To drill a wellbore, a drill string is operated by a derrick and associated pipe handling equipment. The drill string comprises stands of drill pipe and a bottom hole assembly (drill bit, drill collars, and drilling related tools). An iron roughneck is used to make-up and break-out the threaded joints between the stands of drill pipe.
During downhole drilling operations, an earth-boring drill bit is typically mounted on the lower end of a drill string and is rotated by rotating the drill string at the surface or by actuation of downhole motors or turbines, or by both methods. When weight is applied to the drill string, the rotating drill bit engages the earthen formation and proceeds to form a borehole along a predetermined path toward a target zone. Because of the energy and friction involved in drilling a wellbore in the earth's formation, drilling fluids, commonly referred to as drilling mud, are used to lubricate and cool the drill bit as it cuts the rock formations below. Furthermore, in addition to cooling and lubricating the drill bit, drilling mud also performs the secondary and tertiary functions of removing the drill cuttings from the bottom of the wellbore and applying a hydrostatic column of pressure to the drilled wellbore.
Typically, drilling mud is delivered to the drill bit from the surface under high pressure through a central bore of the drill string. From there, nozzles on the drill bit direct the pressurized mud to the cutters on the drill bit where the pressurized mud cleans and cools the bit. As the fluid is delivered downhole through the central bore of the drill string, the fluid returns to the surface in an annulus formed between the outside of the drill string and the inner profile or wall of the drilled wellbore. Drilling mud returning to the surface through the annulus does so at lower pressures and velocities than it is delivered. Nonetheless, a hydrostatic column of drilling mud typically extends from the bottom of the hole up to a bell nipple of a diverter assembly on the drilling rig. Annular fluids exit the bell nipple where solids are removed, the mud is processed, and then prepared to be re-delivered to the subterranean wellbore through the drill string.
As wellbores are drilled several thousand feet below the surface, the hydrostatic column of drilling mud in the annulus serves to help prevent blowout of the wellbore, as well. Often, hydrocarbons and other fluids trapped in subterranean formations exist under significant pressures. Absent any flow control schemes, fluids from such ruptured formations may blow out of the wellbore and spew hydrocarbons and other undesirable fluids (e.g., H2S gas). Problems encountered during perforation include: (i) kick phenomena in the formation, which bring a reservoir of high-pressure gases or fluids up to the surface; (ii) absorption phenomena in the well during perforation, which yield to loss of drilling mud in the formation resulting in environmental and economic damage; (iii) control of the properties of the mud entering the well; (iv) control of the properties of the mud exiting the well; (v) ascent of gases which can lead to hazards; (vi) ability to load the drill pipes in safety; and (vii) control of all physical and fluid dynamical properties involved in the drilling.
For mud circulation drilling, several systems have been developed to allow control of the flow entering and exiting the well and to avoid kick and absorption phenomena. The flow of drilling mud entering the well may be determined by the pumping equipment, therefore the flow may be held constant. In standard conditions and barring any anomalies, the flow exiting the well must be equal to the flow entering the well for less than a measurement error. In many cases the exiting flow is not constant and is often not even comparable to the entering flow, despite accounting for measurement errors. This variation is due to phenomena occurring inside the well, which can sometimes compromise the outcome of the drilling operation. Several well-control systems employed in mud circulation drilling control entry and exit flows and pressures via choke valves and sensors to control and monitor the well's backpressure to predict and manage any possible hazards.
However, the standard systems do not provide control over the flows when the pumps are shut down during drill pipe loading/tripping. In this stage of drilling, there is a danger of kick phenomena because pressure is not maintained constant inside the hole, and the subsequent cycle of increases and decreases in pressure on the well walls induces hydraulic fracturing in undesired places. Furthermore, continuous circulation helps to prevent debris from falling towards the bottom of the well, but instead it keeps it moving upwards so as to prevent the drill string from getting stuck.
There is a need for a continuous circulation system that allows the drilling mud to be circulated at all times during the drilling process.
A more complete understanding of the present embodiments may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features.
Preferred embodiments are best understood by reference to
Drilling mud is circulated via a mud pump 30. The drilling mud is supplied to the drill string 13 via a diverter manifold 31. A pressure line 36 extends from the mud pump 30 to the diverter manifold 31. A line extends from the diverter manifold to the stand pipe 32, wherein the stand pipe 32 is connected to the top drive 20 via a rotary hose 33. Another line extends from the diverter manifold 31 floor pipe 34, wherein the floor pipe 34 is connected to the circulation coupler 40 of the iron roughneck 80 via a rotary hose 35. A discharge line extends from the diverter manifold 31 to a retention tank or sump 38. Drilling mud being circulated up the annulus 22 is returned to the retention tank 38 via return line 39 connected to the surface casing 23 below the rotating control device 24. Drilling mud from the retention tank 38 is supplied to the mud pump 30 via a supply line 42.
During drilling, the mud pump 30 injects drilling mud through the top drive 20 into the drill string 13. The diverter manifold is configured to only supply drilling mud to the stand pipe 32. When a stand of drill pipe 14 is to be added to the drill string 13, the drill string 13 is raised and the slips 17 are set. The iron roughneck 80 grips the stump 19 of the drill string 13 with the wrench unit 81 and engages the new stand of drill pipe 14 with the spinner unit 84, while the circulation coupler 40 engages a circulation sub in the drill string having a radial port. The operator may then increase a supply of drilling mud to the circulation coupler 40 while a supply of drilling mud to the top drive 20 is decreased, so as to maintain a constant circulation while the supply is shifted from the top drive 20 to the circulation coupler 40. When drilling mud is no longer being supplied to the top drive 20, the top drive 20 is disconnected from the stump 19 of the drilling string 13 and another stand of drill pipe 14 is made up to the top drive 20. While the top drive 20 is disconnected from the drill string 13, the rotary table 18 may continue to turn the drill string 13 while drilling mud is supplied to the drill string 13 via the circulation coupler 40. The new stand of drill pipe 14 may then be made up to the stump 19 of the drill string 13. The operator may then decrease a supply of drilling mud to the circulation coupler 40 while a supply of drilling mud to the top drive 20 is increased, so as to maintain a constant circulation while the supply is shifted from the circulation coupler 40 to the top drive 20. Both the top drive 20 and the rotary table 18 may rotate the drill string 13 as circulation is shifted from the circulation coupler 40 to the top drive 20.
An alternative embodiment may use a pressure sensor in the chamber 46 to detect whether the pressure has been relieved, which may indicate that the sliding sleeve valve 53 and/or the radial valve 52 is open/closed. In alternative embodiments of the invention, sensors may also be placed to indicate whether the radial valve 53 and the axial valve 51 are open/closed.
In further embodiments of the invention, sensors in the constant circulation sub 50 may be detected by transducers in the circulation coupler 40 to detect whether the circulation coupler 40 of the iron roughneck 80 is vertically position relative to the constant circulation sub 50 for proper engagement. The arm 41 may be manipulated automatically or be the operator to properly position the iron roughneck 80.
Referring again to
A new stand of drill pipe 14 may then be made up to the top drive 20. While the drill string is being rotated via the rotary table 18 and drilling mud is being circulated via the circulation coupler 40, the new stand of drill pipe 14 may be made up to the stump 19 of the drill string 13. In particular, the stump 19 of the drill string 13 may be gripped by the wrench unit 81 of the iron roughneck 80 while the spinner unit 84 engages the new stand of drill pipe 14. The spinner unit 84 rotates the drill pipe 14 to thread its pin thread into a box thread of the constant circulation sub 50. Once the new stand of drill pipe 14 is connected to and become part of the drill string 13, the drill string 13 may continue to be rotated via the rotary table 18 or the top drive 20. The drill string 13 may be lifted by the top drive 20 and the slips 17 released. Drilling mud may continue to be circulated through the drill string 13 by opening valve V1 to supply drilling mud to the top drive 20, while V2 is partially closed to reduce fluid flow to the circulation coupler 40. As drilling mud begins to flow down through the internal bore of the constant circulation sub 50, the axial valve 51 will open and the radial valve 52 will close. Valve V3 is opened to allow the drilling mud in the circulation coupler 40, rotary hose 35 and floor pipe 34 to drain back into the retention tank 38. As the pressure is relieved from the chamber 46 in the circulation coupler 40, an indication may be given to the operator that the sliding sleeve 53 of the constant circulation sub 50 is closed and/or that the pressure in the chamber 46 has been relieved, so that it is safe to open or unclamp the circulation coupler 40 from the constant circulation sub 50. The drill string 13 may continue to be rotated and lowered to continue drilling the well bore 21. After the drill string has drilled the wellbore the length of a drill pipe, the process is repeated.
When drill string 13 is tripped out of the well bore 21, a similar process is followed, in reverse order, to allow constant circulation of drilling mud and constant rotation of the drill string 13.
In the embodiment of the invention shown in
Although the disclosed embodiments are described in detail in the present disclosure, it should be understood that various changes, substitutions and alterations can be made to the embodiments without departing from their spirit and scope.
This application claims the benefit of and priority to a US Provisional Application having Ser. No. 62/447,725, filed 18 Jan. 2017, which is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/014123 | 1/18/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/136571 | 7/26/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6212763 | Newman | Apr 2001 | B1 |
20030164071 | Moe et al. | Sep 2003 | A1 |
20090025930 | Iblings | Jan 2009 | A1 |
20090205838 | Springett | Aug 2009 | A1 |
20110308860 | deBoer | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
2005019596 | Mar 2005 | WO |
2004077187 | Jan 2009 | WO |
2009093069 | Jul 2009 | WO |
Entry |
---|
International Search Report and Written Opinion for the equivalent International patent application PCT/US2018/014123 dated May 10, 2018. |
International Preliminary Report on Patentability for the equivalent International patent application PCT/US2018/014123 dated Aug. 1, 2019. |
Number | Date | Country | |
---|---|---|---|
20200056433 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
62447725 | Jan 2017 | US |