The present disclosure relates to surveillance of telephone calls over a public communications link and is particularly concerned with providing assistance for such surveillance to law enforcement agencies. It particularly concerns surveillance of voice over IP (i.e., cable) networks.
Requirements for enabling surveillance of electronic communications have been enacted into public law (e.g., Public Law 103-414 enacted Oct. 25, 1994; CALEA Communications Assistance for Law Enforcement Act) reciting requirements for assuring law enforcement access to electronic communications. Such access is required to be in real time, have full time monitoring capabilities, simultaneous intercepts, and feature service descriptions. The requirements specifically include capacity requirements and function capability. It is incumbent upon communication carriers to provide such capability and capacity.
While initially limited in scope, at present, to certain communications technology it is almost assured that it will be extended to new forms of communication. New technologies require extension of CALEA to the new phone system technologies. With the advent of IP telephony it is desirable to provide surveillance capabilities for application to IP telephony.
One of the impediments to surveillance is the necessity of having dedicated equipment to perform the monitoring function. It would be useful to perform such surveillance of a targeted phone with non-dedicated telephone equipment. With use of such non-dedicated equipment it is desirable to distinguish normal calls from surveillance calls.
Surveillance of IP telephony may be performed through the use of conventional telephone equipment, according to principles of the invention while preventing giving indication to the monitored phone of the monitoring activity. The user of the monitoring phone is alerted to such surveillance use prior to pick up, by an agent for engagement of the monitoring phone, in response to the alert. Such alerts may assume many forms such as ringing, visual indicators, data readouts, activating ancillary equipment, various flags, etc. This alert prior to surveillance is distinct from alerts used for normal non-surveillance calls, which the monitoring phone is capable of receiving.
In an IP telephone environment, a cable modem bank (CMB) or an IP Phone intercept List (IP-PIL) lists the IP phones to be monitored and responds when one of those listed phones to be monitored becomes active. In response to notification by an IP Address Mapping Check Point with the IP-PIL, a distinctive alert is delivered to the monitoring phone, which indicates the call's existence and the monitoring purpose to be performed. The IP Address Mapping Check Point and associated WatchDog program alerts the monitoring phone when the monitored phone is in the process of receiving a call. In both instances the monitoring phone is controlled not to be active until both parties of the monitored call are connected and active.
A more complete understanding of the present disclosure and the advantages thereof may be acquired by referring to the following description in consideration of the accompanying drawings, in which like reference numbers indicate like features and wherein:
In the following description of the various embodiments, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration various embodiments in which aspects of the disclosure may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the present disclosure.
A monitoring station/location 101 is shown, in the
The target telephone/DN 111 to be monitored is also connected, via a broadband gateway 131, to the backbone IP network 103 via the same HFC distribution plant 105. Included with the backbone IP network is an IP address mapping Check Point (IP-AMCP) 125, which provides numbers for various devices, connected to the backbone network 103. The IP-AMCP 125 may be embodied in a server within or connected to the network. It has the capability, through programming, of examining packet contents and authenticating users of the network. With specific WatchDog software 127 the IP-AMCP identifies specific activity from certain designated telephone stations 112 and/or 113 at a specified DN or IP address and can replicate/duplicate the packets of that phone and the IP target telephone 111 which replicated/duplicated packets are forwarded to the monitoring station 101.
The designated telephone stations 112 and 113 may be connected to the IP network 103 or to the Public Switched Telephone Network (PSTN) 115, as shown, and be connected to the target DN 111. The monitoring station 101 may not be dedicated to the surveillance function and hence some indication of its use is provided. The IP-AMCP 125 through its WatchDog 127 determines when an incoming call to the monitoring station is a surveillance call of the target DN 111. It uses this determination to provide an alerting signal to the monitoring station 101 so that the answerer is knowledgeable that the incoming call is a monitoring of a target IP telephone. In one aspect the gateway coupling the monitoring IP telephone to the IP network is a source of distinctive ringing signals or in the alternative provides an audio announcement.
The procedure in providing such an indicating alert is shown in the flow chart of
If the DN called is on the surveillance list the process as per block 211 locates the addresses of the calling and called DNs in the IP-AMCP. According to the instructions of block 213 the IP-AMCP sends a distinctive alert message to a gateway terminal connecting the target IP telephone to the IP network and also to the gateway serving the monitoring IP telephone. In the instance of the gateway of the monitoring IP telephone the gateway in one embodiment rings the monitoring IP telephone with a distinctive ring, as per block 215, to indicate to the party answering the phone that this is a call connection for the purpose of eavesdropping in on the target IP telephone. In an alternative arrangement the gateway may have a facility to provide this information by means of an audio output. The monitoring process then proceeds, as per block 217, until termination of the call where upon the process ends at terminal 219.
The following applications are being filed concurrently with the present application and are incorporated herein by reference. All applications have the same inventors (e.g., Kung, Russell, Sankalia and Wang):
While exemplary systems and methods embodying the present inventions are shown by way of example, it will be understood, of course, that the invention is not limited to these embodiments. Modifications may be made by those skilled in the art which differ from the specific details disclosed here, but which are still within the scope of the invention. Further elements of one invention may be readily included as elements of one of the other inventions. Those skilled in the art may combine or distribute the elements in many different ways without departing from the spirit and scope of the invention.
As can be appreciated by one skilled in the art, a computer system with an associated computer-readable medium containing instructions for controlling the computer system can be utilized to implement the exemplary embodiments that are disclosed herein. The computer system may include at least one computer such as a microprocessor, digital signal processor, and associated peripheral electronic circuitry.
While the disclosure has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques that fall within the spirit and scope of the invention as set forth in the appended claims.
This application is a continuation of and claims priority to U.S. application Ser. No. 10/298,844, filed Nov. 19, 2002, now U.S. Pat. No. 7,428,233, issued Sep. 23, 2008, which is a continuation of and claims priority to U.S. Pat. No. 6,563,797, filed Aug. 18, 1999, and issued May 13, 2003, the contents of both of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5590171 | Howe et al. | Dec 1996 | A |
5956717 | Kraay et al. | Sep 1999 | A |
6078648 | Albers et al. | Jun 2000 | A |
6115393 | Engel et al. | Sep 2000 | A |
6122357 | Farris et al. | Sep 2000 | A |
6229887 | Albers et al. | May 2001 | B1 |
6233313 | Farris et al. | May 2001 | B1 |
6289025 | Pang et al. | Sep 2001 | B1 |
6324279 | Kalmanek, Jr. et al. | Nov 2001 | B1 |
6381220 | Kung et al. | Apr 2002 | B1 |
6438695 | Maufer | Aug 2002 | B1 |
6498843 | Cox | Dec 2002 | B1 |
6501752 | Kung et al. | Dec 2002 | B1 |
6553025 | Kung et al. | Apr 2003 | B1 |
6560224 | Kung et al. | May 2003 | B1 |
6563797 | Kung et al. | May 2003 | B1 |
6614781 | Elliott et al. | Sep 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20080285726 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10298844 | Nov 2002 | US |
Child | 12165677 | US | |
Parent | 09376454 | Aug 1999 | US |
Child | 10298844 | US |