Wi-Fi communication for intra-network processing and communication. Fixture 602 may communicate fixture control instructions and network management information with wide area network W via router 606. Network W may include the Internet.
Fixture 602 may determine that fixture F is shielded by structure S. Fixture 602 may define a path P to circumvent structure S to communicate between fixtures 604 to establish communication with fixture F.
Thus, methods and apparatus for controlling a fixture have been provided. Persons skilled in the art will appreciate that the present invention may be practiced by other than the described embodiments, which are presented for purposes of illustration rather than of limitation.
Number | Date | Country | |
---|---|---|---|
63313848 | Feb 2022 | US |