The present disclosure relates to golf club heads. More specifically, the present disclosure relates to golf club heads for iron type golf clubs.
A golf set includes various types of clubs for use in different conditions or circumstances in which a ball is hit during a golf game. A set of clubs typically includes a “driver” for hitting the ball the longest distance on a course. A fairway “wood” can be used for hitting the ball shorter distances than the driver. A set of irons are used for hitting the ball within a range of distances typically shorter than the driver or woods. Every club has an ideal striking location or “sweet spot” that represents the best hitting zone on the face for maximizing the probability of the golfer achieving the best and most predictable shot using the particular club.
An iron has a flat face that normally contacts the ball whenever the ball is being hit with the iron. Irons have angled faces for achieving lofts ranging from about 18 degrees to about 64 degrees. The size of an iron's sweet spot is generally related to the size (i.e., surface area) of the iron's striking face, and iron sets are available with oversize club heads to provide a large sweet spot that is desirable to many golfers. Most golfers strive to make contact with the ball inside the sweet spot to achieve a desired ball speed, distance, and trajectory.
Conventional “blade” type irons have been largely displaced (especially for novice golfers) by so-called “perimeter weighted” irons, which include “cavity-back” and “hollow” iron designs. Cavity-back irons have a cavity directly behind the striking plate, which permits club head mass to be distributed about the perimeter of the striking plate, and such clubs tend to be more forgiving to off-center hits. Hollow irons have features similar to cavity-back irons, but the cavity is enclosed by a rear wall to form a hollow region behind the striking plate. Perimeter weighted, cavity back, and hollow iron designs permit club designers to redistribute club head mass to achieve intended playing characteristics associated with, for example, placement of club head center of mass or a moment of inertia. These designs also permit club designers to provide striking plates that have relatively large face areas that are unsupported by the main body of the golf club head.
The present disclosure describes iron type golf club heads typically comprising a head body and a striking plate. The head body includes a heel portion, a toe portion, a topline portion, a sole portion, and a hosel configured to attach the club head to a shaft. In some embodiments, the head body defines a front opening configured to receive the striking plate at a front rim formed around a periphery of the front opening. In other embodiments, the striking plate is formed integrally (such as by casting) with the head body.
In some embodiments, the iron type golf club heads include a localized stiffened region that is located on the striking face of the golf club head. In some embodiments, the localized stiffened region has a size, shape, stiffness profile, location, position, and/or other properties that alter the launch conditions of golf balls struck by the club head. For example, in some embodiments, golf ball launch conditions are altered in a way that wholly or partially compensates for, overcomes, or prevents the occurrence of a rightward deviation of golf ball shots struck by the golf club head.
According to one aspect of an embodiment of the golf club heads described herein, the striking plate includes a supported region and an unsupported region, with an ideal golf ball striking location lying within the unsupported region. The unsupported region may be divided by an imaginary vertical plane passing through the ideal striking location to include a toe portion having a toe portion surface area (SATOE) and a heel portion having a heel portion surface area (SAHEEL), with the respective surface areas satisfying the following first inequality:
SATOE>SAHEEL. (1)
In addition, the unsupported region of the striking plate satisfies the following second inequality:
[(Σn=1NEntn3)÷N]÷[(Σm=1MEmtm3)÷M]>C (2)
wherein En and tn are the effective Young's Modulus value and the thickness, respectively, for the nth cross-section of the toe portion of the unsupported region of the striking face, Em and tm are the effective Young's Modulus value and the thickness, respectively, for the mth cross-section of the heel portion of the unsupported region of the striking face, N and M have values determined by discretizing SATOE and SAHEEL, respectively, into 1 mm×1 mm sections, and C is a constant having a value of 1.1.
In one example, the golf club head according to the foregoing first aspect has a relative coefficient of restitution of at least about −0.030, such as at least about −0.025, or at least about −0.020.
In another example, the golf club head according to the foregoing first aspect satisfies the second inequality for C having a value of 1.15. In other examples, the golf club head according to the foregoing first aspect satisfies the second inequality for C having a value of 1.20. In still other examples, the golf club head according to the foregoing first aspect satisfies the second inequality for C having a value of 1.25.
According to a second aspect of an embodiment of the golf club heads described herein, the striking plate includes a supported region and an unsupported region, with an ideal golf ball striking location lying within the unsupported region. The unsupported region may be divided by an imaginary center vertical plane passing through the ideal striking location to include a toe portion having a toe portion surface area (SATOE) and a heel portion having a heel portion surface area (SAHEEL), with the respective surface areas satisfying the following first inequality:
SATOE>SAHEEL (1)
In addition, a hitting region is defined as lying within the unsupported region between an imaginary heel side vertical plane located 20 mm to the heel side of the imaginary center vertical plane, and an imaginary toe side vertical plane located 20 mm to the toe side of the imaginary center vertical plane. The hitting region of the striking plate satisfies the following second inequality:
[((Σn=1NEntn3)÷N]÷[(Σm=1MEmtm3)÷M]>DVW (2)
wherein En and tn are the effective Young's Modulus value and the thickness, respectively, for the nth cross-section of the toe portion of the hitting region of the striking face, Em and tm are the effective Young's Modulus value and the thickness, respectively, for the mth cross-section of the heel portion of the hitting region of the striking face, N and M have values determined by discretizing SATOE HR and SAHEEL HR, respectively, into 1 mm×1 mm sections, and DVW is a constant having a value of 1.25.
In one example, the golf club head according to the foregoing second aspect has a relative coefficient of restitution of at least about −0.030, such as at least about −0.025, or at least about −0.020.
In another example, the golf club head according to the foregoing second aspect satisfies the second inequality for DVW having a value of 1.3. In other examples, the golf club head according to the foregoing second aspect satisfies the second inequality for DVW having a value of 1.4. In still other examples, the golf club head according to the foregoing second aspect satisfies the second inequality for DVW having a value of 1.5.
According to a third aspect of an embodiment of the golf club heads described herein, the striking plate includes a supported region and an unsupported region, with an ideal golf ball striking location lying within the unsupported region. The unsupported region may be divided by an imaginary center vertical plane passing through the ideal striking location to include a toe portion having a toe portion surface area (SATOE) and a heel portion having a heel portion surface area (SAHEEL), with the respective surface areas satisfying the following first inequality:
SATOE>SAHEEL (1)
In addition, a hitting region is defined as lying within the unsupported region within an imaginary circle having a radius of 20 mm and having a center located at the ideal striking location. The hitting region of the striking plate satisfies the following second inequality:
[((Σn=1NEntn3)÷N]÷[(Σm=1MEmtm3)÷M]>DCW (2)
wherein En and tn are the effective Young's Modulus value and the thickness, respectively, for the nth cross-section of the toe portion of the hitting region of the striking face, Em and tm are the effective Young's Modulus value and the thickness, respectively, for the mth cross-section of the heel portion of the hitting region of the striking face, N and M have values determined by discretizing SATOE HR and SAHEEL HR, respectively, into 1 mm×1 mm sections, and DCW is a constant having a value of 1.4.
In one example, the golf club head according to the foregoing third aspect has a relative coefficient of restitution of at least about −0.030, such as at least about −0.025, or at least about −0.020.
In another example, the golf club head according to the foregoing third aspect satisfies the second inequality for DCW having a value of 1.5. In other examples, the golf club head according to the foregoing third aspect satisfies the second inequality for DCW having a value of 1.65. In still other examples, the golf club head according to the foregoing third aspect satisfies the second inequality for DCW having a value of 1.80.
According to a fourth aspect of an embodiment of the golf club heads described herein, the striking plate includes a supported region and an unsupported region, with an ideal golf ball striking location lying within the unsupported region. The unsupported region may be divided by an imaginary center vertical plane passing through the ideal striking location to include a toe portion having a toe portion surface area (SATOE) and a heel portion having a heel portion surface area (SAHEEL), with the respective surface areas satisfying the following first inequality:
SATOE>SAHEEL (1)
In addition, the unsupported region of the striking plate satisfies the following second inequality:
[((Σn=1NEntn3)÷N]÷[(Σm=1MEmtm3)÷M]>F (2)
wherein En and tn are the effective Young's Modulus value and the thickness, respectively, for an nth cross-section of the toe portion of the unsupported region of the striking face, Em and tm are the effective Young's Modulus value and the thickness, respectively, for an mth cross-section of the heel portion of the unsupported region of the striking face, N and M have values determined by discretizing SATOE and SAHEEL, respectively, into 1 mm×1 mm sections, F is a constant having a value of 3.1; and
ƒ(x,y)=Ae−(a(x−x
wherein a two-dimensional x-y plane is defined to be tangent to the striking face and has an origin at the ideal striking location, with the x axis being parallel to the ground plane and having positive values extending toward the toe side, and the y axis being perpendicular to the x axis and having positive values extending toward the topline, and x is the x-coordinate and y is the y-coordinate for the center of an nth or mth cross-section;
a=(cos2θ÷2σx2)+(sin2θ÷2σy2);
b=(sin2θ÷4σx2)+(sin2θ÷4σy2);
c=(sin2θ÷2σx2)+(cos2θ÷2σy2);
A=1;
x0=7 mm;
y0=22 mm;
σx=15 mm;
σy=20 mm; and
Θ=30°.
In one example, the golf club head according to the foregoing fourth aspect has a relative coefficient of restitution of at least about −0.030, such as at least about −0.025, or at least about −0.020.
In another example, the golf club head according to the foregoing fourth aspect satisfies the second inequality for F having a value of 3.4. In other examples, the golf club head according to the foregoing fourth aspect satisfies the second inequality for F having a value of 4.0. In still other examples, the golf club head according to the foregoing fourth aspect satisfies the second inequality for F having a value of 4.4.
According to a fifth aspect of an embodiment of the golf club heads described herein, the striking plate includes a supported region and an unsupported region, with an ideal golf ball striking location lying within the unsupported region. The unsupported region may be divided by an imaginary vertical plane passing through the ideal striking location to include a toe portion having a toe portion surface area (SATOE) and a heel portion having a heel portion surface area (SAHEEL), with the respective surface areas satisfying the following first inequality:
SATOE>SAHEEL (1)
In addition, the clubhead has a negative Sidespin Performance Value as defined herein.
In one example, the golf club head according to the foregoing fifth aspect has a relative coefficient of restitution of at least about −0.030, such as at least about −0.025, or at least about −0.020.
According to a sixth aspect of an embodiment of the golf club heads described herein, the striking plate includes a supported region and an unsupported region, with an ideal golf ball striking location lying within the unsupported region. The unsupported region may be divided by an imaginary vertical plane passing through the ideal striking location to include a toe portion having a toe portion surface area (SATOE) and a heel portion having a heel portion surface area (SAHEEL), with the respective surface areas satisfying the following first inequality:
SATOE>SAHEEL (1)
In addition, the unsupported region of the striking plate includes a localized stiffened region having a center of gravity located within the toe region such that the following second inequality is satisfied:
[((Σn=1NEntn3)÷N]÷[(Σm=1MEmtm3)÷M]>G (2)
wherein En and tn are the effective Young's Modulus value and the thickness, respectively, for the nth cross-section of the localized stiffened region of the striking face, Em and tm are the effective Young's Modulus value and the thickness, respectively, for the mth cross-section of the unsupported region of the striking face, N and M have values determined by discretizing SALSR and SAUR, respectively, into 1 mm×1 mm sections where SALSR is the surface area of the localized stiffened region and SAUR is the surface area of the entire unsupported region, and G is a constant having a value of at least 1.6.
In one example, the golf club head according to the foregoing sixth aspect has a relative coefficient of restitution of at least about −0.030, such as at least about −0.025, or at least about −0.020.
In another example, the golf club head according to the foregoing sixth aspect satisfies the second inequality for G having a value of 1.75. In other examples, the golf club head according to the foregoing sixth aspect satisfies the second inequality for G having a value of 2.25. In still other examples, the golf club head according to the foregoing sixth aspect satisfies the second inequality for G having a value of 3.0.
The foregoing and other features and advantages of the golf club heads described herein will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.
Various embodiments and aspects of the inventions will be described with reference to details discussed below, and the accompanying drawings will illustrate the various embodiments. The following description and drawings are illustrative of the invention and are not to be construed as limiting the invention. Numerous specific details are described to provide a thorough understanding of various embodiments of the present invention. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the present inventions.
1. Iron Type Golf Club Heads
The striking face 110 defines a face plane 125 and includes grooves 112 that are designed for impact with the golf ball. In some embodiments, the golf club head 100 can be a single unitary cast piece, while in other embodiments, a striking plate can be formed separately to be adhesively or mechanically attached to the body 113 of the golf club head 100.
In certain embodiments, a desirable CG-y location is between about 0.25 mm to about 20 mm along the CG y-axis 107 toward the rear portion of the club head. Additionally, a desirable CG-z location is between about 12 mm to about 25 mm along the CG z-up axis 109, as previously described.
The golf club head may be of hollow, cavity back, or other construction.
In the embodiment shown in
In certain embodiments, the return surface 123 extends from the striking face 110 a return distance 124 (or “effective top line thickness”) of between about 3.5 mm and 5 mm, or about 4.8 mm or less, as measured along the second plane 127 and perpendicular to the striking plane 125. In some embodiments, the return surface 123 extends less than 60% of the total top line thickness 122. In certain embodiments, the total top line thickness 122 is between about 6 mm and about 9 mm, or about 8.5 mm or less, as measured along the second plane 127 and perpendicular to the striking plane 125.
A small effective top line thickness 124 of the return surface 123 creates the perception to a golfer that the entire top line 106 of the club head 100 is thin. A perceived thin top line 106 can enhance the aesthetic appeal to a golf player.
In certain embodiments of iron type golf club heads having hollow construction, a recess 134 is located above the rear protrusion 138 in the back portion 128 of the club head. A back wall 132 encloses the entire back portion 128 of the club head to define a cavity 120 that is optionally filled with a filler material 121.
In one embodiment, the filler material 121 can be an expandable foam such as Expancel® 920 DU 40 which is an acrylic copolymer encapsulating a blowing agent, such as isopentane. A copolymer is greater than about 75 weight percent of the composition and the blowing agent is about 15-20 weight percent. The unexpanded particle size of the filler material 121 can be between about 2 μm and about 90 μm depending on the context.
In one embodiment, the density of the filler material 121 is between about 0.16 g/cc and about 0.19 g/cc or between about 0.03 g/cc and about 0.19 g/cc. In certain embodiments, the density of the filler material 121 is in the range of about 0.03 g/cc to about 0.2 g/cc, or about 0.04-0.10 g/cc. The density of the filler material 121 impacts the COR, durability, strength, and filling capacity of the club head, In general, a lower density material will have less of an impact on the COR of a club head. The filler material 121 can have a hardness range of about 15-85 Shore OO hardness or about 80 Shore OO hardness or less.
In one embodiment, the filler material 121 is subject to heat for expansion of about 150° C.+/−10° C. for about 30 minutes. In some embodiments, the expansion of the filler material 121 can begin at about 125° C. to about 140° C. A maximum expansion temperature range can be between about 160° C. to about 190° C. The temperature at which the expansion of the filler material 121 begins is critical in preventing unwanted expansion after the club head is assembled. For example, a filler material that begins expanding at about 120° C. will not cause unwanted expansion when the club is placed in the trunk of a car (where temperatures can reach up to about 83° C.). Thus, a filler material 121 that has a beginning expansion temperature of greater than about 80° C. is preferred.
Some other examples of materials that can be used as a filler material or plug material include, without limitation: viscoelastic elastomers; vinyl copolymers with or without inorganic fillers; polyvinyl acetate with or without mineral fillers such as barium sulfate; acrylics;
polyesters; polyurethanes; polyethers: polyamides: polybutadienes; polystyrenes: polyisoprenes:
polyethylenes; polyolefins; styrene/isoprene block copolymers; metallized polyesters; metallized acrylics; epoxies; epoxy and graphite composites: natural and synthetic rubbers; piezoelectric ceramics; thermoset and thermoplastic rubbers; foamed polymers; ionomers; low-density fiber glass; bitumen; silicone; and mixtures thereof. The metallized polyesters and acrylics can comprise aluminum as the metal, Commercially available materials include resilient polymeric materials such as Scotchdamp™ from 3M, Sorbothane® from Sorbothane, Inc., DYAD® and GP® from Soundcoat Company Inc., Dynamat® from Dynamat Control of North America, Inc. NoViFlex™ Sylomer® from Pole Star Maritime Group, LLC. Isoplast® from The Dow Chemical Company, and Legetolex™ from Piqua Technologies, Inc. In one embodiment the filler material may have a modulus of elasticity ranging from about 0.001 GPa to about 25 GPa, and a durometer ranging from about 5 to about 95 on a Shore D scale. In other examples, gels or liquids can be used, and softer materials which are better characterized on a Shore A or other scale can be used. The Shore D hardness on a polymer is measured in accordance with the ASTM (American Society for Testing and Materials) test D2240.
Suitable filler materials are further described in US Patent Application Publication No. 2011/0028240, which is incorporated herein by reference.
Turning next to
The back wall 232 has a relatively large thickness in relation to the striking plate and other portions of the golf club head 200, thereby accounting for a significant portion of the mass of the golf club head 200, and thereby shifting the center of gravity (CG) of the golf club head 200 relatively lower and rearward. Furthermore, the sole portion 208 has a sole thickness dimension 240 that extends within a region between the back wall 232 and the striking face 210. In certain embodiments, the sole thickness dimension 240 is between about 1 mm and about 2 mm, or less than about 2 mm. In one embodiment, a preferred sole thickness 240 is about 1.7 mm or less.
In certain embodiments of the golf club heads 100, 200 that include a separate striking plate attached to the body 113, 213 of the golf club head, the striking plate can be formed of forged maraging steel, maraging stainless steel, or precipitation-hardened (PH) stainless steel. In general, maraging steels have high strength, toughness, and malleability. Being low in carbon, they derive their strength from precipitation of inter-metallic substances other than carbon. The principle alloying element is nickel (15% to nearly 30%). Other alloying elements producing inter-metallic precipitates in these steels include cobalt, molybdenum, and titanium. In one embodiment, the maraging steel contains 18% nickel. Maraging stainless steels have less nickel than maraging steels but include significant chromium to inhibit rust. The chromium augments hardenability despite the reduced nickel content, which ensures the steel can transform to martensite when appropriately heat-treated. In another embodiment, a maraging stainless steel C455 is utilized as the striking plate. In other embodiments, the striking plate is a precipitation hardened stainless steel such as 17-4, 15-5, or 17-7.
The striking plate can be forged by hot press forging using any of the described materials in a progressive series of dies. After forging, the striking plate is subjected to heat-treatment. For example, 17-4 PH stainless steel forgings are heat treated by 1040° C. for 90 minutes and then solution quenched. In another example, C455 or C450 stainless steel forgings are solution heat-treated at 830° C. for 90 minutes and then quenched.
In some embodiments, the body 113, 213 of the golf club head is made from 17-4 steel. However another material such as carbon steel (e.g., 1020, 1030, 8620, or 1040 carbon steel), chrome-molybdenum steel (e.g., 4140 Cr—Mo steel), Ni—Cr—Mo steel (e.g., 8620 Ni—Cr—Mo steel), austenitic stainless steel (e.g., 304, N50, or N60 stainless steel (e.g., 410 stainless steel) can be used.
In addition to those noted above, some examples of metals and metal alloys that can be used to form the components of the parts described include, without limitation: titanium alloys (e.g., 3-2.5, 6-4, SP700, 15-3-3-3, 10-2-3, or other alpha/near alpha, alpha-beta, and beta/near beta titanium alloys), aluminum/aluminum alloys (e.g., 3000 series alloys, 5000 series alloys, 6000 series alloys, such as 6061-T6, and 7000 series alloys, such as 7075), magnesium alloys, copper alloys, and nickel alloys.
In still other embodiments, the body 113, 213 and/or striking plate of the golf club head are made from fiber-reinforced polymeric composite materials, and are not required to be homogeneous. Examples of composite materials and golf club components comprising composite materials are described in U.S. Patent Application Publication No. 2011/0275451, which is incorporated herein by reference in its entirety.
The body 113, 213 of the golf club head can include various features such as weighting elements, cartridges, and/or inserts or applied bodies as used for CG placement, vibration control or damping, or acoustic control or damping. For example, U.S. Pat. No. 6,811,496, incorporated herein by reference in its entirety, discloses the attachment of mass altering pins or cartridge weighting elements.
After forming the striking plate and the body 113, 213 of the golf club head, the striking plate and body portion 113, 213 contact surfaces can be finish-machined to ensure a good interface contact surface is provided prior to welding. In some embodiments, the contact surfaces are planar for ease of finish machining and engagement.
2. Features of Iron Type Golf Club Heads
Several specific features of iron type golf club heads are described below, in reference to the perimeter weighted golf club heads described in the preceding sections.
A. Unsupported Face Area
Conventional perimeter weighted iron type golf club heads (e.g., hollow and cavity back designs) include a perimeter annular mass in the rear portion of the club head that wholly or partially surrounds the hollow back or cavity back formed in the center of the golf club head. As a result, the striking face of such club heads is made up of a supported region located in front of the perimeter annular mass, and an unsupported region located in front of the hollow back or cavity. In some designs, a backing member such as a badge or other member may be attached to the rear side of the unsupported region.
A point on the face of a club head can be considered beam-like in cross-section and its bending stiffness at a given location on the face can be calculated as a product of the Young's Modulus (E) of the material making up the face at the point and the cube of the face thickness, t3, at the point. That is, the bending stiffness at a point on the face of a club head is a function of Et3 at that point. Thus, the bending stiffness of a conventional perimeter weighted iron type golf club head having a striking face made of a homogeneous material will vary significantly between the supported region (where cross-sectional thickness, t, is relatively greater) and the unsupported region (where cross-sectional thickness, t, is relatively less).
The rear supported face region 150, 250 is located about a periphery of the unsupported face region 146, 246. The rear supported face region 150, 250 includes the areas of the striking face 110, 210 that are supported by the separate or integrated metallic structure making up the body portion 113, 213 of the golf club head.
B. Flexible Striking Face
The striking plate of the golf club heads described herein include construction and materials that produce relatively high coefficients of restitution (COR) and characteristic times (CT) (as these terms are defined herein), while maintaining sufficient durability for a commercially acceptable golf club head. For example, in some embodiments, the striking plate of the club head is constructed having a relatively thin cross-section in order to increase the flexibility of the striking plate, thereby increasing both CT and COR. In other embodiments, the striking plate of the golf club head comprises a material or materials having a relatively low Young's Modulus (E) value, also in order to increase the flexibility of the striking plate. Combinations of these design factors are also possible in order to obtain a striking plate having a relatively high amount of flexibility, thereby increasing the efficiency of clubface to golf ball impact, increasing COR, and/or increasing CT.
In some embodiments, the striking face 110, 210 of the golf club head has a uniform thickness of between about 1.5 mm to about 3.0 mm, such as between about 1.7 mm to about 2.5 mm, or between about 1.8 mm to about 2.0 mm. In these embodiments, the striking face 110, 210 comprises steel, titanium, polymer-fiber composite, or one or more of the materials described above.
In the embodiments shown in
The thickness profiles and low thickness values of the striking face 110 can be achieved during the forging of the striking face 110. In one embodiment, a 0.3 mm to 1.0 mm machine stock plate can be added to the striking face 110 to increase tolerance control. After forging, the striking face 110 can be slightly milled and engraved with score-lines. A key advantage of being able to forge such a thin face is the freeing up of discretionary mass (up to about 20 g) that can be placed elsewhere in the club head (such as the rear piece) for manipulation of the moment of inertia or center of gravity location.
The thickness of the striking face 110 in the thin face area is generally consistent in thickness and non-variable. Of course, manufacturing tolerances may cause some variation in the thin face area. In certain embodiments, the thin face area is about 50% or more of the unsupported face region 146, 246.
C. Localized Stiffened Regions
In several embodiments, the striking plate of the golf club head 100, 200 includes a localized stiffened region that is located on the striking face 110, 210 at a location that surrounds or that is adjacent to the ideal striking location 101, 201. The localized stiffened region comprises an area of the striking face 110, 210 that has increased stiffness due to being relatively thicker than a surrounding region, due to being constructed of a material having a higher Young's Modulus (E) value than a surrounding region, and/or a combination of these factors. Localized stiffened regions may be included on a striking face 110, 210 for one or more reasons, such as to increase the durability of the club head striking face, to increase the area of the striking face that produces high COR, or a combination of these reasons.
Several examples of localized stiffened regions are the variable thickness configurations or inverted cone technology regions such as those discussed in, for example, U.S. Pat. Nos. 6,800,038, 6,824,475, 6,904,663, and 6,997,820, all incorporated herein by reference. For example, as noted above,
The inverted cone regions 148, 248 each comprise symmetrical “donut” shaped areas of increased thickness that are located within the unsupported face region 146, 246. In the embodiments shown in
In other embodiments, the localized stiffened region comprises a stiffened region (e.g., a localized region having increased thickness in relation to its surrounding regions) having a shape and size other than those described above for the inverted cone regions 148, 248. The shape may be geometric (e.g., triangular, square, trapezoidal, etc.) or irregular. For these embodiments, a center of gravity of the localized stiffened region (CGLSR) may be determined by defining a boundary for the localized stiffened region and calculating or otherwise determining the center of gravity of the defined region. An area, volume, and other measurements of the localized stiffened region are also suitable for measurement upon defining the appropriate boundary.
3. Performance of Previous High-COR Iron Type Golf Clubs
As used herein, the terms “coefficient of restitution,” “COR,” “relative coefficient of restitution,” “relative COR,” “characteristic time,” and “CT” are defined according to the following. The coefficient of restitution (COR) of an iron clubhead is measured according to procedures described by the USGA Rules of Golf as specified in the “Interim Procedure for Measuring the Coefficient of Restitution of an Iron Clubhead Relative to a Baseline Plate,” Revision 1.2, Nov. 30, 2005 (hereinafter “the USGA COR Procedure”). Specifically, a COR value for a baseline calibration plate is first determined, then a COR value for an iron clubhead is determined using golf balls from the same dozen(s) used in the baseline plate calibration. The measured calibration plate COR value is then subtracted from the measured iron clubhead COR to obtain the “relative COR” of the iron clubhead.
To illustrate by way of an example: following the USGA COR Procedure, a given set of golf balls may produce a measured COR value for a baseline calibration plate of 0.845. Using the same set of golf balls, an iron clubhead may produce a measured COR value of 0.825. In this example, the relative COR for the iron clubhead is 0.825−0.845=−0.020. This iron clubhead has a COR that is 0.020 lower than the COR of the baseline calibration plate, or a relative COR of −0.020.
The characteristic time (CT) is the contact time between a metal mass attached to a pendulum that strikes the face center of the golf club head at a low speed under conditions prescribed by the USGA club conformance standards.
Most commercially available iron type golf clubs have relative COR values that are lower than about −0.045. One exception has been the Burner® and Burner® 2.0 irons produced and sold by the TaylorMade Golf Company. The Burner® and Burner®2.0 irons have relative COR values of up to about −0.020 for the longer irons included in the set. The high relative COR values for the Burner® and Burner® 2.0 irons are provided by, among other features, the thin, flexible striking plate and large unsupported face area included on these golf clubs.
Testing has shown that the flexible striking plate and large unsupported face area of the Burner® and Burner® 2.0 irons produce launch conditions that result in a rightward deviation for (right-handed) centerface golf shots hit using these clubs. For example, under certain test conditions, a golf ball struck at centerface using a Burner®2.0 4 iron will have a rightward deviation of up to about 7 yards.
The present inventors investigated the performance of the high-COR Burner® and Burner® 2.0 irons and other high-COR club head designs and determined that the rightward tendency was caused primarily by the occurrence of a sidespin component of the spin imparted to the golf ball upon launch off the face of the clubhead. For example, iron golf club head designs were modeled using commercially available computer aided modeling and meshing software, such as Pro/Engineer by Parametric Technology Corporation for modeling and Hypermesh by Altair Engineering for meshing. The golf club head designs were analyzed using finite element analysis (FEA) software, such as the finite element analysis features available with many commercially available computer aided design and modeling software programs, or stand-alone FEA software, such as the ABAQUS software suite by ABAQUS, Inc. Under simulation, a model of a Burner® 2.0 4 iron was observed to produce sidespin of about 158.23 rpm under a conventional set of launch conditions (ball speed of 133.43 fps, launch angle 16.22°, backspin of 4750 rpm), which contributed to a rightward deviation of about 6.76 yards over a shot distance (carry only) of about 207.58 yards. This performance and, in particular, the degree of rightward deviation for golf ball shots made using the longer irons included in the Burner® 2.0 iron set, has been confirmed via robot and player testing.
Further investigation of the cause of the rightward tendency of the high-COR Burner® and Burner® 2.0 irons showed that the sidespin imparted to the golf ball was caused primarily by the asymmetric deformation of the unsupported region of the striking face upon impact with the golf ball. Unlike a conventional driver, wood, or metalwood type clubhead, the unsupported region of the face of a conventional iron clubhead is asymmetric in shape, having a heel region with a relatively short face height and a toe region with a relatively large face height. For example,
As shown in
For a striking plate of a given thickness or stiffness, the broader area of the toe unsupported face region 464 relative to that of the heel unsupported face region 462 will allow the striking plate to deform more in the toe region than it does in the heel region under a given load. As a result, a given amount of force applied to the unsupported region of the face of a conventional iron club head will create an increased amount of deformation of the striking plate when the force is applied toward the toe region 464 of the striking plate relative to the same force applied toward the heel region 462 of the striking plate. In the case of a golf ball impacting a clubface at typical clubhead speeds encountered during normal use, the golf ball impact area on the striking face can be sufficiently large that the deformation area itself can be asymmetric when the striking plate stiffness is sufficiently low and the unsupported face area 446 is sufficiently asymmetric (i.e., Ht>Hh and/or SATOE>SAHEEL). When the deformation area is asymmetric, the launch conditions of the struck golf ball will include a significant sidespin component and the golf ball will have a significant rightward deviation (for a right handed shot).
4. Descriptions of Inventive High-COR Iron Type Golf Clubs
The high-COR iron type club heads described herein include a localized stiffened region that is located on the striking face of the club head such that the localized stiffened region alters the launch conditions of golf balls struck by the club head in a way that wholly or partially compensates for, overcomes, or prevents the occurrence of the foregoing rightward deviation. In particular, the localized stiffened region is located on the striking face such that a golf ball struck under typical conditions will not impart a right-tending sidespin to the golf ball.
The inventors of the club heads described herein investigated the effect of modifying the stiffness of particular regions of the striking face of high-COR iron type club heads. Iron golf club head designs were modeled using commercially available computer aided modeling and meshing software, such as Pro/Engineer by Parametric Technology Corporation for modeling and Hypermesh by Altair Engineering for meshing. The golf club head designs were analyzed using finite element analysis (FEA) software, such as the finite element analysis features available with many commercially available computer aided design and modeling software programs, or stand-alone FEA software, such as the ABAQUS software suite by ABAQUS, Inc. Under simulation, models of high-COR club heads having localized stiffened regions at several locations in the unsupported face region of the club heads were observed to produce reduced or no right-tending sidespin and reduced or no rightward deviation for right handed golf shots. In some cases, the inventive club heads produced a left-tending sidespin and leftward deviation for right handed golf shots.
For example, Table 1 below shows simulation data for several club head designs that include an inverted cone technology region 148, 248 located at various locations on the striking face of the club head. With the exceptions listed below, the ICT Region 148, 248 for each of the club heads described in Table 1 included an inner diameter of about 11 mm and an outer diameter of about 22 mm. The exceptions are the entries identified as Rev. G, which included an inner diameter of 17 mm and an outer diameter of 28 mm, and Rev. J, which included an inner diameter of 23 mm and an outer diameter of 34 mm. In addition, Rev. L included a transition region having a diameter of about 45 mm, and Rev. M included a non-symmetric transition region.
In Table 1, the entry for “B 2.0” represents data corresponding to a Burner® 2.0 4 iron golf club. The “ICT Peak” is the thickness of the ICT Region at its inner span 142, 242. The “ICT x-loc” is the club head face plane 125, 225 coordinate (in mm) along the CG x-axis of the center 152, 252 of the ICT Region. The “ICT y-loc” is the distance (in mm) within the club head face plane 125, 225 that the center of the ICT Region is offset from the leading edge (defined as the intersection of the sole portion 108, 208 and the face plane 125, 225). The “Toe/Heel Thk,” “Top thk,” and “Bottom thk” are the thicknesses of the periphery of the unsupported face region 146, 246 in the areas of the toe and heel, top line, and sole portion, respectively. “Deviation” is the deviation from the target of a simulated golf ball struck by the club head, with positive numbers representing a rightward deviation (for right handed shots) and negative numbers representing a leftward deviation (for right handed shots). “Relative COR” is the predicted relative COR value for the club head.
As the data contained in Table 1 shows, a thickened ICT Region 142, 242 located on the striking face 110, 210 of a high-COR iron can be located such that the occurrence of a rightward deviation can be compensated for and/or overcome. In particular, the rightward deviation is compensated for and/or overcome where the ICT region 148, 248 is located on the toe side of and near to the ideal striking location 101, 201. Examples of club heads 500 having ICT Regions 548 that are centered in the toe unsupported face region 464 are shown by comparing the club heads shown in FIGS. 5A-B with those shown in
Additional data representing simulated golf ball strikes for the club head designs described above is presented in the graph contained in
As discussed above, the primary cause of the observed compensation for the rightward deviation or the occurrence of a leftward deviation is the decrease or elimination of the occurrence of a rightward-tending sidespin, or the increase of the occurrence of a leftward-tending sidespin, on golf balls struck by the inventive golf club heads. Analytical testing was conducted to determine the relationship between the amount and direction of sidespin and the location of a localized stiffened region (such as an ICT Region) on the club head. Table 3 below reports the results of this testing for the inventive club head designs described in Table 1 above. As used herein, positive values for sidespin refer to a clockwise spin (from a frame of reference located above the golf ball) that produces a rightward (i.e., “slice” or “fade”) deviation for right handed golf shots, and negative values for sidespin refer to a counter-clockwise spin (from a frame of reference located above the golf ball) that produces a leftward (i.e., “hook” or “draw”) deviation for right handed golf shots.
In Table 3, negative values for sidespin indicate a sidespin that creates a leftward-deviation for golf balls struck right-handed.
The foregoing results were confirmed via robot testing. A commercial swing robot was used in conjunction with a three-dimensional optical motion analysis system, such as is available from Qualisys, Inc. The motion analysis system was electronically connected to a processor, which was used to collect club head and ball launch parameters as the golf clubs were swung by the robot to launch golf balls. Two golf club head designs were tested. The first was a commercially available TaylorMade Burner® 2.0 4 iron, and the second was a 4 iron embodiment of the inventive golf club heads described herein. The inventive club embodiment (Example 1 or “Ex. 1”) included the following values for the parameters described:
For the Example 1 inventive club, the ICT region 148, 248 included an inner diameter of about 11 mm and an outer diameter of about 40 mm.
The swing robot was set up to provide a swing path of 0 degrees and a face angle of 0 degrees. The following ball launch parameters were observed and recorded for TaylorMade TP Red™ golf balls struck by the club heads at their ideal striking locations:
As the results above show, the inventive golf club head (which has a localized stiffened region that is shifted toe-ward and top line-ward relative to the ICT Region of the Burner® 2.0 club head) produced about 350.4 rpm of increased leftward-tending sidespin relative to the Burner® 2.0 golf club head.
A. Full Unsupported Face Region Stiffness
As noted above, previous high-COR, perimeter weighted, iron type golf club head designs have included an unsupported face region in which the cross-sectional bending stiffness is generally uniformly distributed relative to the ideal striking location. For example, a club head with a striking plate having a uniform thickness of a homogeneous material will have the same point-wise cross-sectional bending stiffness at each point within the unsupported face region. As another example, a club head having a localized stiffened region (e.g., an ICT Region) that is symmetric and that is centered upon the ideal striking location will also have a point-wise cross-sectional bending stiffness that is generally uniformly distributed relative to the ideal striking location. In the latter example, the point-wise cross-sectional bending stiffness will vary at different locations on the club face, but the variations will be symmetrically distributed relative to the ideal striking location. At least the following three properties of these golf clubs are factors leading to the occurrence of a rightward deviation for golf shots hit with these clubs: (a) the high COR, (b) the asymmetric shape of the unsupported face region, and (c) the uniform bending stiffness distribution
On the other hand, the inventive high-COR, perimeter weighted, iron type golf club heads described herein include a point-wise cross-sectional bending stiffness profile that is asymmetric in relation to the ideal striking location, which provides a non-uniform bending stiffness distribution that decreases or prevents the occurrence of the foregoing rightward deviation. In particular, for the inventive club head designs, the mean point-wise cross-sectional bending stiffness of the toe unsupported face region 464 (see
The mean point-wise cross-sectional bending stiffness of a member may be calculated by dividing the member into N evenly distributed points and applying the following equation:
where En and tn are the effective Young's Modulus and effective thickness, respectively, of an nth cross-sectional subdivision of the member. In the case of an unsupported face region of a golf club striking face, a reasonable distribution is achieved by discretizing the region into a mesh of uniform cross-sections each having a 1 mm×1 mm surface on the striking face to apply the foregoing equation.
Accordingly, for the inventive club heads described herein, the following inequality will apply in a comparison of the mean bending stiffness of the toe unsupported face region 464 to the mean bending stiffness of the heel unsupported face region 462:
where En and tn are the effective Young's Modulus value and the thickness, respectively, for the nth cross-section of the toe portion of the unsupported region of the striking face, Em and tm are the effective Young's Modulus value and the thickness, respectively, for the mth cross-section of the heel portion of the unsupported region of the striking face, N and M have values such that 1 mm2=(SATOE/N)=(SAHEEL/M), and C is a constant having a value of 1.1.
The foregoing analysis was applied to the Burner® 2.0 golf club and the inventive golf club head designs described herein. The results are presented in Table 5:
As these results show, the inventive golf club head designs provide a ratio of mean bending stiffness of the toe unsupported face region (BSTOE) to mean bending stiffness of the heel unsupported face region (BSHEEL) that is greater than 1.1. For some embodiments, the ratio of BSTOE/BSHEEL is greater than about 1.15. In other embodiments, the ratio of BSTOE/BSHEEL is greater than about 1.20. In still other embodiments, the ratio of BSTOE/BSHEEL is greater than about 1.25.
B. Hitting Region Stiffness
As noted above in relation to the data presented in
Two examples of “hitting regions” are defined herein for the purpose of analyzing a given iron type club head. In a first example, a “vertical wall hitting region” is defined as the portion of the unsupported face region that extends between two imaginary parallel lines drawn within the face plane 125, 225, perpendicularly to the ground plane 111, and spaced 20 mm on either side of the ideal striking location 101, 201. In a second example, a “circular wall hitting region” is defined as the portion of the unsupported face region that extends within an imaginary circle drawn within the face plane 125, 225, having a radius of 20 mm, and having a center located at the ideal striking location 101, 201.
The bending stiffness equations described in the preceding section can then be applied to the “hitting regions” defined above for a given iron type golf club head. In particular, for the inventive club heads described herein, the following inequality will apply in a comparison of the mean bending stiffness of the portion of the toe unsupported face region 464 to the mean bending stiffness of the portion of the heel unsupported face region 462 that lie within the specified “hitting region” of the golf club head:
where En and tn are the effective Young's Modulus value and the thickness, respectively, for the nth cross-section of the toe portion of the unsupported region of the striking face lying within the hitting region, Em and tm are the effective Young's Modulus value and the thickness, respectively, for the mth cross-section of the heel portion of the unsupported region of the striking face lying within the hitting region, N and M have values determined by discretizing SATOE HR and HR SAHEEL HR, respectively, into 1 mm×1 mm sections, SATOE HR and SAHEEL HR are the surface area of the toe portion and heel portion, respectively, of the unsupported region of the striking face lying with the hitting region, and D has a value defined below.
The foregoing analysis was applied to the Burner® 2.0 golf club and the inventive golf club head designs described herein. The results are presented in Table 5:
As for the value of the constant D in the inequality set forth above, the results reported in Table 6 show that, in the case of the “vertical wall hitting region” (i.e., DVW) the inventive golf club head designs provide a ratio of mean bending stiffness of the toe unsupported face region lying in the hitting region (BSTOE HR) to mean bending stiffness of the heel unsupported face region lying in the hitting region (BSHEEL HR) such that Dvs is greater than 1.25. For some embodiments of the “vertical wall hitting region,” the ratio of BSTOE HR/BSHEEL HR is greater than about 1.30. In other embodiments, the ratio of BSTOE HR/BSHEEL HR is greater than about 1.40. In still other embodiments, the ratio of BSTOE HR/BSHEEL HR is greater than about 1.50.
Turning next to the case of the “circular wall hitting region” (i.e., DCW), the inventive golf club head designs provide a ratio of mean bending stiffness of the toe unsupported face region lying in the hitting region (BSTOE HR) to mean bending stiffness of the heel unsupported face region lying in the hitting region (BSHEEL HR) such that the value of DCW is greater than 1.40. For some embodiments of the “circular wall hitting region,” the ratio of BSTOE HR/BSHEEL HR is greater than about 1.50. In other embodiments, the ratio of BSTOE HR/BSHEEL HR is greater than about 1.65. In still other embodiments, the ratio of BSTOE HR/BSHEEL HR is greater than about 1.80.
C. Application of Gaussian Weighting Function
An alternative analytical description of the bending stiffness distribution of the inventive golf club heads described herein incorporates a Gaussian function. Gaussian functions are used in statistics to described normal distributions, e.g., a characteristic symmetric “bell curve” shape that quickly falls off towards plus/minus infinity. For the purposes described herein, the Gaussian function is used to apply a distributive weighting to the bending stiffness contribution of cross-sectional subdivisions of the striking face in an analytical description of the golf club face construction. Similar to the “hitting region” analysis described in the preceding section, an analysis of the bending stiffness profiles using a Gaussian weighting function can show whether the club head construction will reduce and/or overcome the occurrence of the rightward deviation described above.
The two-dimensional elliptical Gaussian function has the following form:
ƒ(x,y)=Ae−(a(x−x
where A is the height of the peak of the function centered at (xo, yo) and a, b, and c are the following:
a=(cos2θ÷2σx2)+(sin2θ÷2σy2);
b=(sin2θ÷4σx2)+(sin2θ÷4σy2);
c=(sin2θ÷2σx2)+(cos2θ÷2σy2);
Where σx and σy are the full width half maxima of the weighting function. This allows the weighting function to be rotated about a specified angle θ. In the case of a description of the inventive golf club heads described herein, the following set of parameters are used to define the function:
The foregoing set of parameters was determined based upon analysis of the simulation and testing data presented above which was used to identify the location on the striking face of the golf club where a localized stiffened region would be most influential in inducing the occurrence of a leftward deviation for golf balls struck by the club head.
The Gaussian weighting function, ƒ(x, y), so defined is then applied to the bending stiffness equations and inequalities described above to determine the weighted mean bending stiffness of a region of the striking face of a golf club according to the following:
where En and tn are the effective Young's Modulus and effective thickness, respectively, of an nth cross-sectional subdivision of the region.
Accordingly, for the inventive club heads described herein, the following inequality will apply in a comparison of the mean bending stiffness of the toe unsupported face region 464 to the mean bending stiffness of the heel unsupported face region 462:
where En and tn are the effective Young's Modulus value and the thickness, respectively, for the nth cross-section of the toe portion of the unsupported region of the striking face, Em and tm are the effective Young's Modulus value and the thickness, respectively, for the mth cross-section of the heel portion of the unsupported region of the striking face, N and M have values determined by discretizing SATOE and SAHEEL, respectively, into 1 mm×1 mm sections, ƒ(x, y) is the Gaussian weighting function defined above, and F has a value defined below.
The foregoing analysis was applied to the Burner® 2.0 golf club and the inventive golf club head designs described herein. The results are presented in Table 7:
As these results show, the inventive golf club head designs provide a ratio of the weighted mean bending stiffness of the toe unsupported face region (BSTOE WEIGHTED) to weighted mean bending stiffness of the heel unsupported face region (BSHEEL WEIGHTED) that satisfies the above inequality where F is equal to 3.10. For some embodiments, the ratio of BSTOE WEIGHTED/BSHEEL WEIGHTED is greater than about 3.40 (i.e., F=3.40). In other embodiments, the ratio of BSTOE WEIGHTED/BSHEEL WEIGHTED is greater than about 4.00 (i.e., F=4.00). In still other embodiments, the ratio of BSTOE WEIGHTED/BSHEEL WEIGHTED is greater than about 4.40 (i.e., F=4.40).
D. Sidespin Performance Value
As discussed above, testing and analysis of the currently available iron type golf clubs confirms that those currently available golf clubs with club heads having a high COR and an asymmetric unsupported face region will have the rightward deviation (for right handed golf shots) caused by a rightward sidespin described above. As used herein, the term “high COR” refers to a relative COR of at least about −0.030, such as at least about −0.025 or, in some embodiments, at least about −0.020. Also, as used herein, the term “asymmetric unsupported face region” refers to an unsupported face region in which SATOE>SAHEEL, as those terms are defined above in relation to
The inventive club heads described herein also have high COR and an asymmetric unsupported face region. However, testing has shown that the inventive club heads do not have the rightward deviation caused by rightward sidespin of the previous club heads. For example, as discussed above, a commercial swing robot was used in conjunction with a three-dimensional optical motion analysis system, such as is available from Qualisys, Inc., to compare the inventive club heads with a previous high COR club head having an asymmetric unsupported face region. The motion analysis system was electronically connected to a processor, which was used to collect club head and ball launch parameters as the golf clubs were swung by the robot to launch golf balls. The commercial golf club tested was a TaylorMade Burner® 2.0 4 iron, which was compared to the “Example 1” 4 iron embodiment of the inventive golf club heads described above. The swing robot was set up to provide a swing path of 0 degrees and a face angle of 0 degrees. The following ball launch parameters were observed and recorded for TaylorMade TP Red™ golf balls struck by the club heads at their ideal striking locations:
As the results above show, the inventive golf club head (which has a localized stiffened region that is shifted toe-ward and top line-ward relative to the ICT Region of the Burner® 2.0 club head) produced about 350.4 rpm of increased leftward-tending sidespin relative to the Burner® 2.0 golf club head.
Moreover, the inventive club head produced a Sidespin Performance Value that is less than 0. As used herein, the term “Sidespin Performance Value” for a given iron type golf club head refers to the sidespin of a golf ball struck by the subject club head using a conventional swing robot as measured using a conventional three-dimensional motion analysis system under the following set of “Specified Set Up and Launch Conditions”:
Several embodiments of the inventive golf club heads described herein include a localized stiffened region that is located on and that forms a portion of the striking face 110, 210 at a location that surrounds or that is adjacent to the ideal striking location 101, 201. The localized stiffened region comprises an area of the striking face 110, 210 that has increased stiffness due to being relatively thicker than a surrounding region, due to being constructed of a material having a higher Young's Modulus (E) value than a surrounding region, and/or a combination of these factors.
In addition to the location of the localized stiffened region on the striking face of the club head, the localized stiffened regions of the inventive golf club heads can be described by reference to the mean bending stiffness of the localized stiffened region relative to the mean bending stiffness of the unsupported region face region of the club head. For example, the mean point-wise cross-sectional bending stiffness of a given localized stiffened region may be calculated according to the following equation:
where En and tn are the effective Young's Modulus and effective thickness, respectively, of an nth cross-sectional subdivision of the localized stiffened region, and where the localized stiffened region is subdivided into a mesh of 1 mm x 1 mm cross-sections to apply the foregoing equation. Accordingly, for the inventive club heads described herein, the following inequality will apply:
[((Σn=1NEntn3)÷N]÷[(Σm=1MEmtm3)÷M]>G (2)
where En and tn are the effective Young's Modulus value and the thickness, respectively, for the nth cross-section of the localized stiffened region of the striking face, Em and tm are the effective Young's Modulus value and the thickness, respectively, for the mth cross-section of the unsupported region of the striking face, N and M have values determined by discretizing SALSR and SAUR, respectively, into 1 mm×1 mm sections where SALSR is the surface area of the localized stiffened region and SAUR is the surface area of the unsupported region, and G is a constant having a value of at least 1.6, such as 1.75, 2.0, 2.2, 2.5, or 3.0.
In several embodiments of the inventive golf club heads described herein, the localized stiffened region is an inverted cone technology region having a symmetrical “donut” shaped area of increased thickness that has a center located toe-ward of the ideal striking location 101, 201. In some of these embodiments, the inverted cone region 148, 248 includes an outer span 144, 244 having a diameter of between about 15 mm and about 25 mm, or at least about 20 mm. In some embodiments, the inner span 142, 242 has a diameter of between about 5 mm and about 15 mm, or at least about 10 mm. Several such embodiments are described in Table 1 above.
In several other embodiments of the inventive golf club head described herein, the localized stiffened region has a shape and size other than those described above for the inverted cone regions 148, 248. The shape may be geometric (e.g., triangular, square, trapezoidal, etc.) or irregular. For these embodiments, a center of gravity of the localized stiffened region (CGLSR) may be determined, with the CGLSR being located toe-ward of the ideal striking location.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. It will be evident that various modifications may be made thereto without departing from the broader spirit and scope of the invention as set forth. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.
This application is a continuation of U.S. patent application Ser. No. 17/697,175, filed Mar. 17, 2022, now U.S. Pat. No. 11,745,065, which is a continuation of U.S. patent application Ser. No. 16/866,927, filed May 5, 2020, now U.S. Pat. No. 11,305,165, which is a continuation of U.S. patent application Ser. No. 16/273,831, filed Feb. 12, 2019, now U.S. Pat. No. 10,646,757, which is a continuation of U.S. patent application Ser. No. 15/956,412, filed Apr. 18, 2018, now U.S. Pat. No. 10,245,484, which is a continuation of U.S. patent application Ser. No. 15/427,921, filed Feb. 8, 2017, now U.S. Pat. No. 9,975,018, which is a continuation of U.S. patent application Ser. No. 13/336,823, filed Dec. 23, 2011, now U.S. Pat. No. 9,597,562, all of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3970236 | Rogers | Jul 1976 | A |
4027885 | Rogers | Jun 1977 | A |
4523759 | Igarashi | Jun 1985 | A |
5348302 | Sasamoto | Sep 1994 | A |
5472201 | Aizawa | Dec 1995 | A |
5540437 | Bamber | Jul 1996 | A |
5564705 | Kobayashi | Oct 1996 | A |
5669824 | Aizawa | Sep 1997 | A |
5766092 | Mimeur | Jun 1998 | A |
5772527 | Liu | Jun 1998 | A |
6030295 | Takeda | Feb 2000 | A |
6045456 | Best | Apr 2000 | A |
6280348 | Stites | Aug 2001 | B1 |
6319150 | Werner et al. | Nov 2001 | B1 |
6743114 | Best | Jun 2004 | B2 |
6923733 | Chen | Aug 2005 | B2 |
6942580 | Hou | Sep 2005 | B2 |
7041003 | Bissonnette et al. | May 2006 | B2 |
7115048 | Kusumoto | Oct 2006 | B2 |
7140975 | Bissonnette et al. | Nov 2006 | B2 |
7153222 | Gilbert | Dec 2006 | B2 |
7186188 | Gilbert | Mar 2007 | B2 |
7223179 | Tsunoda | May 2007 | B2 |
7396290 | Gilbert | Jul 2008 | B2 |
7651412 | Meyer et al. | Jan 2010 | B2 |
7749102 | Nakamura | Jul 2010 | B2 |
7803062 | Gilbert | Sep 2010 | B2 |
7967700 | Stites | Jun 2011 | B2 |
7988564 | Jertson | Aug 2011 | B2 |
8012040 | Takechi | Sep 2011 | B2 |
8038544 | Meyer et al. | Oct 2011 | B2 |
8088025 | Wahl | Jan 2012 | B2 |
8182362 | Kusumoto | May 2012 | B2 |
8317635 | Gilbert | Nov 2012 | B2 |
8342985 | Hirano | Jan 2013 | B2 |
8353785 | Ines | Jan 2013 | B2 |
8512164 | Ines | Aug 2013 | B2 |
8517863 | Wahl | Aug 2013 | B2 |
8535176 | Bazzel | Sep 2013 | B2 |
9345938 | Parsons | May 2016 | B2 |
9597562 | Dipert | Mar 2017 | B2 |
9975018 | Dipert | May 2018 | B2 |
10029159 | Parsons | Jul 2018 | B2 |
10039963 | Ripp | Aug 2018 | B2 |
10238930 | Ripp | Mar 2019 | B2 |
10245484 | Dipert | Apr 2019 | B2 |
10449428 | Parsons | Oct 2019 | B2 |
10596425 | Parsons | Mar 2020 | B2 |
10646757 | Dipert | May 2020 | B2 |
10661129 | Seagram | May 2020 | B2 |
10843052 | Seagram | Nov 2020 | B2 |
11192003 | Parsons | Dec 2021 | B2 |
11305165 | Dipert et al. | Apr 2022 | B2 |
11369847 | Parsons | Jun 2022 | B2 |
11559727 | Demkowski | Jan 2023 | B2 |
20030153397 | Roach | Aug 2003 | A1 |
20030203763 | Best | Oct 2003 | A1 |
20100261540 | Roach | Oct 2010 | A1 |
20100273570 | Ines | Oct 2010 | A1 |
20110118052 | Rice et al. | May 2011 | A1 |
20120100931 | Wahl | Apr 2012 | A1 |
20200324180 | Dipert et al. | Oct 2020 | A1 |
20220280845 | Dipert et al. | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
08243195 | Sep 1996 | JP |
08280853 | Oct 1996 | JP |
09239075 | Sep 1997 | JP |
2002035178 | Feb 2002 | JP |
2004187710 | Jul 2004 | JP |
2007289639 | Nov 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20230415008 A1 | Dec 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17697175 | Mar 2022 | US |
Child | 18218286 | US | |
Parent | 16866927 | May 2020 | US |
Child | 17697175 | US | |
Parent | 16273831 | Feb 2019 | US |
Child | 16866927 | US | |
Parent | 15956412 | Apr 2018 | US |
Child | 16273831 | US | |
Parent | 15427921 | Feb 2017 | US |
Child | 15956412 | US | |
Parent | 13336823 | Dec 2011 | US |
Child | 15427921 | US |