Coatings that reduce infrared (IR) radiation transmittance through glass substrates or panels are known. Such coatings typically absorb electromagnetic radiation in the infrared range in order to reduce the transmission of IR radiation through the glass. In the alternative, coatings that reflect the IR radiation have been disclosed. However, IR reflective coatings have required many layers, e.g. up to 49 layers, in order to provide desired transmission and reflection properties. In addition, such coatings have not provided desired reductions in total light energy transmission which affords a reduction in heat accumulation within an enclosed interior such as a vehicle interior. Finally, heretofore known IR coatings have not been compatible with IR sensors, e.g. garage door openers, that typically use a wavelength of approximately 850 nanometers (nm). Therefore, an improved IR reflecting coating that is compatible with IR sensors and yet provides a desired reduction in total light energy transmission would be desirable.
An IR reflecting multilayer thin film is provided. The IR reflecting multilayer thin film includes a multilayer stack having a multilayer packet, the multilayer packet having a metal layer sandwiched between a pair of high index of refraction dielectric layers. The metal layer can be any metallic layer known to those skilled in the art, illustratively including a silver layer, a gold layer, a copper layer, and the like. Also, the inventive multilayer stack has a transmittance of at least 30% of IR radiation with a wavelength of approximately 850 nm and a total light energy transmission of less than 55%. It is appreciated that the IR reflecting multilayer thin film can extend across a glass substrate and thus serves as an IR reflective coating that reflects and prevents IR radiation from passing through the glass substrate. In this manner, the IR reflective coating reduces total light energy transmission through a glass panel while allowing an IR sensor with a wavelength of approximately 850 nm to be used therewith.
In some instances, the multilayer packet is sandwiched between or within a pair of glass layers. In addition, the multilayer packet can be a first multilayer packet and a second multilayer packet that extends across the first multilayer packet is included. The second multilayer packet can have a high index of refraction dielectric layer sandwiched between a pair of low index of refraction dielectric layers, and the high index of refraction dielectric layers can have a refractive index greater than 2.0 and the low index of refraction layers can have a refractive index of less than 2.0. The high index of refraction dielectric layers can be any dielectric layers known to those skilled in the art having a refractive index greater than 2.0, illustratively including titanium dioxide (TiO2). The low index of refraction dielectric layers can be any dielectric layers known to those skilled in the art having a refractive index less than 2.0, illustratively including halide salt layers, for example magnesium difluoride (MgF2).
The multilayer stack can have an overall thickness of less than 500 nm, preferably less than 450 nm. In addition, the multilayer stack has less than 9 layers, preferably less than 7 layers, and in some instances a total of 6 layers.
The multilayer stack reflects more than 40% of IR radiation having a wavelength greater than 1000 nm and transmits at least 50% of visible radiation with wavelengths between 425-700 nm. Also, the multilayer stack allows at least 30% transmittance of IR radiation having a wavelength between 800-875 nm.
The present invention provides an IR reflecting multilayer thin film that reduces heat generated with an enclosed environment and yet is compatible with IR sensors. As such, the present invention has utility as an IR reflecting film or coating that can be used on vehicle windows, the coating allowing for the use of sensors such as garage door openers from within an interior of the vehicle. The present invention also has use for reducing heat within a vehicle interior, thereby improving the overall efficiency of the vehicle.
The IR reflecting multilayer thin film includes a multilayer stack that has a multilayer packet. The multilayer packet has a metal layer that is sandwiched between a pair of high index of refraction dielectric layers. The metal layer can be made from any metal or alloy known to those skilled in the art, illustratively including gold, copper, silver, aluminum, iron, chromium, tin, nickel, cobalt, titanium, zinc, niobium, molybdenum and alloys thereof.
In addition, the multilayer stack has a transmittance of at least 30% of IR radiation having a wavelength of approximately 850 nm, e.g. 850±10 nm, and also has a total light energy transmission of less than 55%. Naturally, a glass substrate can be included and the multilayer stack extends across the glass substrate in the form of a coating. In some instances, the glass substrate can be a laminated glass substrate and the multilayer stack may or may not be sandwiched between a pair of glass layers.
The multilayer packet can be a first multilayer packet and the IR reflecting multilayer thin film can further include a second multilayer packet that extends across the first multilayer packet. The second multilayer packet has a high index of refraction dielectric layer that is sandwiched between a pair of low index of refraction dielectric layers and the high index of refraction dielectric layers have a refractive index greater than 2.0 and the low index of refraction dielectric layers have a refractive index less than 2.0. The dielectric layers can be made from any dielectric material known to those skilled in the art. For example and for illustrative purposes only, the high index of refraction dielectric layers can be TiO2 layers and the low index of refraction layers can be MgF2 layers, or in the alternative, one of the materials listed below in Table 1.
The metal layer that is sandwiched between the pair of high index of refraction dielectric layers can be any metal or alloy known to those skilled in the art that affords for the first multilayer packet in combination with the pair of dielectric layers to transmit at least 30% of IR radiation having a center wavelength of approximately 850 nm and a total light energy transmission of less than 55%. Exemplary metal layers are layers made from gold, silver, copper and alloys thereof.
The overall thickness of the multilayer stack is less than 500 nm. Preferably, the overall thickness is less than 450 nm and the stack has less than 9 layers. In some instances, the multilayer stack has less than 7 layers and can have a total of 6 layers.
Turning now to
Naturally, the first multilayer packet 110 can be on and/or extend across a glass substrate 200. The glass substrate 200 may or may not be a laminated glass substrate that has a first glass layer 202, a second glass layer 204, and an optional layer 203 sandwiched therebetween.
The IR reflecting multilayer thin film 10 allows for at least 50% transmittance of visible light with wavelengths between 425-700 nm, at least 30% transmittance of IR radiation having a wavelength of 850 nm, and reduces total light energy transmission through a glass substrate to less than 55%. It is appreciated that values for the total transmitted solar energy are calculated using transmittance and reflectance spectra of the IR reflective coatings using the ISO 13837 standard. It is also appreciated that the ISO 13837 standard specifies test methods to determine the direct and total solar transmittance of safety glazing materials for road vehicles. Two computational conventions are included in ISO 13837, both of which are consistent with current international needs and practices. In addition, the ISO 13837 standard applies to monolithic or laminated, clear or tinted samples of safety glazing materials. This standard is known to those skilled in the art and is included herein in its entirety by reference.
Turning now to
For example and for illustrative purposes only, the layers 122 and 126 can be made from a low index of refraction dielectric material such as MgF2. Also, the high index of refraction layer 124 may or may not be the same as the layers 112 and/or 116. Finally, the glass substrate 200 can be a laminated substrate with the first glass layer 202, second glass layer 204, and third layer 203 sandwiched therebetween.
The embodiments shown in
With respect to the reflecting and transmitting properties of the IR reflecting multilayer thin films disclosed herein,
Turning now to
As evidenced by
Turning now to
Changes, modifications, and the like will be apparent to those skilled in the art and yet still fall within the scope of the invention. As such, the scope of the invention is defined by the claims and all equivalents thereof.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/014,398 filed Jan. 26, 2011, entitled “Omnidirectional UV-IR Reflector” which is a continuation-in-part of U.S. patent application Ser. No. 12/793,772 filed Jun. 4, 2010 (U.S. Pat. No. 8,736,959), entitled “Omnidirectional Reflector” and U.S. patent application Ser. No. 12/686,861 filed Jan. 13, 2010 (U.S. Pat. No. 8,593,728), entitled “Multilayer Photonic Structures” which is a continuation-in-part of U.S. patent application Ser. No. 12/389,256 filed Feb. 19, 2009 (U.S. Pat. No. 8,329,247), entitled “Methods for Producing Omnidirectional Multilayer Photonic Structures”, all of which are incorporated herein in their entirety by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13014398 | Jan 2011 | US |
Child | 14460067 | US | |
Parent | 12793772 | Jun 2010 | US |
Child | 13014398 | US | |
Parent | 12686861 | Jan 2010 | US |
Child | 12793772 | US | |
Parent | 12389256 | Feb 2009 | US |
Child | 12686861 | US |