Not Applicable
1. Field of the Invention
The present invention relates to an iron golf club. More specifically, the present invention relates to a multiple material iron golf club.
2. Description of the Related Art
Irons are typically composed of a stainless steel or titanium material, and are typically cast or forged. Most golfers desire that their irons have a large sweet spot for greater forgiveness, a low center of gravity to get the ball in the air, a solid sound, reduced vibrations during impact, and a trim top line for appearance. Unfortunately, these desires are often in conflict with each other as it pertains to an iron.
The use of iron club heads composed of different materials has allowed some prior art irons to achieve some of these desires.
One example is U.S. Pat. No. 5,228,694 to Okumoto et al., which discloses an iron club head composed of a stainless steel sole and hosel, a core composed of a bulk molding compound or the like, a weight composed of a tungsten and polyamide resin, and an outer-shell composed of a fiber-reinforced resin.
Another example is set forth in U.S. Pat. Nos. 4,792,139, 4,798,383, 4,792,139 and 4,884,812, all to Nagasaki et al., which disclose an iron club head composed of stainless steel with a fiber reinforced plastic back plate to allow for weight adjustment and ideal inertia moment adjustment.
Another example is U.S. Pat. No. 4,848,747 to Fujimura et al., which discloses a metal iron club head with a carbon fiber reinforced plastic back plate to increase the sweet spot. A ring is used to fix the position of the back plate.
Another example is set forth in U.S. Pat. Nos. 4,928,972 and 4,964,640 to Nakanishi et al., which disclose an iron club head composed of stainless steel with a fiber reinforcement in a rear recess to provide a dampening means for shock and vibrations, a means for increasing the inertial moment, a means for adjusting the center of gravity and a means for reinforcing the back plate.
Another example is U.S. Pat. No. 5,190,290 to Take, which discloses an iron club head with a metal body, a filling member composed of a light weight material such as a plastic, and a fiber-reinforced resin molded on the metal body and the filling member.
Another example is U.S. Pat. No. 5,411,264 to Oku, which discloses a metal body with a backwardly extended flange and an elastic fiber face plate in order to increase the moment of inertia and minimize head vibrations.
Another example is U.S. Pat. No. 5,472,201 to Aizawa et al., which discloses an iron club head with a body composed of stainless steel, a face member composed of a fiber reinforced resin and a protective layer composed of a metal, in order to provide a deep center of gravity and reduce shocks.
Another example is U.S. Pat. No. 5,326,106 to Meyer, which discloses an iron golf club head with a metal blade portion and hosel composed of a lightweight material such as a fiber reinforced resin.
Another example is U.S. Pat. No. 4,664,383 to Aizawa et al., which discloses an iron golf club head with a metal core covered with multiple layers of a reinforced synthetic resin in order to provide greater ball hitting distance.
Another example is U.S. Pat. No. 4,667,963 to Yoneyama, which discloses an iron golf club head with a metal sole and a filling member composed of a fiber reinforced resins material in order to provide greater hitting distance.
The prior art fails to disclose an iron golf club head that is composed of multiple materials, has a low center of gravity, reduced vibrations, and a greater moment of inertia.
The present invention provides an iron golf club head which has a low center of gravity, a high moment of inertia, reduced vibrations and a solid feel and appearance. The present invention is able to provide these features through use of a multiple material iron club head.
Having briefly described the present invention, the above and further objects, features and advantages thereof will be recognized by those skilled in the pertinent art from the following detailed description of the invention when taken in conjunction with the accompanying drawings.
As shown in
The mass member 25 is preferably composed of a material having a density greater than 8.0 grams per cubic centimeter (“g/cm3”). A preferred material is an iron-nickel-tungsten alloy having a density preferably ranging from 8.0 g/cm3 to 12.0 g/cm3, more preferably ranging from 9.0 g/cm3 to 10.5 g/cm3, most preferably 9.3 g/cm3. Another preferred material is a nickel-tungsten alloy disclosed in co-pending U.S. patent application Ser. No. 10/604,518, filed on an even date herewith, entitled High Density Alloy for Improved Mass Properties of an Article, which is hereby incorporated by reference in its entirety. The preferred nickel-tungsten alloy includes at least 50 weight percent nickel, at least 20 weight percent tungsten and at least 20 weight percent chromium and has a density in the range of 9.0 g/cm3 to 10.5 g/cm3. Another alternative material is a stainless steel material. Still another material is disclosed in U.S. Pat. No. 6,277,326, entitled Process for Liquid-Phase Sintering of a Multiple-Component Material, which is hereby incorporated by reference in its entirety. Those skilled in the pertinent art will recognize that still other materials may be used for the mass member 25 without departing from the scope and spirit of the present invention. A preferred method for forming the mass member 25 is through investment casting.
The main body 22 has a front wall 26, a sole wall 28, a toe wall 30, a heel wall 32, a top wall 33, and a hosel 34 preferably with a bore 36 for receiving a shaft. The front wall 26, the top wall 33, the sole wall 28, the toe wall 30 and the heel wall 32 define a rear cavity 37 of the main body portion 22. The bore 36 preferably extends through the entire hosel 34 providing a short straight hollow hosel such as disclosed in U.S. Pat. No. 4,995,609, which pertinent parts are hereby incorporated by reference.
The sole wall 28 preferably has a cambered exterior surface, which contacts the ground during a golf swing. As shown in
As shown in
As shown in
The front wall 26 has an interior surface 56, which preferably engages the interior surface 42 of the central member 24 or an adhesive placed on the interior surface 42 of the central member 24, and an exterior surface 54 which preferably has scorelines 57 thereon. As shown in
As shown in
The central member 24 is composed of a non-metal material. The non-metal material of the central member preferably has a density less than 1.5 g/cm3. Preferred materials include bulk molding compounds, sheet molding compounds, thermosetting materials and thermoplastic materials. A preferred bulk molding compound is a resinous material with reinforcement fibers. Such resins include polyesters, vinyl esters and epoxy. Such fibers include carbon fibers, fiberglass, aramid or combinations. A preferred sheet molding compound is similar to the bulk molding compounds, however, in a sheet form. A preferred thermoplastic material is a thermoplastic polyurethane. Other thermoplastic materials include polyesters, polyethylenes, polyamides, polypropylenes, and the like.
The central member 24 is primarily a support for the front wall 26, and thus the central member should be able to withstand impact forces without failure. The central member 24 also reduces vibrations of the golf club head 20 during ball striking. The central member 24 is preferably 25% to 75% of the volume of the club head 20 and preferably 10% to 30% of the mass of the club head 20.
The central member 24 preferably has a body portion 38, a first recess 40, a second recess 41, an interior surface 42, an exterior surface 43, a sole surface 44, a top surface 45, a toe surface 46, and a heel surface 47. The recesses 40 and 41 are formed in the exterior surface 43 of the body portion 38 and may have any of a number of suitable configurations. The body portion 38 preferably tapers upward from the sole surface 44. The body portion 38 also has a perimeter 48.
On the perimeter 48 is preferably a plurality of tabs 50 for positioning and retaining the central member 24 within the periphery member 22. Each of the plurality of tabs 50 is preferably curved portion. The curved portion engages with the interior surface of the main body 22. Each of the plurality of tabs 50 is compressible for engagement of the central member 24 with the main body 22, and the plurality of tabs 50 assist with the centering and alignment of the central member 24 within the rear cavity 37. An adhesive is preferably filled between the each of the plurality of tabs 50 for securing the central member 24 to the main body 22. A more thorough description of the plurality of tabs 50 is disclosed in Helmstetter et al., U.S. Pat. No. 6,238,302 for a Golf Club Head With An Insert Having Integral Tabs, assigned to Callaway Golf Company, and hereby incorporated by reference in its entirety.
A first medallion 71 is preferably placed within the first recess 40 and a second medallion 73 is preferably placed within the second recess 41. The first and second medallions 71 and 73 are preferably utilized for swing weighting of the golf club head 20. The mass each medallion 71 and 73 preferably varies from 0.5 gram to 7 grams.
The club head 20 preferably has a total volume that ranges from 40.0 cm3 to 60.0 cm3, more preferably from 45.0 cm3 to 55.0 cm3, and most preferably 50.8 cm3 for a 5-iron golf club head 20. The club head 20 preferably has a mass that ranges from 235 grams to 300 grams, more preferably from 245 grams to 260 grams for a 5-iron golf club head 20.
The main body 22 preferably has a mass that ranges from 100 grams to 250 grams, more preferably from 150 grams to 200 grams. The central member 24 preferably has a mass that ranges from 5 grams to 40 grams, more preferably from 15 grams to 40 grams, and most preferably 18 grams. The mass member 25 preferably has a mass that ranges from 30 grams to 100 grams, more preferably from 40 grams to 80 grams, and more preferably 60 grams to 80 grams.
The axes of inertia through the center of gravity of the golf club head 20 are designated X, Y and Z. The X axis extends from the front of the golf club head 20 through the center of gravity, CG, at the front wall to the rear of the golf club head 20. The Y axis extends from the heel end of the golf club head 20 through the center of gravity, CG, and to the toe end of the golf club head 20. The Z axis extends from the sole wall through the center of gravity, CG, and to the top line of the golf club head 20.
As defined in Golf Club Design, Fitting, Alteration & Repair, 4th Edition, by Ralph Maltby, the center of gravity, or center of mass, of the golf club head is a point inside of the club head determined by the vertical intersection of two or more points where the club head balances when suspended. A more thorough explanation of this definition of the center of gravity is provided in Golf Club Design, Fitting, Alteration & Repair.
The center of gravity and the moment of inertia of a golf club head 20 are preferably measured using a test frame (XT, YT, ZT), and then transformed to a head frame (XH, YH, ZH). The center of gravity of a golf club head 20 may be obtained using a center of gravity table having two weight scales thereon, as disclosed in U.S. Pat. No. 6,607,452, entitled High Moment Of Inertia Composite Golf Club, and hereby incorporated by reference in its entirety. If a shaft is present, it is removed and replaced with a hosel cube that has a multitude of faces normal to the axes of the golf club head. Given the weight of the golf club head, the scales allow one to determine the weight distribution of the golf club head when the golf club head is placed on both scales simultaneously and weighed along a particular direction, the X, Y or Z direction.
In general, the moment of inertia, Izz, about the Z-axis for the golf club head 20 preferably ranges from 2200 g-cm2 to 3000 g-cm2, more preferably from 2400 g-cm2 to 2700 g-cm2, and most preferably from 2472 g-cm2 to 2617 g-cm2. The moment of inertia, Iyy, about the Y-axis for the golf club head 20 preferably ranges from 400 g-cm2 to 700 g-cm2, more preferably from 500 g-cm2 to 600 g-cm2, and most preferably from 530 g-cm2 to 560 g-cm2. The moment of inertia, Ixx, about the X-axis for the golf club head 20 preferably ranges from 2450 g-cm2 to 3200 g-cm2, more preferably from 2500 g-cm2 to 2900 g-cm2, and most preferably from 2650 g-cm2 to 2870 g-cm2.
In general, the products of inertia, Iyz, Ixz and Ixy for the golf club head 20 preferably have an absolute value below 100 g-cm2 for at least one and preferably two of the products of inertia Iyz, Ixz and Ixy. Products of inertia for a golf club head are disclosed in U.S. Pat. No. 6,547,676, entitled Golf Club Head That Optimizes Products Of Inertia, assigned to Callaway Golf Company, and hereby incorporated by reference in its entirety.
For comparison, the new BIG BERTHA® 5-iron from Callaway Golf Company has a moment of inertia, Izz, of 2158 g-cm2, a moment of inertia, Iyy, of 585 g-cm2, and a moment of inertia, Ixx, of 2407 g-cm2.
As shown in
From the foregoing it is believed that those skilled in the pertinent art will recognize the meritorious advancement of this invention and will readily understand that while the present invention has been described in association with a preferred embodiment thereof, and other embodiments illustrated in the accompanying drawings, numerous changes, modifications and substitutions of equivalents may be made therein without departing from the spirit and scope of this invention which is intended to be unlimited by the foregoing except as may appear in the following appended claims. Therefore, the embodiments of the invention in which an exclusive property or privilege is claimed are defined in the following appended claims.
The Present Application is a continuation-in-part application of U.S. patent application Ser. No. 10/904,816, filed on Nov. 30, 2004, now U.S. Pat. No. 7,112,148 which is a divisional application of U.S. patent application Ser. No. 10/604,518, filed on Jul. 28, 2003, now U.S. Pat. No. 7,004,853.
Number | Name | Date | Kind |
---|---|---|---|
4420156 | Campau | Dec 1983 | A |
4664383 | Aizawa et al. | May 1987 | A |
4667963 | Yoneyama | May 1987 | A |
4708347 | Kobayashi | Nov 1987 | A |
4792139 | Nagasaki et al. | Dec 1988 | A |
4798383 | Nagasaki et al. | Jan 1989 | A |
4848747 | Fukimura et al. | Jul 1989 | A |
4884812 | Nagasaki et al. | Dec 1989 | A |
4928972 | Nakanisi et al. | May 1990 | A |
4964640 | Nakanisi et al. | Oct 1990 | A |
5120062 | Scheie et al. | Jun 1991 | A |
5104457 | Viljoen et al. | Apr 1992 | A |
5190290 | Take | Mar 1993 | A |
5228694 | Okumoto et al. | Jul 1993 | A |
D347254 | Iinuma | May 1994 | S |
5326106 | Meyer | Jul 1994 | A |
5333872 | Manning et al. | Aug 1994 | A |
D353644 | Hirsch | Dec 1994 | S |
5375840 | Hirsch et al. | Dec 1994 | A |
D354786 | Manning et al. | Jan 1995 | S |
5411264 | Oku | May 1995 | A |
5423546 | Manning et al. | Jun 1995 | A |
5472201 | Aizawa et al. | Dec 1995 | A |
D366082 | Dekura | Jan 1996 | S |
D368756 | Blough et al. | Apr 1996 | S |
D368947 | Blough et al. | Apr 1996 | S |
5547194 | Aizawa et al. | Aug 1996 | A |
5595552 | Wright et al. | Jan 1997 | A |
5628698 | Sumitomo | May 1997 | A |
5749795 | Schmidt et al. | May 1998 | A |
6179726 | Satoh et al. | Jan 2001 | B1 |
6277326 | Deshmukh et al. | Aug 2001 | B1 |
D464387 | Rollinson et al. | Oct 2002 | S |
D464693 | Rollinson et al. | Oct 2002 | S |
D474822 | Cleveland et al. | May 2003 | S |
6592469 | Gilbert | Jul 2003 | B2 |
6602147 | Shiraishi | Aug 2003 | B2 |
6638183 | Takeda | Oct 2003 | B2 |
20060194641 | Best | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
55-104451 | Aug 1980 | JP |
Number | Date | Country | |
---|---|---|---|
20060084527 A1 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10604518 | Jul 2003 | US |
Child | 10904816 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10904816 | Nov 2004 | US |
Child | 11274733 | US |